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Abstract. A well-known shadowing theorem for ordinary differential equations is general-
ized to delay differential equations. It is shown that a linear autonomous delay differential
equation is shadowable if and only if its characteristic equation has no root on the imaginary
axis. The proof is based on the decomposition theory of linear delay differential equations.
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1. Introduction and the main result

Roughly speaking, a differential equation is shadowable if around its approximate

solutions we can always find a true solution (for the precise notion, see Definition 1.2

below). Shadowing and the similar concept of Hyers-Ulam stability has become

an important part of the qualitative theory of differential and difference equations,

see e.g. [3], [6]. In this note, we are interested in the shadowing of a general class

of linear autonomous delay differential equations which, among others, includes the

equation

(1.1) x′(t) =
N
∑

j=1

Ajx(t− rj) +

∫ 0

−r

A(θ)x(t+ θ) dθ, t > 0,
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where 0 6 rj 6 r, Aj ∈ C
n×n, 1 6 j 6 N , and A : [−r, 0] → C

n×n is a continuous

matrix-valued function. Solutions of (1.1) are generated by initial data x(t) = ϕ(t)

for t ∈ [−r, 0], where ϕ ∈ C := C([−r, 0],Cn) is a given initial function. As usual,

the symbol C = C([−r, 0],Cn) denotes the Banach space of continuous functions

from [−r, 0] into Cn equipped with the supremum norm

‖ϕ‖ := sup
−r6θ60

|ϕ(θ)|, ϕ ∈ C,

where |·| is any norm on Cn. The characteristic values of (1.1) are the complex roots

of its characteristic equation

(1.2) det

(

zI −
N
∑

j=1

Aje
−zrj −

∫ 0

−r

A(θ)ezθ dθ

)

= 0,

where I is the n×n identity matrix. In the special case of a linear ordinary differential

equation

(1.3) x′ = Bx

with a constant coefficient B ∈ C
n×n, it is well-known that both the shadowing prop-

erty and Hyers-Ulam stability are equivalent to the nonexistence of a characteristic

value with zero real part, see e.g. [4], Theorem 2.1. To the best of our knowledge,

the analogue of this result for delay differential equations is not available in the lit-

erature. It is therefore natural to ask whether a similar conclusion is true for delay

differential equations. In this note, we shall give a positive answer to this question for

the most general class of linear autonomous delay differential equations of the form

(1.4) x′(t) = L(xt), t > 0,

where xt ∈ C is defined by xt(θ) := x(t + θ) for θ ∈ [−r, 0] and L : C → C
n is

a bounded linear functional. In contrast with the ordinary differential equation (1.3),

the phase space C for (1.4) is infinite dimensional, therefore the proof requires dif-

ferent arguments. Our proof will be based on the decomposition theory of linear au-

tonomous delay differential equations, see [5]. Before we formulate our main result,

recall that by a solution of (1.4) we mean a continuous function x : [−r,∞) → C
n

which is differentiable on [0,∞) and satisfies (1.4) for all t > 0. (By the derivative

at t = 0, we mean the right-hand side derivative.) It is well-known (see [5], Chapter 6)

that for every ϕ ∈ C, equation (1.4) has a unique solution with initial value x0 = ϕ.

According to the Riesz representation theorem, L can be written in the form

(1.5) L(ϕ) =

∫ 0

−r

d[η(θ)]ϕ(θ), ϕ ∈ C,
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where η : [−r, 0] → C
n×n is a matrix function of bounded variation normalized so

that η is left continuous on (−r, 0) and η(0) = 0. The characteristic equation of (1.4)

has the form

(1.6) det∆(z) = 0, ∆(z) = zI −

∫ 0

−r

ezθ dη(θ).

Definition 1.1. Given δ > 0, by a δ-pseudosolution (δ-approximate solution)

of (1.4), we mean a continuous function y : [−r,∞) → C
n which is continuously

differentiable on [0,∞) and satisfies

(1.7) |y′(t)− L(yt)| 6 δ, t > 0.

Definition 1.2 ([1]). Equation (1.4) is said to be shadowable if for every ε > 0

there exists δ > 0 such that for every δ-pseudosolution y of (1.4) there exists a solu-

tion x of (1.4) satisfying

(1.8) ‖xt − yt‖ 6 ε, t > 0.

Our main result is the following generalization of a classic shadowing theorem for

ordinary differential equations to delay differential equations.

Theorem 1.1. Equation (1.4) is shadowable if and only if its characteristic equa-

tion (1.6) has no root with zero real part.

The proof of Theorem 1.1 will be given in Section 3 after summarizing some

facts from the spectral theory of linear autonomous delay differential equations in

Section 2.

2. Preliminaries

It is known (see [5], Chapter 7, Lemma 1.2) that (1.4) generates a C0-semigroup

(T (t))t>0 on C defined by

T (t)ϕ = xt(ϕ), t > 0, ϕ ∈ C,

where x(ϕ) is the unique solution of (1.4) with initial value x0 = ϕ. The infinitesimal

generator (A,D(A)) of the solution semigroup is given by

A(ϕ) = ϕ′, D(A) = {ϕ ∈ C : ϕ′ ∈ C, ϕ′(0) = L(ϕ)}.

The spectrum of A, denoted by σ(A), is a point spectrum and consists of the roots

of characteristic equation (1.6), see [5], Chapter 7, Lemma 2.1.
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Let λ ∈ σ(A). If kλ is the order of λ as a pole of ∆
−1, then the generalized

eigenspaceMλ(A) of A corresponding to λ is given by

Mλ(A) = N ((λI −A)kλ),

the null space of the operator (λI−A)kλ , see [5], Chapter 7, Theorem 4.2. The phase

space C can be decomposed into the direct sum

C = Mλ(A)⊕Qλ(A),

where Qλ(A) = R((λI−A)kλ), the range of (λI−A)kλ . This means that each ϕ ∈ C

can be written in a unique way as

(2.1) ϕ = ϕMλ(A) + ϕQλ(A),

where ϕMλ(A) ∈ Mλ(A) and ϕ
Qλ(A) ∈ Qλ(A), see [5], Chapter 7, Lemma 2.1.

Define C ′ = C([0, r],Cn∗), where C
n∗ denotes the space of row n-vectors with

complex entries. If y : (−∞, r] → C
n∗ is a continuous function, then for s > 0 the

symbol ys designates the element of C ′ defined by ys(ξ) = y(−s + ξ) for ξ ∈ [0, r].

With (1.4), we can associate its transpose equation

(2.2) y′(s) = −

∫ 0

−r

y(s− ξ) d[η(ξ)], s 6 0.

For every ψ ∈ C ′, the transpose equation (2.2) has a unique (backward) solution

y = y(ψ) with initial value y0 = ψ. The transposed semigroup (T⊤(s))s>0 on C
′ is

defined by

T⊤(s)ψ = ys(ψ), s > 0, ψ ∈ C ′.

Its infinitesimal generator (A⊤,D(A⊤)) is given by

A⊤(ψ) = −ψ′, D(A⊤) = {ψ ∈ C ′ : ψ′ ∈ C ′, ψ′(0) = L′(ψ)},

where

L′(ψ) = −

∫ 0

−r

ψ(−ξ) d[η(ξ)], ψ ∈ C ′,

see [5], Chapter 7, Lemma 1.4. For ϕ ∈ C and ψ ∈ C ′, define the bilinear form

(2.3) (ψ,ϕ) = ψ(0)ϕ(0)−

∫ 0

−r

∫ θ

0

ψ(θ − τ) d[η(τ)]ϕ(θ) dθ.

The spectra σ(A) and σ(A⊤) coincide andMλ(A
⊤) = N ((λI −A⊤)kλ). It is known

that

dimMλ(A) = dimMλ(A
⊤) = mλ,

where mλ is the multiplicity of λ as a root of the entire function det∆, see [5],

Chapter 7, Theorem 4.2 and Lemma 5.2. Let Φλ = (ϕ1, . . . , ϕmλ
) and Ψλ =
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col(ψ1, . . . , ψmλ
) be bases forMλ(A) andMλ(A

⊤), respectively, and let (Ψλ,Φλ) =

((ψi, ϕj))i,j=1,...,mλ
. Then (Ψλ,Φλ) is nonsingular and thus we may (and do)

choose Ψλ such that (Ψλ,Φλ) = I. The decomposition in (2.1) can be given

explicitly by

(2.4) ϕMλ(A) = Φλ(Ψλ, ϕ)

and ϕQλ(A) = ϕ − ϕMλ(A), see [5], Chapter 7, Lemma 5.2. It is known (see [5],

Chapter 7, Lemma 2.2 and the remark below Lemma 5.2 in [5]) that there exists an

mλ×mλ matrix Bλ with complex entries such that σ(Bλ) = {λ}, AΦλ = ΦλBλ and

A⊤Ψλ = BλΨλ so that

(2.5) Φλ(θ) = Φλ(0)e
Bλθ, −r 6 θ 6 0,

and

(2.6) Ψλ(ξ) = e−BλξΨλ(0), 0 6 ξ 6 r.

If x is a solution of the nonhomogeneous equation

(2.7) x′(t) = L(xt) + f(t), t > 0,

where f : [0,∞) → C
n is a continuous function, then (2.1) and (2.4) imply that for

all t > 0,

xt = x
Mλ(A)
t + x

Qλ(A)
t ,

where

x
Mλ(A)
t = Φλu(t), u(t) = (Ψλ, xt),

and x
Qλ(A)
t = xt −x

Mλ(A)
t . Moreover, according to [5], Chapter 7, Theorem 9.1, the

function u : [0,∞) → C
mλ satisfies ordinary differential equation

(2.8) u′(t) = Bλu(t) + Ψλ(0)f(t), t > 0.

3. Proof of the main result

Now we are in a position to give a proof of Theorem 1.1.

P r o o f of Theorem 1.1. The “if” part is a simple consequence of a recent result

on nonautonomous delay differential equations (see [2], Theorem 2.3) as we now

demonstrate. Suppose that (1.4) has no characteristic root with zero real part.

Then (1.4) has an exponential dichotomy on R (see, e.g. [5], Section 10.1, page 303),

which is a special case of the shifted exponential dichotomy with splitting at γ = 0

as defined in [2]. By the application of Theorem 2.3 in [2] with γ = 0 and f = 0, we

conclude that (1.4) is shadowable.
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Now we prove the “only if“ part. Suppose, for the sake of contradiction, that (1.4)

is shadowable and there exists a characteristic value λ ∈ σ(A) such that Reλ = 0.

Taking ε = 1, the definition of the shadowing implies the existence of δ > 0 such

that for every δ-pseudosolution y of (1.4) there exists a solution x of (1.4) satisfying

(3.1) ‖xt − yt‖ 6 1, t > 0.

Suppose that Φλ and Ψλ are bases forMλ(A) andMλ(A
⊤), respectively, such that

(Ψλ,Φλ) = I. As noted in Section 2, there exists an mλ ×mλ matrix Bλ such that

the only eigenvalue of Bλ is λ and (2.5) and (2.6) are satisfied. Choose a nonzero

vector vλ ∈ C
mλ∗ such that vλBλ = λvλ. Without loss of generality, we may (and do)

assume that

(3.2) |[vλΨλ(0)]
∗| 6 δ,

where the superscript ∗ indicates the conjugate transpose. Otherwise, we replace vλ
with ηvλ, where η > 0 is sufficiently small. It follows by induction that vλB

k
λ = λkvλ

for k = 0, 1, 2, . . . This, combined with the definition of the matrix exponential,

implies that

(3.3) vλe
Bλt = eλtvλ, t ∈ R.

We will show that

(3.4) vλΨλ(0) 6= 0.

Suppose, for the sake of contradiction, that vλΨλ(0) = 0. This, together with (2.6)

and (3.3), implies that

(3.5) vλΨλ(ξ) = vλe
−BλξΨλ(0) = e−λξvλΨλ(0) = 0 for all ξ ∈ [0, r].

On the other hand, vλ 6= 0 implies that vλΨλ is a nontrivial linear combination of the

basis functions ψ1, ψ2, . . . , ψmλ
of Mλ(A

⊤) which is necessarily a nonzero element

ofMλ(A
⊤). Thus, vλΨλ cannot be identically zero on [0, r]. This contradicts (3.5)

and hence (3.4) holds. Define f : [0,∞) → C
mλ by

(3.6) f(t) = eλt[vλΨλ(0)]
∗, t > 0.

Let y be the unique solution of the nonhomogeneous equation (2.7) with initial

value y0 = 0 and f as in (3.6). From (3.2), taking into account that

(3.7) |eλt| = etReλ = e0 = 1, t > 0,
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we conclude that

|y′(t)− L(yt)| = |f(t)| 6 |eλt||[vλΨλ(0)]
∗| 6 δ, t > 0.

Thus, y is δ-pseudosolution of (1.4) and therefore (1.4) has a solution x satisfy-

ing (3.1). Define

z(t) = y(t)− x(t), t > −r.

By (3.1), we have that

(3.8) sup
t>0

‖zt‖ 6 1.

Since x is a solution of (1.4), z and y satisfy the same nonhomogeneous equation (2.7)

with f given by (3.6). As noted in Section 2, the function u defined by

u(t) = (Ψλ, zt), t > 0,

is a solution of the ordinary differential equation (2.8). Using the definition of the

bilinear form in (2.3) and the fact that η is of bounded variation on [−r, 0], it is easy

to show that there exists K > 0 such that

|(Ψλ, ϕ)| 6 K‖ϕ‖, ϕ ∈ C.

Hence,

(3.9) |u(t)| = |(Ψλ, zt)| 6 K‖zt‖ 6 K, t > 0,

the last inequality being a consequence of (3.8). This implies that the scalar function

w : [0,∞) → C defined by

w(t) = vλu(t), t > 0,

is bounded on [0,∞). Multiplying (2.8) by vλ from left, using (3.6) and the relation

vλBλ = λvλ, we find that

(3.10) w′(t) = λw(t) + ceλt, t > 0,

where

c = [vλΨλ(0)][vλΨλ(0)]
∗ = |[vλΨλ(0)]

∗|22 > 0.

The symbol |·|2 denotes the l2-norm on Cmλ and the positivity of c follows from (3.4).

From (3.10), by the variation of constants formula, we obtain

w(t) = eλt(w(0) + ct), t > 0.

From this and (3.7), we conclude that

|w(t)| = |w(0) + ct| → ∞, t→ ∞,

which contradicts the boundedness of w. �
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