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Abstract. We investigate some properties of the normed space of almost periodic functions
which are defined via the Denjoy-Perron (or equivalently, Henstock-Kurzweil) integral. In
particular, we prove that this space is barrelled while it is not complete. We also prove
that a linear differential equation with the non-homogenous term being an almost periodic
function of such type, possesses a solution in the class under consideration.
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1. Introduction

The first author of this article had a great pleasure to meet Professor Jaroslav

Kurzweil in person during the Prague Mathematical Conference 1996 in honor of the

70th birthdays of Ivo Babuška, Miroslav Fiedler, Jaroslav Kurzweil and Vlastimil

Pták. He presented there the talk entitled “On the structure of solution sets of

differential and integral equations, and the Perron integral”, see [6]. In particular,

the following mathematicians (in the alphabetic order) listened to that talk: Ralph

Henstock, Jaroslav Kurzweil, Jean Mawhin and Štefan Schwabik. Therefore, it was

a big challenge for a young mathematician to present a talk in front of such a great

audience.
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The theory of the Denjoy-Perron integral (see [22] for more details) allows to

integrate the Newton, Riemann and Lebesgue integrable functions. In particular, it

means that it allows to integrate an arbitrary derivative, that is, for any differentiable

function f : [a, b] → R, the following formula holds:

(DP)

∫ b

a

f ′(s) ds = f(b)− f(a),

where the sign “(DP)
∫ b

a
f ′(s) ds” stands for the Denjoy-Perron integral of the func-

tion f ′ over the interval [a, b]. Kurzweil in [16], in 1957 (independently Henstock

in [13] in 1961) used the original Riemann definition of the integral to define the new

integral, which is equivalent to the Denjoy-Perron integral. That integral has found

many applications, for example, in the theory of nonlinear differential and integral

equations, see e.g. [3], [7], [10], [12], [17], [16] and [23].

On the other hand, the theory of almost periodic functions initiated by Bohr nearly

a hundred years ago has been widely developed, which is connected, in particular,

with the fact that such functions have found applications in many areas. A very im-

portant example among those applications are quasicrystals which can be described

as almost periodic patterns corresponding to almost periodic measures, see [18]. For

the introduction into the theory of Bohr almost periodic functions the interested

reader is referred e.g. to the recently published monograph, see [4].

There are many various classes of almost periodic functions, see e.g. [2]. Among

those generalizations of Bohr almost periodic functions let us indicate the so-called

Stepanov almost periodic functions, the definition of which is based on (see e.g. [24]

for more details) the integral metric defined on some subspace of locally integrable

functions.

Burkill in [11] extended the concept of almost periodicity in the Stepanov sense

to functions integrable in the Denjoy sense, defining the so-called D-a.p. functions.

Recall that D-a.p. functions form a linear space. Moreover, for such functions there

exists the mean value and they possess Fourier series, see [11] for the proofs and

further properties of such functions.

The goal of this article is to examine some properties of almost periodic functions

which are defined via the Denjoy-Perron integral. First, we compare this type of

almost periodicity with the almost periodicity in view of the Lebesgue measure.

Next, we establish that the space of Denjoy-Perron almost periodic functions is

a non-complete barreled space. Finally, we consider a linear differential equation and

we prove that such an equation possesses a Denjoy-Perron almost periodic solution

provided the non-homogeneous term of the equation under consideration is a function

of such type.
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2. Preliminaries

In this section we collect basic definitions and facts which will be needed in the

sequel. Let us denote by Lp
loc(R), p > 1 (D∗

loc), the class of all real-valued functions

defined on the real line R and integrable in the Lebesgue sense (integrable in the

Denjoy-Perron or equivalently Henstock-Kurzweil sense) on each compact interval

in R. For any f ∈ D∗
loc, let us introduce the quantity

(2.1) ‖f‖D∗ = sup
x∈R

{

sup
06h61

∣

∣

∣

∣

(DP)

∫ x+h

x

f(t) dt

∣

∣

∣

∣

}

.

Let us notice that the quantity defined above may be finite or infinite. Moreover,

let us recall that the quantity

(2.2) ‖f‖A,x = sup
06h61

∣

∣

∣

∣

(DP)

∫ x+h

x

f(t) dt

∣

∣

∣

∣

is the well-known Alexiewicz norm (see [1]) of f on the interval [x, x + 1]. Such

a norm is equivalent to the norm

‖f‖′A,x = sup
I⊂[x,x+1]

∣

∣

∣

∣

(DP)

∫

I

f(t) dt

∣

∣

∣

∣

(where I denotes an interval), because we have

‖f‖A,x 6 ‖f‖′A,x 6 2‖f‖A,x, see [26].

However,

(2.3) sup
x∈R

‖f‖A,x = sup
x∈R

‖f‖′A,x,

because every interval [a, b] ⊂ [x, x + 1] is taken into account evaluating ‖f‖A,x.

Moreover, by the definition, we have

‖f‖D∗ = sup
x∈R

‖f‖A,x.

Therefore, the quantity ‖·‖D∗ is a norm on the set of functions

{f ∈ D∗
loc : ‖f‖D∗ < ∞},

because on each fix interval [x, x+ 1] the quantity ‖·‖A,x is a norm.

For a function f : R → R and τ∈ R, let fτ (x) = f(x + τ) for x∈ R. Now we are

going to recall some basic definitions from the theory of almost periodic functions.

Definition 2.1. A nonempty set E ⊂ R is called relatively dense if there exists

a positive number ω such that in each open interval (a, a+ ω), a∈ R, there exists at

least one element of the set E.
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Based on the above definition one can state the definition of a uniformly almost

periodic function (or a Bohr almost periodic function).

Definition 2.2. A continuous function f : R → R is said to be uniformly al-

most periodic if for every ε > 0 the set
{

τ∈ R : sup
x∈R

|f(x+ τ)− f(x)| 6 ε
}

is relatively dense.

Now we are going to define the class of Stepanov almost periodic functions.

Definition 2.3. A function f ∈ Lp
loc(R), p > 1 is said to be Sp-almost periodic

or Stepanov almost periodic (briefly Sp-a.p.) if for every ε > 0 the set

{

τ∈ R : sup
x∈R

(
∫ x+1

x

|f(t+ τ)− f(t)|p dt
)1/p

6 ε

}

is relatively dense.

If p < p′, then every Sp′

-almost periodic function is Sp-almost periodic, so the

space of S1-almost periodic functions is the largest class in the sense of inclusion,

see [2]. Therefore, in the context of Stepanov almost periodic functions, we assume

in advance that p = 1.

Now, let us recall the definition of a D∗-almost periodic (briefly D∗-a.p.) func-

tion, cf. [11].

Definition 2.4. A function f ∈ D∗
loc is said to be D

∗-a.p. (or Denjoy-Perron

almost periodic) if, given ε > 0, there exists a relatively dense set (in the sense of

Bohr) of its (D∗; ε) almost periods, that is, the set of such τ ∈ R for which the

following inequality holds:

(2.4) ‖fτ − f‖D∗ < ε.

Denote by D∗ the set of all D∗-a.p. functions.

Remark 2.5. Since in the above definition, ε is any positive number, we can

also use a weak inequality. Then inequality (2.4) can be rewritten as

(2.5)

∣

∣

∣

∣

(DP)

∫ x+h

x

(f(t+ τ)− f(t)) dt

∣

∣

∣

∣

6 ε

for all x ∈ R, 0 6 h 6 1, where τ is a (D∗; ε) almost period of the function f . Hence,

it is clear that the function

(2.6) x → (DP)

∫ x+h

x

f(t) dt

4 Online first



is almost periodic in the sense of Bohr (or uniformly almost periodic) for every

0 6 h 6 1, and therefore, in particular, it is bounded and uniformly continuous.

Remark 2.6. It is well-known that the set D∗ is a vector space, cf. [19]. More-

over, it can be proved that for any f ∈ D∗, it holds that

(2.7) ‖f‖D∗ < ∞,

see [19], Theorem 2.6. Therefore, the vector space D∗ is a normed space.

Let L0(R) denote the set of all functions R → R measurable in the Lebesgue sense.

For η > 0 and f, g ∈ L0(R) let D(η; f, g) : = sup
u∈R

µ({t ∈ [u, u+1] : |f(t)−g(t)| > η}).
Now, let us recall the definition of an almost periodic function in view of the

Lebesgue measure. At the beginning of the next section we are going to compare the

types of almost periodicity under consideration.

Definition 2.7. A function f ∈ L0(R) is said to be almost periodic in view of

the Lebesgue measure µ (or µ-almost periodic) if for arbitrary numbers ε, η > 0 the

set of all (ε, η)-almost periods of f , defined as E{ε, η, f} := {τ∈ R : D(η; fτ , f) 6 ε},
is relatively dense.

The following lemma will be useful in the sequel.

Lemma 2.8 ([15]). If f ∈ L0(R) is µ-almost periodic, then for each ε, η > 0 the set

E{ε, η, f} ∩ Z

is relatively dense.

Let us emphasize that µ-a.p. functions possess more complex nature than classical

Stepanov almost periodic functions. More details concerning such functions can be

found e.g. in papers [8], [9] and [25].

Now, let us recall the definition of a barrelled space and one of its characterization.

Definition 2.9. Let E be a locally convex space. An absorbing, balanced, con-

vex and closed subset of E is said to be a barrel. The space E is said to be barrelled

if every barrel in E is a neighborhood of zero.

Proposition 2.10 ([14], page 212). A locally convex space E is barrelled if and

only if every subset of its dual E′ which is bounded for the weak∗ topology σ(E′, E)

is also equicontinuous.
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Finally, for the convenience of the reader we will quote three results which will be

used in the proof of the result that the space of all D∗-a.p. functions is barrelled.

Denote by HK([a, b]) the space of all functions [a, b] → R which are integrable in

the Henstock-Kurzweil sense.

Theorem 2.11 ([26]). Let hk ∈ HK([a, b]), k ∈ N and (Jk) be a pairwise disjoint

sequence of open subintervals of [a, b]. Let us denote X = [a, b]\
∞
⋃

k=1

Jk. Assume that

the boundary of X, ∂X, is countable with ∂X = {rk : k ∈ N}. Assume also that
H(J) =

∞
∑

k=1

∫

J
hkχJk

exists for every subinterval J ⊂ [a, b] and lim
|J|→0

H(J) = 0. If

h =
∞
∑

k=1

hkχJk
(pointwise), then h ∈ HK([a, b]) and

∫

J
h = H(J) for every J ⊂ [a, b].

Proposition 2.12 ([26]). Let fk ∈ HK([a, b]) with
∞
∑

k=1

‖fk‖A,a < ∞ and let (Jk)
be a pairwise disjoint sequence of open subintervals of [a, b]. Set f =

∞
∑

k=1

fkχJk

(pointwise).

(i) H(J) =
∞
∑

k=1

∫

J
fkχJk

converges uniformly for J ⊂ [a, b],

(ii) lim
|J|→0

H(J) = 0,

(iii) if f ∈ HK([a, b]), then
∥

∥

∥
f −

n
∑

k=1

fkχJk

∥

∥

∥

A,a
→ 0 (i.e.,

∫

J
f =

∞
∑

k=1

∫

J
fkχJk

uni-

formly for J ⊂ [a, b].)

Theorem 2.13 ([26]). Let ajk ∈ R for j, k ∈ N and M = [ajk]. Suppose that:

(i) lim
j

ajk = 0 for every k;

(ii) for every increasing sequence of positive integers {nk} there exists a subse-
quence {mk} of {nk} such that lim

j

∞
∑

k=1

ajmk
exists.

Then lim
j
ajk = 0 uniformly for k ∈ N. In particular, lim

j
ajj = 0.

3. Some properties of the space of D∗-a.p. functions

It is well known that every uniformly almost periodic function is Stepanov almost

periodic. Moreover, every Stepanov almost periodic function is D∗-almost periodic.

This is the consequence of inequalities

sup
x∈R

sup
0<h61

∣

∣

∣

∣

∫ x+h

x

f(t) dt

∣

∣

∣

∣

6 sup
x∈R

sup
0<h61

∫ x+h

x

|f(t)| dt 6 sup
x∈R

∫ x+1

x

|f(t)| dt,

where f : R → R is any S1-almost periodic function. It can be also easily shown

that every Stepanov almost periodic function is µ-almost periodic.
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At the beginning of this section we are going to provide an example of continuous

and bounded D∗-almost periodic function g which is not µ-a.p.

Example 3.1. Let us define the functions g, gk, Gk : R → R for k ∈ N as follows:

g(x) =

{

sin(2n+1
πx) for x ∈ [2n−1, 2n−1 + 1) + 2nZ, n∈ N,

0 for other x∈ R,

gk(x) =

{

sin(2n+1
πx) for x ∈ [2n−1, 2n−1 + 1) + 2nZ, n > k,

0 for other x∈ R,

Gk(x) =







1

2n+1
(1− cos(2n+1

πx)) for x ∈ [2n−1, 2n−1 + 1) + 2nZ, n > k,

0 for other x∈ R.

The functions g, gk, G are well defined because for n 6= m we have

(2n−1 + 2nZ) ∩ (2m−1 + 2mZ) = ∅.

Such sets also satisfy the equality

(3.1)
∞
⋃

n=1

(2n−1 + 2nZ) = Z \ {0}.

The continuity of the function g (and the functions gk, Gk as well) follows from the

fact that the values of these functions at integer points are equal to zero.

For k∈ N and x∈ R we have G′
k(x) = gk(x). This is clear on the sets (z, z + 1),

z ∈ Z. For integer points it suffices to consider the left and right derivative of the

functions Gk. Moreover, for τ ∈ 2kZ, x∈ R we have

(3.2) g(x+ τ)− g(x) = gk(x+ τ)− gk(x).

Indeed, for z ∈ Z and n 6 k we have

z ∈ 2n−1 + 2nZ ⇔ z + τ ∈ 2n−1 + 2nZ.

Therefore, if z ∈ 2n−1+2nZ for n 6 k, then for x ∈ [z, z+1] we have g(x+τ) = g(x).

Moreover, gk(x + τ) = gk(x) = 0. If z /∈
k
⋃

n=1
(2n−1 + 2nZ), then according to the

above observation z + τ /∈
k
⋃

n=1
(2n−1 + 2nZ) and then for x ∈ [z, z + 1] we have

g(x) = gk(x) and g(x+ τ) = gk(x+ τ). In each case we get (3.2).

Let us observe that

0 6 Gk(x) 6
1

2k+1
for x∈ R.
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Let us fix ε > 0. We choose k∈ N such that 4/2k+1 < ε. Then for every 0 < h 6 1,

τ ∈ 2kZ and x∈ R we have
∣

∣

∣

∣

∫ x+h

x

g(t+ τ) dt−
∫ x+h

x

g(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x+h

x

gk(t+ τ) dt−
∫ x+h

x

gk(t) dt

∣

∣

∣

∣

= |Gk(x+ τ + h)−Gk(x+ τ)−Gk(x+ h) +Gk(x)| 6
4

2k+1
< ε.

This means that

2kZ ⊂ {τ∈ R : ‖gτ − g‖D∗ < ε}.
Since the set 2kZ is relatively dense, the set {τ∈ R : ‖gτ −g‖D∗ < ε} is also relatively
dense for each ε > 0, which means that g is D∗- almost periodic.

Now we are going to prove that g is not µ-a.p. Since

µ
({

x ∈ [0, 2n+1
π] : | sin(x)| > 1

2

})

= 2n · 4
3

π,

thus,

µ
({

x ∈ [0, 1] : | sin(2n+1
πx)| > 1

2

})

=
1

2n+1
π

µ
({

x ∈ [0, 2n+1
π] : | sin(x)| > 1

2

})

=
1

2n+1
π

2n · 4
3

π =
2

3
.

According to (3.1) for x ∈ [0, 1] we have g(x) = 0. By (3.1) for each nonzero τ ∈ Z

there exists n ∈ N such that τ ∈ 2n−1 + 2nZ. Therefore,

µ
({

x ∈ [0, 1] : |g(x+ τ)− g(x)| > 1

2

})

= µ
({

x ∈ [0, 1] : |g(x+ τ)| > 1

2

})

= µ
({

x ∈ [τ, τ + 1] : |g(x)| > 1

2

})

= µ
({

x ∈ [τ, τ + 1] : | sin(2n+1
πx)| > 1

2

})

= µ
({

x ∈ [0, 1] : | sin(2n+1
πx)| > 1

2

})

=
2

3
.

The function g is not µ-p.o. because

{

τ∈ R : sup
u∈R

µ
({

x ∈ [u, u+ 1] : |g(x+ τ)− g(x)| > 1

2

})

6
1

3

}

∩ Z = {0}

and according to Lemma 2.8 the above set should be relatively dense.

The next example is a continuous µ-almost periodic function, which is not

D∗-almost periodic.
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Example 3.2. Let

f(x) =
1

2 + cosx+ cos(x
√
2)

for x ∈ R. It was shown in [25] that f is µ-a.p. Moreover, we know that

sup
x∈R

∫ x+1

x

1

2 + cos t+ cos(t
√
2)

dt = ∞,

see [9] for more details. Therefore, ‖f‖D∗ = ∞, so according to Remark 2.6, f cannot
be D∗-almost periodic. Let us add that a bounded µ-almost periodic function is

Sp-almost periodic, see [25]. In particular, it means that it is D∗-almost periodic.

Now we will establish that the space D∗-almost periodic functions is not complete.

For that we will expand, see [26], Example 1, page 73.

Example 3.3. Let p : [0, 1] → R be a continuous and nowhere differentiable

function with p(0) = 0. Pick a sequence of polynomials {pk} such that pk : [0, 1] → R,

pk → p uniformly and pk(0) = 0. Then we have pk(x) =
∫ x

0
p′k(s) ds for every

x ∈ [0, 1], so {p′k} is a Cauchy sequence in HK([0, 1]) with respect to the Alex-

iewicz norm.

Let us observe that for each f ∈ HK([0, 1]) if we consider the 1-periodic function f

such that

f(x) = f(x) for x ∈ [0, 1),

then we have ‖f‖D∗ 6 2‖f‖A,0. Indeed, if for x ∈ R, 0 < h 6 1 we have x+h 6 [x]+1,

then
∫ x+h

x

f(t) dt =

∫ x−[x]+h

x−[x]

f(t) dt.

If x+ h > [x] + 1, then
∣

∣

∣

∣

∫ x+h

x

f(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

I

f(t) dt+

∫

J

f(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

I−[x]

f(t) dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

J−[x]−1

f(t) dt

∣

∣

∣

∣

62‖f‖A,0,

where I = [x, x+ h] ∩ [[x], [x] + 1] and J = [x, x+ h] ∩ [[x] + 1, [x] + 2].

Let p̄, p̄k, q̄k, for k ∈ N, be 1-periodic functions such that

p̄(x) = p(x) for x ∈ [0, 1), p̄k(x) = pk(x) for x ∈ [0, 1),

q̄k(x) := p′k(x) for x ∈ [0, 1).

Because

‖q̄k − q̄l‖D∗ 6 2‖p′k − p′l‖A,0,

the sequence {q̄k} is a Cauchy sequence in the space of D∗-almost periodic functions.

If there exists D∗-almost periodic function g such that ‖q̄k−g‖D∗ → 0, then pk(x) =
∫ x

0
q̄k(s) ds →

∫ x

0
g(s) ds uniformly for x ∈ [0, 1], so p(x) =

∫ x

0
g(s) ds for x ∈ [0, 1].
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By the properties of the Henstock-Kurzweil integral, the function p is continuous

and almost everywhere differentiable, which gives a contradiction. Hence, the space

of D∗-almost periodic functions with the norm ‖·‖D∗ is not complete.

Now, we are going to prove three lemmas which will help us to prove the main

result of this section.

Lemma 3.4. If f is D∗-almost periodic, then for every ε > 0 the set

ED∗{ε, f} := {τ ∈ R : ‖fτ − f‖D∗ 6 ε} ∩ Z

is relatively dense.

P r o o f. For a function f : R → R and ε > 0 let us denote

E{ε, f} :=
{

τ∈ R : sup
x∈R

|f(x+ τ)− f(x)| 6 ε
}

.

Let us consider the 1-periodic function sin(2πx). By the inequality

4x 6 sin(2πx) for x ∈ [0, 1
4 ]

for 0 < η < 1 we obtain

E{η, sin(2π·)} ⊂
[

−η

4
,
η

4

]

+ Z.

Further, by [19], Theorem 2.1 the function

Φ(x) =

∫ x

0

f(t) dt

is uniformly continuous.

Let us fix ε > 0. We choose 0 < δ0 < 1
4 such that for |δ| 6 δ0

sup
x∈R

|Φ(x+ δ)− Φ(x)| 6 ε

8
.

This means that for such δ we have

‖fδ − f‖D∗ 6
ε

4
.

Let N = [1/δ0] + 1 and hi = i/N for i = 1, 2, . . . , N . Let ε′ > 0 be such that

ε′ < ε,
ε′

16
< δ0.

Let

Ei = E

{

ε′

4
,

∫ x+hi

x

f(t) dt

}

.
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Since the functions

x →
∫ x+hi

x

f(t) dt

are uniformly almost periodic, the set

E0 =

N
⋂

i=1

Ei ∩ E
{ε′

4
, sin(2π·)

}

is relatively dense.

Let us consider 0 < h 6 1. For h1 < h < 1 there exists 1 6 i 6 N − 1 such that

h ∈ (hi, hi+1] and for τ ∈ E0 we obtain

∣

∣

∣

∣

∫ x+h

x

[f(t+ τ)− f(t)] dt

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ x+hi

x

[f(t+ τ)− f(t)] dt|+
∣

∣

∣

∣

∫ x+h

x+hi

f(t) dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ x+τ+h

x+τ+hi

f(t) dt

∣

∣

∣

∣

6
ε′

4
+

ε

8
+

ε

8
6

ε

2
.

For 0 < h 6 h1, since h1 6 δ0, we obtain
∣

∣

∣

∣

∫ x+h

x

[f(t+ τ)− f(t)] dt

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ x+h

x

f(t) dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ x+τ+h

x+τ

f(t) dt

∣

∣

∣

∣

6
ε

8
+

ε

8
6

ε

2
.

For h = 1, we have
∣

∣

∣

∣

∫ x+h

x

[f(t+ τ)− f(t)] dt

∣

∣

∣

∣

6
ε′

4
6

ε

2
.

Thus, in each case we get
∣

∣

∣

∣

∫ x+h

x

[f(t+ τ)− f(t)] dt

∣

∣

∣

∣

6
ε

2
,

which means that

‖fτ − f‖D∗ 6
ε

2
.

Let z(x) denote the nearest integer number to x for x ∈ (− 1
2 ,

1
2 )+Z. Since ε′ < 4,

E0 =

N
⋂

i=1

Ei ∩ E
{ε′

4
, sin(2π·)

}

⊂
[

− ε′

16
,
ε′

16

]

+ Z

for τ ∈ E0 we have

‖fz(τ) − f‖D∗ 6 ‖fz(τ) − fτ‖D∗ + ‖fτ − f‖D∗ 6
3

4
ε < ε.

Obviously the set {z(τ) : τ ∈ E0} is relatively dense, which completes the proof. �
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Lemma 3.5. For each D∗-almost periodic function f and each interval I ⊂ [0, 1],

the function

fχI+Z,

where χI+Z denotes the characteristic function of the set I+Z, is D∗-almost periodic.

P r o o f. Let us fix I = [a, b] ⊂ 1. For each x∈ R and 0 < h 6 1, let us consider

the intersection

[x, x+ h] ∩ [I + Z] = A ∪B,

where

A = [x, x+ h] ∩ ([x] + I), B = [x, x+ h] ∩ ([x] + 1 + I),

the interior of the set A ∩B is empty. For

τ ∈ ED∗

{

f,
ε

2

}

∩ Z

we have

∣

∣

∣

∣

∫ x+h

x

f(t+ τ)χI+Z(t+ τ) dt−
∫ x+h

x

f(t)χI+Z(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

A

(f(t+ τ)− f(t)) dt+

∫

B

(f(t+ τ)− f(t)) dt

∣

∣

∣

∣

6 2‖fτ − f‖D∗ 6 ε.

This means that

ED∗

{

f,
ε

2

}

∩ Z ⊂ ED∗{fχI+Z, ε}.

By Lemma 3.4, ED∗{fχI+Z, ε} is relatively dense, which completes the proof. �

Lemma 3.6. Let us fix 0 6 a < b 6 1. If f is D∗-almost periodic, then the

function

y → fχ[a,y]+Z for a < y 6 b

is continuous. Moreover,

lim
y→a+

‖fχ[a,y]+Z‖D∗ = 0.

Remark 3.7. Since for 0 6 a < b 6 1 and x∈ R, h > 0, we have

∫ x+h

x

f(t)χ[a,y]+Z(t) dt =

∫ x+h

x

f(t)χ[a,y)+Z(t) dt =

∫ x+h

x

f(t)χ(a,y]+Z(t) dt

=

∫ x+h

x

f(t)χ(a,y)+Z(t) dt

for the intervals (a, y], [a, y), (a, y) we obtain the same conclusions.
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P r o o f. By Lemma 3.5, for every y ∈ (a, b], the function fχ[a,y]+Z is D∗-almost

periodic. Denote

Φ(x) =

∫ x

0

f(t) dt for x ∈ R.

Let us fix ε > 0. There exist δ0 > 0 such that for 0 < δ 6 δ0

sup
x∈R

|Φ(x+ δ)− Φ(x)| 6 ε

2
.

Let us consider y ∈ (a, b] and δ > 0 such that a 6 y − δ 6 y 6 b. For x∈ R and

0 < h 6 1 let us denote

A = [x, x+ h] ∩ ([y − δ, y] + [x]), B = [x, x+ h] ∩ ([y − δ, y] + [x] + 1).

We have

[x, x+ h] ∩ ([y − δ, y] + Z) = A ∪B,

and the interior of the set A ∩B is empty. Therefore,
∣

∣

∣

∣

∫ x+h

x

f(t)χ[a,y]+Z(t) dt−
∫ x+h

x

f(t)χ[a,y−δ]+Z(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

A

f(t) dt+

∫

B

f(t) dt

∣

∣

∣

∣

6 ε.

This means that

‖fχ[a,y]+Z − fχ[a,y−δ]+Z‖D∗ 6 ε.

This means that the function

y → fχ[a,y]+Z for a < y 6 b

is continuous at every point y ∈ (a, b]. Moreover, if we consider a < y such that

y − a < δ0, then the similar arguments show that
∣

∣

∣

∣

∫ x+h

x

f(t)χ[a,y](t) dt

∣

∣

∣

∣

6 ε.

Hence,

‖fχ[a,y]+Z‖D∗ 6 ε,

and consequently

lim
y→a+

‖fχ[a,y]+Z‖D∗ = 0.

�

Now, we are going to prove the main result of this section which, according to

Proposition 2.10, means that the space D∗ is barrelled.

Theorem 3.8. Let B be a weak∗ bounded subset of the dual space of the

D∗-almost periodic functions. Then B is norm bounded.
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The main idea of the proof below is similar to that of the proof of barrelledness of

the space HK([a, b]), see [26].

P r o o f. Let A be a bounded subset of the D∗-almost periodic functions with α =

sup{‖f‖D∗ : f ∈ A}. It suffices to show that β = sup{|v(f)| : v ∈ B, f ∈ A} < ∞.
Suppose that β = ∞. Then there exist v1 ∈ B, f1 ∈ A such that |v1(f1)| > 2.

Let us observe that for each interval I ⊂ [0, 1] the value of a functional v on the

functions fχI+Z and fχI+Z
is the same since the functions fχI+Z and fχI+Z

differ

on a set, the Lebesgue measure of which is equal to zero. Let us observe that if

for [a, b] ⊂ [0, 1] we have

sup{|v(fχ[a,b]+Z)| : v ∈ B, f ∈ A} = ∞,

then for all closed intervals I, K such that I ∪K = [a, b], card(I ∩K) = 1, we have

sup{|v(fχI+Z)| : v ∈ B, f ∈ A} = ∞ or sup{|v(fχK+Z)| : v ∈ B, f ∈ A} = ∞.

We can therefore, for convenience, assume that the above property is satisfied on

the subinterval denoted by the letter I (if both intervals have such property, then

in particular the interval I has such property). After this remark, we are ready to

construct sequences of closed intervals (Ik) and (Kk).

By Lemma 3.6, the function y → v1(f1χ[0,y]+Z) is continuous, so there ex-

ists a partition of [0, 1], that is, the closed intervals I1, K1 such that I1 ∪ K1 =

[0, 1], card(I1 ∩ K1) = 1 and such that |v1(f1χI1+Z)| > 1, |v1(f1χK1+Z)| > 1,

sup{|v(fχI1+Z)| : v ∈ B, f ∈ A} = ∞. Now there exist v2,∈ B, f2 ∈ A such that

|v2(f2χI1+Z)| > 24. By the argument as above, there exist a partition of I1 on 2

closed subintervals I2, K2 such that |v2(f2χI2+Z)| > 23, |v2(f2χK2+Z)| > 23 and

sup{|v(fχI2+Z)| : v ∈ B, f ∈ A} = ∞. Continuing this construction we obtain
sequences of closed intervals (Ik), (Kk) with the following property:

⊲ [0, 1] = I1 ∪K1;

⊲ Ik = Ik+1 ∪Kk+1, k ∈ N;

⊲ card(Ik ∩Kk) = 1, so Int Ik ∩ IntKk = ∅, k ∈ N;

⊲ |vk(fkχKk+Z)| > k3, k ∈ N.

The existence of such intervals cannot be proved using just the linearity of vk and

the triangle inequality. This is because in each step we need two estimations simul-

taneously. Let us denote Jk = IntKk for k ∈ N. Since Ik+1 ⊂ Ik and Kk+1 ⊂ Ik, we

have for k, l ∈ N

Kk+l ⊂ Ik+l−1 ⊂ Ik.

Therefore,

Kk+l ∩Kk ⊂ Ik ∩Kk,
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and consequently,

Jk+l ∩ Jk = ∅.
In that way we obtain a pairwise disjoint sequence of open intervals (Jk), Jk ⊂ [0, 1],

(fk), fk ∈ A, (vk), vk ∈ B such that

(3.3) |vk(fkχJk+Z)| > k3, k ∈ N.

Since for k 6= l the sets Jk, Jl are open disjoint intervals, we also have

(3.4) Kk ∩ Jl = ∅ for k 6= l.

Because we will use Proposition 2.12, now we are going to prove that the bound-

ary ∂X of the set

X := [0, 1] \
∞
⋃

k=1

Jk

is countable. Let us observe that the above set is closed, so ∂X ⊂ X. Let us denote

Kk = [ak, bk], k ∈ N. Observe that

(3.5) [0, 1] \
∞
⋃

k=1

Jk =

∞
⋂

k=1

Ik ∪ {ak : k ∈ N} ∪ {bk : k ∈ N}.

First, we will show the inclusion

(3.6) [0, 1] \
∞
⋃

k=1

Jk ⊂
∞
⋂

k=1

Ik ∪ {ak : k ∈ N} ∪ {bk : k ∈ N}.

Let x ∈ [0, 1]\
∞
⋃

k=1

Jk. If simultaneously x ∈
∞
⋂

k=1

Ik, then (3.6) is satisfied. If x /∈
∞
⋂

k=1

Ik,

then there exists k0 such that x /∈ Ik0
. Because for each k ∈ N we have Ik =

Ik+1 ∪Kk+1 and Kk = Jk ∪ {ak, bk}, so

[0, 1] = Ik0
∪K1∪K2∪. . .∪Kk0

= Ik0
∪J1∪J2∪. . .∪Jk0

∪{ak : k 6 k0}∪{bk : k 6 k0}.

Then because x /∈ Jk for all k ∈ N, so x ∈ {ak : k 6 k0} ∪ {bk : k 6 k0}, which
means (3.6).

Now we are going to prove that

(3.7)
∞
⋂

k=1

Ik ∪ {ak : k ∈ N} ∪ {bk : k ∈ N} ⊂ [0, 1] \
∞
⋃

k=1

Jk.

If x ∈
∞
⋂

k=1

Ik, then because card(Ik ∩ Kk) = 1, we know that Ik ∩ Jk = ∅, which
means x /∈ Jk for k ∈ N. Now, assume that x ∈ {ak : k ∈ N} ∪ {bk : k ∈ N}. Let
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x = ak0
or x = bk0

for some k0 ∈ N. This means that x /∈
∞
⋃

k=1

Jk. Indeed, if for

some k1 we have x ∈ Jk1
, then because x /∈ Jk0

, we infer that k0 6= k1. We would

get x ∈ Kk0
∩ Jk1

, but this is impossible according to (3.4). Therefore, x /∈
∞
⋃

k=1

Jk
and (3.5) is satisfied.

It is easy to see that the boundary of the set
∞
⋂

k=1

Ik ∪ {ak : k ∈ N} ∪ {bk : k ∈ N}
is countable. If

∞
⋂

k=1

Ik is a singleton, then the set X is countable and closed. If
∞
⋂

k=1

Ik = [a, b] is a nondegenerate interval, then (a, b) ⊂ IntX, so

∂X ⊂ {a, b} ∪ {ak : k ∈ N} ∪ {bk : k ∈ N},

which means that ∂X is countable.

Set hk = k−2fk, k ∈ N, h =
∞
∑

k=1

hkχJk+Z (pointwise) and let sn =
n
∑

k=1

hkχJk+Z,

n ∈ N. Then ‖hk‖D∗ = k−2‖fk‖D∗ 6 α/k2. Hence,
∞
∑

k=1

‖hk‖D∗ < ∞.
Consider the matrix M = [ajk] = [j−1vj(hkχJk+Z)] = [j−1vj(k

−2fkχJk+Z)],

j, k ∈ N. We claim that M satisfies (i) and (ii) of Theorem 2.13. First, (i) holds by

the weak∗ boundedness of B.

To prove (ii), first we want to establish that vk(h) is well defined for k ∈ N,

which actually means that h is D∗-almost periodic. Let us fix z ∈ Z. We have

hk|[z,z+1] ∈ HK([z, z + 1]), k ∈ N. Moreover,

∞
∑

k=1

||hk|[z,z+1]||A,z =
∞
∑

k=1

||hk||A,z 6

∞
∑

k=1

‖hk‖D∗ < ∞.

Consider the sequence (Jk + z) of open subintervals of the interval [z, z + 1]. By

Proposition 2.12, for the function h|[z,z+1] =
∞
∑

k=1

hk|[z,z+1]χJk+Z|[z,z+1] the value

H(J) =
∞
∑

k=1

∫

J

hk|[z,z+1]χJk+Z|[z,z+1] =
∞
∑

k=1

∫

J

hkχJk+Z

exists for any interval J ⊂ [z, z+1] and lim
|J|→0

H(J) = 0 (of course the quantity H(J)

depends on the z ∈ Z). Next, since the set [z, z+1]\
∞
⋃

k=1

(Jk+ z) is just a translation

of the set X, so the boundary of the set [z, z + 1] \
∞
⋃

k=1

(Jk + z) is countable, then

from Theorem 2.11 we know that h|[z,z+1] ∈ HK([z, z + 1]) and for J ⊂ [z, z + 1] we

know
∫

J
h =

∫

J
h|[z,z+1] = H(J), which can be written as

(3.8)

∫

J

h =

∫

J

∞
∑

k=1

hkχJk+Z =
∞
∑

k=1

∫

J

hkχJk+Z.
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(The above conclusion can be also obtained by the (iii) of Proposition 2.12, because

by Theorem 2.11 we know that h|[z,z+1] ∈ HK([z, z+1]).) Because for any subinterval

J ⊂ [z, z + 1] we have

∫

J

sn =

∫

J

n
∑

k=1

hkχJk+Z =

n
∑

k=1

∫

J

hkχJk+Z,

so
∫

J

∞
∑

k=n+1

hkχJk+Z =

∫

J

(h− sn) =
∞
∑

k=1

∫

J

hkχJk+Z −
n
∑

k=1

∫

J

hkχJk+Z

=

∞
∑

k=n+1

∫

J

hkχJk+Z.

By (2.3), we have

∞
∑

k=n+1

sup
x∈R

‖hk‖′A,x =
∞
∑

k=n+1

sup
x∈R

‖hk‖A,x,

therefore for each J ⊂ [z, z + 1] we obtain

∣

∣

∣

∣

∫

J

(h− sn)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

J

∞
∑

k=n+1

hkχJk+Z

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

k=n+1

∫

J

hkχJk+Z

∣

∣

∣

∣

6

∞
∑

k=n+1

∣

∣

∣

∣

∫

J

hkχJk+Z

∣

∣

∣

∣

=
∞
∑

k=n+1

∣

∣

∣

∣

∫

J∩Jk+z

hk

∣

∣

∣

∣

6

∞
∑

k=n+1

‖hk‖′A,z 6

∞
∑

k=n+1

sup
x∈R

‖hk‖′A,x

=

∞
∑

k=n+1

sup
x∈R

‖hk‖A,x =

∞
∑

k=n+1

‖hk‖D∗ 6

∞
∑

k=n+1

α

k2
.

This means that ‖h− sn‖′A,z 6
∞
∑

k=n+1

α/k2. Then because for x ∈ R we have

(3.9) [x, x+ 1] ⊂ [[x], [x] + 1] ∪ [[x] + 1, [x] + 2],

where [x] denotes the floor of the number x, so

‖h− sn‖A,x 6 ‖h− sn‖′A,[x] + ‖h− sn‖′A,[x]+1

and

‖h− sn‖D∗ = sup
x∈R

‖h− sn‖A,x 6 2 sup
z∈Z

‖h− sn‖′A,z 6 2
∞
∑

k=n+1

α

k2
.

By (3.8) for any interval J ⊂ [z, z + 1] we have

∣

∣

∣

∣

∫

J

h

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

k=1

∫

J

hkχJk+Z

∣

∣

∣

∣

6

∞
∑

k=1

∣

∣

∣

∣

∫

J

hkχJk+Z

∣

∣

∣

∣

6

∞
∑

k=1

‖hk‖′ < ∞,
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so using again (3.9), we obtain

‖h‖D∗ = sup
x∈R

‖h‖A,x 6 2 sup
z∈Z

‖h‖′A,z 6 2

∞
∑

k=1

‖hk‖′ < ∞.

Let us observe that if ‖sn−h‖D∗ → 0, where sn are D∗-a.p. functions for n ∈ N and

h ∈ D∗
loc is such that ‖h‖D∗ < ∞, then h is a D∗-a.p. function. Indeed, we have

‖hτ − h‖D∗ 6 ‖hτ − (sn0
)τ‖D∗ + ‖(sn0

)τ − sn0
‖D∗ + ‖sn0

− h‖D∗ .

By Lemma 3.5 and the fact that D∗ is a linear space we know that the finite sums sn
are D∗-a.p. functions. Because the set

{τ ∈ R : ‖(sn0
)τ − sn0

‖D∗ < ε}

is relatively dense for each ε > 0 if ‖sn0
− h‖D∗ < 1

3ε, then
{

τ ∈ R : ‖(sn0
)τ − sn0

‖D∗ <
ε

3

}

⊂ {τ ∈ R : ‖hτ − h‖D∗ < ε}.

Therefore, h is a D∗-a.p. function. This means that the value of vj(h) is well defined

for j ∈ N. By the continuity of each vj on the set of D∗-almost periodic functions

since sn → h,

lim
n→∞

1

j
vj(sn) =

1

j
vj(h),

but
1

j
vj(sn) =

1

j

n
∑

k=1

vj(hkχJk+Z) =

n
∑

k=1

ajk.

This means
∞
∑

k=1

ajk = j−1vj(h) and because j−1vj(h) → 0, by the weak∗ boundedness

of B, we obtain lim
j

∞
∑

k=1

ajk = 0.

Now let us observe that the same arguments can be applied to any subse-

quence (hnk
) of the sequence (hk) and (Jnk

). One can define the function h′ =
∞
∑

k=1

hnk
χJnk

+Z and repeat the above arguments. Obviously,
∞
∑

k=1

‖hnk
‖D∗ < ∞. Let us

observe that for any subsequence (Jnk
) of the sequence of intervals (Jk) if we denote

X ′ = [0, 1] \
∞
⋃

k=1

Jnk
,

thenX ′ is closed and therefore ∂X ′ ⊂ X ′. Moreover, if we denote L=N\{nk : k∈N},
then we have

[0, 1] \
∞
⋃

k=1

Jnk
=

∞
⋂

k=1

Ik ∪ {ak : k ∈ N} ∪ {bk : k ∈ N} ∪
⋃

k∈L

Jk
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(if nk = k for k ∈ N, then L = ∅ and X ′ = X). Moreover, Int
( ∞
⋂

k=1

Ik

)

⊂ IntX ′,
⋃

k∈L

Jk ⊂ IntX ′, so

∂X ′ ⊂ {a, b} ∪ {ak : k ∈ N} ∪ {bk : k ∈ N},

which means that the boundary of X ′ is countable. Therefore, we can use Theo-

rem 2.11 and Proposition 2.12 for the subsequence under consideration. We showed

that

lim
j→∞

∞
∑

k=1

ajnk
= 0

for each increasing subsequence (nk) of positive integers. Theorem 2.13 implies that

ajj → 0 contradicting (3.3). �

4. Linear differential equations

An essential tool which will be needed in this section is the following proposition.

Proposition 4.1 ([21]). Suppose that f is D∗-almost periodic and g is a function

of bounded variation in the Jordan sense on R such that

∞
∑

k=−∞

ess sup
x∈[k,k+1]

|g(x)| < ∞.

Then the convolution f ∗ g is uniformly almost periodic and

‖f ∗ g‖D∗ 6 ‖f‖D∗‖g‖L1(R), ‖f ∗ g‖∞ 6 2‖f‖D∗‖g‖V ,

where

‖g‖V =

∞
∑

k=∞

ess sup
x∈[k,k+1]

|g(x)|+Var(g,R).

and Var(g,R) denotes the Jordan variation of g on R.

Remark 4.2. Let us recall that if one considers the Lebesgue integral and

Stepanov almost periodic functions, then in the above proposition it is enough to

assume that g is integrable in the Lebesgue sense to get a similar conclusion concern-

ing the convolution, see [5], Lemma 2. However, let us notice that, in general, the

convolution of a Stepanov almost periodic function with a function integrable in the

Lebesgue sense, does not have to be uniformly almost periodic, see [9], Example 2.
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The main result of this section is the following theorem.

Theorem 4.3. If f is a D∗-almost periodic function, then the linear differential

equation

(4.1) y′(x) = λy(x) + f(x), where λ 6= 0

possesses a uniformly almost periodic solution.

Remark 4.4. We may assume that λ < 0, because if y1 is a solution to (4.1),

then y2(x) := −y1(−x) for x∈ R, is a solution to the equation

y′(x) = −λy(x) + f̃(x),

where f̃(x) = f(−x) for x∈ R.

P r o o f. For λ < 0 let us consider the function

gλ(x) =

{

eλx for x > 0;

0 for x < 0.

Obviously, for this function the following inequality holds:

∞
∑

k=−∞

ess sup
x∈[k,k+1]

|gλ(x)| < ∞.

Let us observe that

(f ∗ gλ)(x) = eλx
∫ x

−∞

f(t)e−λt dt.

By the properties of the Henstock-Kurzweil integral, the above function is continuous

and almost everywhere differentiable. The proof of the existence of convolution f ∗gλ
for all x ∈ R can be found in [20]. Moreover, this convolution is a solution to

equation (4.1). Applying Proposition 4.1 we can infer that for a D∗-almost periodic

function f , equation (4.1) possesses a uniformly almost periodic solution. �

Remark 4.5. Let us notice that the above theorem is connected, in a sense,

with [3], Theorem 4.1, in which it is assumed that the non-homogeneous term is

Henstock-Kurzweil integrable on the extended set of real numbers.
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Polish.)

[26] C. Swartz: Introduction to Gauge Integrals. World Scientific, Singapore, 2001. zbl MR doi

Authors’ address: D a r i u s z B u g a j e w s k i (corresponding author), A d am Naw -
r o c k i, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Uniw-
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