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Abstract. This is a didactic proposal on how to introduce the Newton integral in just
three or four sessions in elementary courses. Our motivation for this paper were Talvila’s
work on the continuous primitive integral and Koliha’s general approach to the Newton
integral. We introduce it independently of any other integration theory, so some basic results
require somewhat nonstandard proofs. As an instance, showing that continuous functions
on compact intervals are Newton integrable (or, equivalently, that they have primitives)
cannot lean on indefinite Riemann integrals. Remarkably, there is a very old proof (without
integrals) of a more general result, and it is precisely that of Peano’s existence theorem for
continuous nonlinear ODEs, published in 1886. Some elements in Peano’s original proof
lack rigor, and that is why his proof has been criticized and revised several times. However,
modern proofs are based on integration and do not use Peano’s original ideas. In this note
we provide an updated correct version of Peano’s original proof, which obviously contains
the proof that continuous functions have primitives, and it is also worthy of remark because
it does not use the Ascoli-Arzelà theorem, uniform continuity, or any integration theory.
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1. Introduction

We owe many important advances on integration and differential equations to

Jaroslav Kurzweil, so we thought that a paper combining ideas from those two fields

would be a good way to honor him.

In this paper we present a didactic approach to Koliha’s new version of the classical

Newton integral (see [13]) and we update Peano’s original proof of his celebrated
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existence theorem for ODEs to obtain, in particular, a direct proof that continuous

functions are Newton integrable.

Let us start by recalling that if F is differentiable at each point then the Newton

integral of its derivative is
∫ b

a

F ′(x) dx = F (b)− F (a),

i.e., half of the fundamental theorem of calculus. Is this old notion of an integral really

worthy of attention nowadays? The Newton integral, whose drawbacks (specially in

limiting processes) forced a reformulation of the notion of an integral, has kept certain

interest through times (see [5], [11]) because, from its very definition, it integrates all

derivatives, and this is something impossible with Riemann or Lebesgue integrals.

Finding an integral which can “integrate all derivatives” and does not suffer

Newton integral’s drawbacks was the problem which motivated the search for the

Henstock-Kurzweil integral, and we cannot refrain from quoting reference [15], where

Kurzweil described his integral for the first time. Even more recently, variations

on that problem have drawn the attention of many experts, see [2], [3], [4], [6].

There has also been an interest in characterizing different notions of integrability

in terms of generalized derivatives or adequate sequences of primitives. See [1],

where Henstock-Kurzweil integrals are defined by means of primitives using the so-

called monotonically controlled derivatives. See also [24], where Lebesgue integrable

functions are proven to be limits of sequences of derivatives, and [16], where the

Henstock-Kurzweil integral is redefined in terms of special sequences of primitives

of Lebesgue integrable functions.

Far from remaining as a mere historical topic, the Newton integral gained relevance

thanks to its reformulation in terms of distributions by Mikusiński and Sikorski,

see [18], also [17], and, more recently, by Talvila, see [23]. Indeed, one can see in [23]

that if f is a distribution on the real line and F : R → R is a continuous function

which satisfies F ′ = f in the sense of distributions and has finite limits F (±∞), then

the simple Newton-type definition

(1.1)

∫ ∞

−∞

f(x) dx = F (∞)− F (−∞)

yields an integral which contains Henstock-Kurzweil’s. Therefore, the distributional

Newton integral (or, as Talvila puts it, the “continuous primitive integral”) deserves

a prominent treatment in advanced mathematical analysis courses. In turn, and

this is the point in this paper, elementary courses should pay some more attention

to the classical Newton integral, and not only for historical reasons but also for its

importance in the more advanced setting of distributions and for its influence in the

development of other integration theories, as commented in the previous paragraphs.
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There are many bibliographical references where the essential contents on the

Newton integral can be looked up, such as [5], [10]. However, Koliha’s ap-

proach (see [13]) is, in our opinion, the best, as it leans on primitives which

need not be so on countable sets, thus getting a more general, though still el-

ementary, Newton integral. What is new in this paper? Just a slight revision

of Koliha’s approach to the Newton integral, aiming to be self-contained, in-

dependent of any other integration theory, and, hopefully, useful as a couple

of teaching sessions for undergraduates not acquainted with Lebesgue integra-

tion. In particular, we provide two new proofs of an important basic result (see

namely, Theorem 2.1) and a direct proof that continuous functions are Newton

integrable which does not lean on any other integration theory or on uniform

continuity. To do so, we update Peano’s original proof of his classical existence

theorem for ODEs, thus getting a more general result and connecting this paper

with a remarkable academic controversy which took place in the seventies of the

last century.

Peano’s original proof dates back to 1886 (see [19]) and it has been revised many

times since, starting by Peano himself who also discovered a completely different

proof for the system case, see [20]. We can quote old important related papers

such as that by Perron (see [21]), who wiped out some inaccuracies in Peano’s

original proof by using Dini derivatives and integration. Peano’s and Perron’s

proofs, though essentially correct, lacked some rigor at certain steps, so their va-

lidity remained at issue, and they were replaced by the usual more general proofs

for the vector case established in terms of sequences of Euler polygons. In the

early seventies of the last century, as a reaction to a challenging question posed

by Kennedy (see [12]), there was an intense production of elementary proofs of the

scalar Peano theorem. We quote Dow and Výborný (see [7]), Gardner (see [8]),

J.Walter (see [25]), and W.Walter (see [26]). However, all these elementary proofs

are essentially different from the original, in the sense that all of them, except-

ing (see [8]), use Riemann integration and Gardner employs a sequence of Euler-type

polygons introduced by W.Walter instead of upper and lower functions as in Peano’s

original proof.

The proof in this paper is old and new at the same time: we simply provide an

updated and technically correct version of Peano’s original proof. In our opinion,

this is the simplest proof of the scalar case of Peano’s theorem, as it only needs

the notions of least upper bound, continuity and right derivative of real valued

real functions, and it does not depend on uniform continuity, on the Ascoli-Arzelà

theorem and, last but not least, on integrals of any type. Therefore, our proof

includes as a particular case a proof that continuous functions have primitives which

is independent of integration theories.
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This paper is organized as follows: in Section 2 we describe Koliha’s revision of the

Newton integral (see [13]) with some simplifications and alternative proofs indicated

at relevant places; in Section 3 we present an updated version of Peano’s original

proof of his existence theorem for scalar ODEs and we use it to prove that continuous

functions are integrable in the sense described in Section 2; in Section 4, we include

a uniform convergence theorem for the Koliha-Newton integral which is useful, in

particular, for another proof of the integrability of continuous functions and it also

helps to see that integrals of positive functions are areas, which is not at all evident

from the definition. Finally, an elementary result about continuous right derivatives

needed in Section 3 is proven in the appendix.

2. A roller coaster approach to integration

This is a didactic proposal on how to introduce the Newton integral in an elemen-

tary course, essentially along the lines of [13]. With this section’s appealing title we

intend to highlight the fact that we have to start by proving only one “hard” result in

order to climb high enough so that we can perform a super fast easy descent towards

the remaining basic details of the theory. Most of the results in this section can be

looked up in [13], either as theorems or as exercises, and they are included for the

sake of clearer presentation.

Let A ⊂ R. Following [13], [14], we say that a condition holds for “nearly

all x ∈ A”, or that it holds “nearly everywhere on A”, if it holds for all x ∈ A \ C,
where C ⊂ A is, at most, countable.

Our steep first ascent is the following result, which readers can find in a more gen-

eral form in [14] and which we prove in two different ways in this section. The proof

given in [14] for the general version uses full covers and Cousin’s lemma, but things

can be simplified a little and can be made self-contained in our simplified setting.

Due to the nature of this special issue, it is more than appropriate to highlight that

our first proof of the following result, which is the base of the integration theory to

be described next, leans on Kurzweil’s δ-fine tagged partitions.

Theorem 2.1. Let a, b ∈ R, a < b, and let F : [a, b] → R be a continuous function.

(i) If F ′(x) > 0 for nearly all x ∈ [a, b], then F is monotone nondecreasing on [a, b].

(ii) If F ′(x) 6 0 for nearly all x ∈ [a, b], then F is monotone nonincreasing on [a, b].

(iii) If F ′(x) = 0 for nearly all x ∈ [a, b], then F is constant on [a, b].

P r o o f. Observe that (ii) follows from (i) applied to −F , and (iii) is immediate
from (i) and (ii).

To prove (i), we fix arbitrary points x, y ∈ [a, b], x < y, and we have to show that

F (x) 6 F (y).
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Let {sn : n ∈ N} be the countable subset of [x, y], where F ′ does not exist or

F ′ < 0.

Let ε > 0 be fixed. Since F is continuous, for each z = sn, n ∈ N, there exists

δ(z) > 0 such that

(2.1) F (u)− F (v) > − ε

2n
provided that u, v ∈ [z − δ(z), z + δ(z)] ∩ [x, y].

If, on the other hand, z ∈ [x, y] \ {sn : n ∈ N}, then F ′(z) > 0, so we can find

δ(z) > 0 such that

(2.2)
F (u)− F (z)

u− z
=
F (z)− F (u)

z − u
> −ε for all u ∈ [z−δ(z), z+δ(z)]∩[x, y], u 6= z.

We deduce from (2.2) that

(2.3) F (u)− F (z) > −ε(u− z) for all u ∈ [z, z + δ(z)] ∩ [x, y]

and

(2.4) F (z)− F (u) > −ε(z − u) for all u ∈ [z − δ(z), z] ∩ [x, y].

The collection of intervals {(z−δ(z), z+δ(z))}z∈[x,y] is an open cover of the compact

set [x, y], hence there exist finitely many points in [x, y], say z1 < z2 < . . . < zm
(m ∈ N), such that

[x, y] ⊂
m⋃

j=1

(zj − δ(zj), zj + δ(zj)).

We may (and we do) assume that no interval (zj − δ(zj), zj + δ(zj)) is con-

tained in another interval of the previous union. This guarantees that if for some

j ∈ {1, 2, . . . ,m − 1} we have zj + δ(zj) < zj+1, then zj+1 − δ(zj+1) < zj + δ(zj),

and therefore, F satisfies either (2.1) or (2.4) with z = zj+1 in the interval

[zj + δ(zj), zj+1].

Let us consider the partition of [x, y] which contains z1, z2, . . . , zm and all those

points zj + δ(zj) such that zj + δ(zj) < zj+1. We denote the points in this partition

by x0 = x < x1 < x2 < . . . < xp = y and let Ik = [xk, xk+1], k = 0, 1, . . . , p− 1.

Observe that for each Ik there is some j such that either xk = zj or xk+1 = zj and,

in both cases, Ik ⊂ [zj − δ(zj), zj + δ(zj)]∩ [x, y]. Therefore, either F satisfies condi-

tion (2.1) in Ik for z = zj = sn for some n, or F satisfies one of the conditions (2.3)

or (2.4) in Ik for z = zj .
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Let I1 be the family of the Ik’s, where the condition (2.1) holds and let I2 be the
complementary family. Now we have

F (y)− F (x) =

p−1∑

k=0

(F (xk+1)− F (xk))

=
∑

Ik∈I1

(F (xk+1)− F (xk)) +
∑

Ik∈I2

(F (xk+1)− F (xk))

> −ε
∞∑

n=1

2−n − ε

p−1∑

k=0

(xk+1 − xk) = −ε(1 + y − x).

Since ε > 0 can be arbitrarily small, we deduce that F (y)− F (x) > 0. �

The following new proof of Theorem 2.1 uses a Cantor ternary set.

P r o o f of Theorem 2.1. (i) First, we prove the following result, which is interest-

ing in its own right: if F is continuous on [a, b] and F ′(x) > 0 for nearly all x ∈ [a, b],

then F is increasing on [a, b] (i.e., a 6 x < y 6 b ⇒ F (x) < F (y)). Reasoning by

contradiction, suppose that there exist x, y ∈ [a, b], x < y, such that F (x) > F (y).

Since F cannot be constant on [x, y], we may assume that F (x) > F (y). Now, put

x̄ = sup{s ∈ [x, y] : F (s) > F (x)} and y = inf{s ∈ [x̄, y] : F (s) 6 F (y)}. Since F is
continuous, we have x̄ < y, F (x̄) = F (x) > F (y) = F (y), and

(2.5) F (x̄) > F (s) > F (y) for all s ∈ (x̄, y).

From the interval [x̄, y] we extract recursively infinitely many subintervals with van-

ishing lengths and each one satisfying the corresponding version of (2.5). To do so, we

proceed as follows: put I0 = [x̄, z∗] and I1 = [z∗, y], where z∗=inf{s∈ [x̄, x̄+ 1
3 (y−x̄)] :

F (s)=F (x̄+ 1
3 (y − x̄))} and

z∗ = sup{s ∈ [y − 1
3 (y − x̄), y] : F (s) = F (y − 1

3 (y − x̄))}.

Note that I0 ∩ I1 = ∅ and l(Ii) 6 1
3 (y − x̄), where l(Ii) stands for the length of the

interval Ii (i = 0, 1). Moreover, we deduce from (2.5), the definition of z∗, and the

continuity of F , that

F (x̄) > F (s) > F (z∗) = F (x̄+ 1
3 (y − x̄)) for all s ∈ (x̄, z∗).

Analogously, F (z∗) = F 1
3 (y − (y − x̄)) > F (s) > F (y) for all s ∈ (z∗, y).

Repeating the previous process with I0 and I1, we get four pairwise disjoint subin-

tervals I00 and I01 (both inside I0) and I10 and I11 (both inside I1) which fulfill the

following properties: if Ic1c2 = [α, β] is one of these four subintervals (ci ∈ {0, 1},
i = 1, 2), then l(Ic1c2) 6

1
9 (y − x̄) and F (α) > F (s) > F (β) for all s ∈ (α, β).
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Continuing this process ad infinitum by extracting two subintervals from each in-

terval produced in the previous step, we get as many different families of nested in-

tervals as sequences of 0’s and 1’s. More specifically, for each sequence θ = {θn}∞n=1,

where each θn is either 0 or 1, we have the associated sequence of nested inter-

vals {Jn}∞n=1 defined by Jn = Iθ1θ2...θn for each n ∈ N.

Now, if we denote Jn = [an, bn], n ∈ N, then we have F (an) > F (s) > F (bn) for all

s ∈ (an, bn) and l(Jn) 6
1
3 (y− x̄)n. Therefore, there is a unique xθ ∈ [x̄, y] such that

∞⋂

n=1

Jn = {xθ}

and so, for any n ∈ N, we have at least one of the inequalities

F (an)− F (xθ)

an − xθ
< 0 or

F (bn)− F (xθ)

bn − xθ
< 0.

Since both the sequences {an}∞n=1 and {bn}∞n=1 tend to xθ, we deduce that ei-

ther F ′(xθ) does not exist or F
′(xθ) 6 0. This is a contradiction with the assump-

tion, because there are as many different points xθ ∈ [x̄, y] as different sequences

θ = {θn} of 0’s and 1’s, which are uncountable.

Finally, we prove (i). For any ε > 0 the function Fε(x) = F (x) + εx is continuous

and F ′
ε = F ′ + ε > 0 nearly everywhere on [a, b]. Therefore, for x, y ∈ [a, b], x 6 y,

we have Fε(x) 6 Fε(y), hence F (x) − F (y) 6 ε(y − x) 6 ε(b − a). Since ε > 0 was

arbitrary, we deduce that F is nondecreasing on [a, b]. �

Remark 2.2. Theorem 2.1 is false if we replace “nearly everywhere” by “almost

everywhere” (in the Lebesgue sense of “everywhere with the possible exception of

a null measure set”). A well-known counterexample is Lebesgue’s singular function

(see [22], pages 129 and 130), which is continuous, it has zero derivative almost

everywhere, and yet it is not constant. See also [14] for more information.

Unless stated otherwise, integrability, primitives and integrals in this paper are

considered in the following sense only.

Definition 2.3. A function f : D(f) ⊂ [a, b] → R is integrable on [a, b] if

[a, b] \ D(f) is countable and there exists a continuous function F : [a, b] → R

such that

∃F ′(x) = f(x) for nearly all x ∈ [a, b].

In this case, we say that F is a primitive of f on [a, b], and we denote and define the

integral of f on [a, b] as

∫ b

a

f(x) dx = F (b)− F (a) (notation: F |ba = F (b)− F (a)).
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As usual, we employ the notations

∫ c

c

f(x) dx = 0 and

∫ c

d

f(x) dx = −
∫ d

c

f(x) dx (a 6 c 6 d 6 b).

Koliha’s definition in [13] also includes integration on unbounded intervals. We

have decided to remain in this more elementary setting for simplicity and also be-

cause, in our opinion, integration on unbounded intervals should be presented in

elementary courses as an afterthought.

On the other hand, our Definition 2.3 allows for functions defined only nearly

everywhere, which makes it more flexible in practice and emphasizes the fact that

countable sets are negligible in this theory.

Next we point out some simple examples of integrable functions, primitives and

integrals (observe that some of the functions under the integral sign are not defined

at every point of the interval):

∫ 1

0

(αx+ β) dx =
(α
2
x2 + βx

)∣∣∣
1

0
=
α

2
+ β (α, β ∈ R),

∫ 1

−1

x

|x| dx = |x||1−1 = 0,

∫ 1

0

dx

2
√
x
=

√
x|10 = 1.

The “potential energy” delivered by Theorem 2.1 trivializes the proofs of the

usual basic integration results. It is an illuminating exercise to prove the following

properties using Definition 2.3 and Theorem 2.1 (note that some properties can be

deduced from the previous ones) and to compare the proofs with the corresponding

ones in the setting of the Riemann integral.

(1) The integral is well defined, i.e., given two primitives we get the same result.

(2) The integral is nonnegative, i.e., if f(x) is integrable on [a, b] and f > 0 nearly

everywhere on [a, b], then

∫ b

a

f(x) dx > 0.

(3) If f and g are integrable on [a, b], then for every α, β ∈ R the function αf + βg

is integrable on [a, b] and

∫ b

a

(αf(x) + βg(x)) dx = α

∫ b

a

f(x) dx+ β

∫ b

a

g(x) dx.

(4) The integral is monotone nondecreasing: if f and g are integrable on [a, b] and

f 6 g nearly everywhere on [a, b], then

(2.6)

∫ b

a

f(x) dx 6

∫ b

a

g(x) dx.
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(5) If f and |f | are integrable on [a, b] (see Subsection 2.1 for the importance of

these two assumptions), then

∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣ 6
∫ b

a

|f(x)| dx.

(6) If f is integrable on [a, b] and [c, d] ⊂ [a, b], then f is integrable on [c, d].

(7) For every c ∈ (a, b) we have

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx,

where the existence of each side of the identity implies the existence of the other.

(8) Integration by parts. If f and g are integrable on [a, b] with primitives F and G,

respectively, and the product Fg (or fG) is integrable on [a, b], then

∫ b

a

F (x)g(x) dx = FG|ba −
∫ b

a

f(x)G(x) dx.

(9) Change of variable. If g : D(g) ⊂ [a, b] → R has a primitive G : [a, b] → [α, β],

α < β, and f : [α, β] → R has a primitive F : [α, β] → R such that F ′ = f

everywhere on [α, β], then

∫ G(b)

G(a)

f(x) dx =

∫ b

a

f(G(t))g(t) dt.

Next we show that Definition 2.3 already includes improper integrals on bounded

intervals. In the folklore we say that this integral satisfies Hake’s property.

Theorem 2.4. For any f : D(f) ⊂ [a, b] → R the following conditions are

equivalent:

(i) f is integrable on [a, b] and

∫ b

a

f(x) dx = I ∈ R.

(ii) f is integrable on [a, c] for every c ∈ (a, b) and there exists

lim
c→b−

∫ c

a

f(x) dx = I ∈ R.
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P r o o f. Obviously, (i) implies (ii). To prove the converse, let {bn}∞n=1 be an

increasing sequence in (a, b) tending to b as n tends to infinity. We define a primitive

of f on [a, b] recursively as follows. Let F1 : [a, b1] → R be a primitive of f on [a, b1]

and put F = F1 on [a, b1]. Assume that F has been defined as a primitive of f

on [a, bn] for some n ∈ N, take Fn+1 as a primitive of f on [bn, bn+1] such that

Fn+1(bn) = F (bn), and put F = Fn+1 on [bn, bn+1]. Finally, the condition (ii)

guarantees that we can define

F (b) = lim
n→∞

F (bn) = F (a) + lim
n→∞

∫ bn

a

f(x) dx = F (a) + lim
c→b−

∫ c

a

f(x) dx.

We have thus, constructed a primitive of F on [a, b] and therefore, f is integrable

on [a, b] and ∫ b

a

f(x) dx = F (b)− F (a) = lim
c→b−

∫ c

a

f(x) dx.

�

Remark 2.5. Theorem 2.4 remains valid, with obvious changes, if we consider

limits to a−.

2.1. Comparison with other integrals and some warnings. In the first part

of this section we describe briefly the relation of Definition 2.3 with Riemann and

Lebesgue integrals, so it might be outside elementary courses, as intended in this

paper. In the second part of this section we point out some important limitations of

Definition 2.3.

Definition 2.3 allows us to integrate many functions which are not even Lebesgue

integrable. As an instance, take the derivative of F (x) = x sin(1/x), x 6= 0, which

is integrable on [0, 1] in the sense of Definition 2.3 but it is not Lebesgue integrable

on [0, 1]. Notice that F ′ is improperly Riemann integrable on (0, 1], but improper

Riemann integrals do not suffice to cover Definition 2.3 either. Indeed, on each

interval (π−1 (n + 1)−1, π−1 n−1), n ∈ N, define F̂ (x) = F (x − π
−1(n + 1)−1) and

put F̂ (x) = 0 elsewhere in [0, π−1]. Now, f = F̂ ′ is integrable on [0, π−1] in the sense

of Definition 2.3 but it is not improperly Riemann integrable on [0, π−1], because the

integral cannot be expressed as a finite sum of improper Riemann integrals.

The information in the previous paragraph may induce the wrong idea that Defini-

tion 2.3 yields an integral which is better than Lebesgue’s, but this is far from being

true. In fact, Definition 2.3 does not even include the Riemann integral. As we are

going to show next, to justify our last statement shortly we need a more specialized

result from [13] which connects the Newton and the Lebesgue integrals.
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Let us denote by χC the characteristic function of Cantor’s ternary set C ⊂ [0, 1],

which is Riemann integrable on [0, 1] because it is bounded, continuous on [0, 1] \C,
and m(C) = 0, where m stands for the Lebesgue measure. To show that χC is not

integrable in the sense of Definition 2.3 we use a contradiction argument: if χC has

a primitive F on [0, 1] (in the sense of Definition 2.3), then we have F ′ > 0 nearly

everywhere on [0, 1] and

∫ 1

0

χC(x) dx = F (1)− F (0) > 0.

By Theorem 14.12 of [13], the Newton and the Lebesgue integral must agree,

so F (1) − F (0) = m(C) = 0, but then F must be a constant and so it cannot be

a primitive of χC (because C is not countable).

We close this section with some warnings, all of them being consequences of the

first one:

(1) The absolute value of an integrable function need not be integrable. Indeed, we

show that f(x) = x−1 cos(x−1) is integrable on [0, 1] but |f | is not. To do so,
we use that continuous functions on compact intervals have primitives (which

can be proven without any integration theory, see Section 3) and therefore, they

are integrable in the sense of Definition 2.3. Let F (x) = x sin(x−1) and observe

that for each c ∈ (0, 1) we have

F ′(x) = sin(x−1)− f(x) for all x ∈ [c, 1],

hence,

F (1)− F (c) =

∫ 1

c

(sin(x−1)− f(x)) dx =

∫ 1

c

sin(x−1) dx−
∫ 1

c

f(x) dx.

Notice that for 0 < c < c′ < 1 we have
∣∣∣∣
∫ c′

c

sin(x−1) dx

∣∣∣∣ 6 c′ − c,

which implies that the Cauchy condition for the existence of limit as c→ 0+ is

satisfied. Therefore,

∃ lim
c→0+

∫ 1

c

f(x) dx = lim
c→0+

∫ 1

c

sin(x−1) dx− F (1),

thus, proving that f is integrable on [0, 1], by virtue of Theorem 2.4 and Re-

mark 2.5. In order to show that |f | is not integrable on [0, 1], let us take into

account that

|f(x)| >
√
2

2

(
nπ +

3π

4

)
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for

x ∈ In = [an, bn] =
[(
nπ +

5π

4

)−1

,
(
nπ +

3π

4

)−1]
, n ∈ N.

Put g(x) = 1
2

√
2(nπ + 3

4π) for x ∈ In, n ∈ N, and g = 0 elsewhere in [0, 1]. For

any n ∈ N we have

∫ 1

an

|f(x)| dx >

∫ 1

an

g(x) dx =

√
2

2

n∑

j=1

(
jπ +

3π

4

)
(bj − aj),

which tends to∞ as n tends to infinity, so |f | is not integrable on [0, 1] by virtue
of Theorem 2.4 and Remark 2.5.

(2) As a consequence of the previous observation, we deduce that compositions g◦f
with continuous g and integrable f need not be integrable.

(3) Pointwise maxima (or minima) of integrable functions need not be integrable

(remember that |f | = max{f,−f}).
(4) Products of integrable functions need not be integrable. Just consider f as in

the first observation and

g(x) =
f(x)

|f(x)| for nearly all x ∈ [0, 1].

We have f(x)g(x) = |f(x)| nearly everywhere on [0, 1], which is not integrable.

However, g is integrable on [0, 1] because, first, it is integrable on [c, 1] for

every c ∈ (0, 1), and, second, we have

∣∣∣∣
∫ c′

c

g(x) dx

∣∣∣∣ 6 c′ − c whenever 0 < c 6 c′ < 1.

3. Integrability of continuous functions and Peano’s existence

theorem at one stroke

Our goal in this section is a direct proof that continuous functions on compact

intervals are Newton integrable. By “direct” proof we mean a proof which does not

depend on any other integration theory.

Remarkably, proving it without integrals was already done by Peano in a more

general form as early as in 1886 (see [19]), when he proved that for any bounded and

continuous function f : [a, b] × R → R there is at least one differentiable function

y : [a, b] → R such that

y′(x) = f(x, y(x)) for all x ∈ [a, b].
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In the particular case of f(x, y) = f(x) we get the result we want, but the reduction

of Peano’s original proof to this particular case is not so much easier as to make it

worthy to forget about the more important general Peano’s theorem.

Peano’s original proof was considered faulty in some technical aspects (see [12]) and

many other elementary proofs were given, as we already mentioned in Introduction.

In the author’s opinion, Peano’s original proof is essentially correct and it just needs

a couple of minor technical adjustments at relevant places.

The proof given here uses the notation and main ideas from [19], along with an

improvement by Goodman (see [9]) and an adequate definition of the involved set

of functions. We use no integration theory and our arguments do not depend on

uniform continuity or the Ascoli-Arzelà theorem.

Theorem 3.1. If f : [a, b] × R → R is continuous and bounded, then for each

ya ∈ R there exists at least one function y ∈ C1([a, b]) such that

(3.1) y′(x) = f(x, y(x)) for all x ∈ [a, b], and y(a) = ya.

In particular, every continuous function f : [a, b] → R has primitives (hence, f is

integrable on [a, b]).

P r o o f. (Respectfully and slightly updated from Peano’s original paper of 1886).

LetM > 0 be such that |f(x, y)| 6M on [a, b]×R. The function u(x) = ya+M(x−a)
(x ∈ [a, b]) satisfies u(a) = ya and u

′(x) = M > f(x, u(x)) for all x ∈ [a, b]. Define

the set1

Λ = {u ∈ C([a, b]) : u(a) = ya, M > u′ > f(x, u) on [a, b] \Nu, Nu empty or finite}.

Observe that u ∈ Λ implies u(x) > ya −M(x− a) > ya −M(b− a) for all x ∈ [a, b],

and therefore we can put

(3.2) y(x) = inf{u(x) : u ∈ Λ} for any x ∈ [a, b].

In particular, y(a) = ya. Let us prove that y ∈ C([a, b]). This part of the proof
is based on the fact that elements of Λ are Lipschitz continuous on [a, b] with Lip-

schitz constant M . We fix ε > 0 and we prove that if x1, x2 ∈ [a, b] are such that

1 Peano considers the set of functions u satisfying u′ > f(x, u) everywhere. However, at
certain step he uses two of them to produce a new one piece by piece, but the resulting
function need not be differentiable everywhere and may go outside the set of relevant
functions. On the other hand, here we employ Goodman’s idea (see [9]) and we use non
strict inequalities, which has the advantage that every solution belongs to Λ, making
it evident that the solution y(x) to be defined in the proof is the least one, a relevant
information which we chose not to include in the statement for the sake of a less technical
and clearer presentation.
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|x1 − x2| < ε/(3M), then |y(x1) − y(x2)| < ε. Let x1, x2 be as before, assume that

x1 < x2, and take ui ∈ Λ (i = 1, 2) such that y(xi) 6 ui(xi) < y(xi) +
1
3ε. Now we

define u3 ∈ Λ as follows: if u1(x2) 6 u2(x2), then we take u3 = u1; if u1(x2) > u2(x2)

and u1(x1) > u2(x1), then we take u3 = u2; finally, if u1(x2) > u2(x2) and

u1(x1) < u2(x1), then we can find x3 ∈ (x1, x2) such that u1(x3) = u2(x3), and

we put u3 = u1 on [a, x3] and u3 = u2 on [x3, b]. In any case, u3 ∈ Λ and we have

|y(x1)− y(x2)| 6 |y(x1)− u3(x1)|+ |u3(x1)− u3(x2)|+ |u3(x2)− y(x2)| < 3
ε

3
= ε.

Next, we prove that ∃ y′+(x) = f(x, y(x)) for all x ∈ [a, b), where y′+ is the right

derivative of y.

Let x0 ∈ [a, b) be fixed and denote m = f(x0, y(x0)). Let ε > 0 be fixed and

consider the function

ϕ(x) = y(x0) + (x− x0)(m− ε).

We have ϕ′(x) = m − ε < m, hence there exists x1 > x0 such that ϕ
′ < f(x, ϕ)

on [x0, x1).

Let us prove that ϕ 6 u on [x0, x1] for every u ∈ Λ. For any u ∈ Λ we have u(x0) >

y(x0) = ϕ(x0) and, moreover, u
′ > f(x, u) on (x0, x1)\Nu, Nu being empty or finite.

Assume, reasoning by contradiction, that there is an interval (x2, x3) ⊂ (x0, x1) such

that u(x2) = ϕ(x2) and

(3.3) u(x) < ϕ(x), x ∈ (x2, x3).

Since ϕ′(x2) < f(x2, ϕ(x2)) = f(x2, u(x2)), and ϕ
′ and f(·, u(·)) are continuous

at x = x2, there exists x4 ∈ (x2, x3) such that ϕ
′(x) < f(x, u(x)) 6 u′(x) for all

x ∈ (x2, x4) (Nu ∩ (x2, x4) = ∅ provided that x4 is sufficiently close to x2). Hence,
u − ϕ is increasing on [x2, x3] and therefore u − ϕ > (u − ϕ)(x2) = 0 on [x2, x4],

a contradiction with (3.3).

Since u ∈ Λ was arbitrary, we deduce that ϕ 6 y on [x0, x1], i.e.,

y(x0) + (x− x0)(m− ε) 6 y(x), x ∈ [x0, x1],

hence

(3.4)
y(x)− y(x0)

x− x0
> m− ε, x ∈ (x0, x1].

On the other hand, for a fixed ε > 0, the function

H(α, x) = m+ ε− f(x, y(x0) + α+ (m+ ε)(x− x0))

is continuous and H(0, x0) = ε. Hence, we can find ̺ > 0 and x1 > x0 such that

H(α, x) > 0 for every α ∈ [0, ̺) and every x ∈ [x0, x1). Now, for any α ∈ (0, ̺) we
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can find u ∈ Λ such that u(x0) = y(x0) + α̃ for some α̃ ∈ [0, α), and we consider

a function ψ(x) such that ψ = u on [a, x0],

ψ(x) = y(x0) + α̃+ (m+ ε)(x− x0), x ∈ (x0, x1),

and ψ(x) = y(x0) + α̃ + (m + ε)(x1 − x0) +M(x − x1) for x ∈ [x1, b]. Obviously,

ψ ∈ Λ, and therefore,

y(x) 6 ψ(x) < y(x0) + α+ (m+ ε)(x− x0), x ∈ (x0, x1).

Since the previous inequality is satisfied for any α ∈ (0, ̺), we deduce that

(3.5)
y(x)− y(x0)

x− x0
6 m+ ε, x ∈ (x0, x1).

We have thus proven that y has a derivative from the right at every point x ∈ [a, b)

and y′+(x) = f(x, y(x)). In particular, the right derivative y′+ is continuous on [a, b)

and it has a finite limit as x tends to b−, hence (see Appendix) y is differentiable

everywhere2 on [a, b] and y′(x) = f(x, y(x)) for all x ∈ [a, b]. �

Continuous functions on (a, b) need not be integrable on [a, b], but they are pro-

vided that we can find an integrable bound.

Corollary 3.2. Let a, b ∈ R, a < b. If f : (a, b) → R is continuous on (a, b) and

there exists g : D(g) ⊂ [a, b] → R, g integrable on [a, b], and

|f(x)| 6 g(x) for nearly all x ∈ (a, b),

then f is integrable on [a, b].

P r o o f. We have to show that f has a primitive F : [a, b] → R in the sense of

Definition 2.3. Let In = [an, bn] ⊂ (a, b), n ∈ N, and assume that {an}n is decreasing
and tends to a, and that {bn}n is increasing and tends to b. Define F on [a1, b1]

as a primitive of f on [a1, b1], which exists by Peano’s theorem. Assume that we

have already defined F on [an, bn] for some n ∈ N. Now, define F on [an+1, an] as

a primitive of f on that interval which coincides with F at x = an, and define F

on [bn, bn+1] as a primitive of f which assumes at bn the value F (bn). So far, we

have inductively defined a primitive F (x) for all x ∈ (a, b). We need to show that F

can be extended to [a, b] as a continuous function and, to do so, it suffices to prove

that F is uniformly continuous on (a, b). Let G : [a, b] → R be a primitive of g.

2Our argumentation here is again different from the original.
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For any ε > 0 there exists δ > 0 such that for x, y ∈ (a, b), |x − y| < δ, we have

|G(x)−G(y)| < ε, hence

|F (x)− F (y)| =
∣∣∣∣
∫ y

x

f(s) ds

∣∣∣∣ 6
∣∣∣∣
∫ y

x

g(s) ds

∣∣∣∣ = |G(x)−G(y)| < ε.

�

4. Convergence, integrability of continuous functions revisited

and areas

We have an analogue of the uniform convergence theorem for the Riemann integral.

In fact, the following result is almost a translation into integrals of a well-known

theorem on uniform convergence of sequences of derivatives, see [22], Theorem 4.56,

page 214. However, some minor differences arise due to exceptional countable sets,

which makes it advisable to include the proof here for convenience of the reader.

Theorem 4.1. Let {fn}∞n=1 be a sequence of integrable functions on [a, b].

If there is a countable set C ⊂ [a, b] such that {fn}∞n=1 converges uniformly

on [a, b] \ C to some function f : [a, b] \ C → R, then f is integrable on [a, b] and

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

P r o o f. For any n ∈ N, let Fn be the primitive of fn such that Fn(a) = 0. We as-

sume, without loss of generality, that F ′
n(x) = fn(x) for all x ∈ [a, b]\C and all n ∈ N.

It suffices to prove that {Fn}∞n=1 converges uniformly on [a, b] to some continuous

function F which, moreover, satisfies F ′(x) = f(x) for all x ∈ [a, b] \ C.
The assumptions ensure that

‖fm − fn‖ := sup{|fm(x)− fn(x)| : x ∈ [a, b] \ C} → 0 as m,n→ ∞.

For any x and t in [a, b] and any m,n ∈ N, we use that our integral is monotone in

the sense of (2.6), to get

(4.1) |(Fm − Fn)(x)− (Fm − Fn)(t)| =
∣∣∣∣
∫ x

t

(fm − fn)(s) ds

∣∣∣∣ 6 ‖fm − fn‖|x− t|.

If we take t = a in (4.1), we have

|(Fm − Fn)(x)| 6 ‖fm − fn‖(b− a) for all x ∈ [a, b] and all m,n ∈ N.

It follows that {Fn}∞n=1 converges uniformly to some continuous function F :

[a, b] → R.
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Next we prove that F ′(x) = f(x) for all x ∈ [a, b] \C. Fix x ∈ [a, b] \C and ε > 0.

First, choose N ∈ N such that

(4.2) ‖fN − f‖ < ε

3

and then choose δ > 0 so that

(4.3)
∣∣∣FN (t)− FN (x)

t− x
− fN (x)

∣∣∣ < ε

3
when 0 < |t− x| < δ, t ∈ [a, b].

Fix any such t. Using (4.1), we have

(4.4)
∣∣∣Fm(t)− Fm(x)

t− x
− FN (t)− FN (x)

t− x

∣∣∣ 6 ‖fm − fN‖ for any m ∈ N.

Letting m→ ∞ in (4.4) we get

(4.5)
∣∣∣F (t)− F (x)

t− x
− FN (t)− FN (x)

t− x

∣∣∣ 6 ‖f − fN‖ < ε

3
.

Using the triangle inequality along with (4.5), (4.3) and (4.2), we deduce that, if

0 < |t− x| < δ, t ∈ [a, b], then

∣∣∣F (t)− F (x)

t− x
− f(x)

∣∣∣ < ε.

�

As a consequence of Theorem 4.1 we easily obtain the following information: first,

another proof that continuous functions on compact intervals are integrable (though

this time we need uniform continuity) and, second, if a continuous function on a com-

pact interval is nonnegative, then its integral can be interpreted as the area under its

graph and above the x axis. Unsurprisingly, we simply use approximating functions

whose Newton integrals are lower or upper Darboux sums.

To prove our previous claims, let f : [a, b] → R be an arbitrary continuous function

and for any n ∈ N introduce points

xk = a+ k
b− a

n
, k = 0, 1, 2, . . . , n− 1,

and for each k define the (Darboux) numbers

mk = min
[xk,xk+1]

f and Mk = max
[xk,xk+1]

f.

The functions

fn(x) =

n−1∑

k=0

mkχ[xk,xk+1)(x), x ∈ [a, b],

and

gn(x) =
n−1∑

k=0

Mkχ[xk,xk+1)(x), x ∈ [a, b],
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are integrable on [a, b] (because they are piecewise constant). Moreover, by uniform

continuity of f on [a, b] it is easy to prove that fn → f and gn → f uniformly

on [a, b), so Theorem 4.1 ensures that f is integrable and

∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx = lim
n→∞

∫ b

a

gn(x) dx.

Now for the areas. If, in particular, f(x) > 0 for all x ∈ [a, b], then for every n ∈ N,

∫ b

a

fn(x) dx =

n−1∑

k=0

mk

b− a

n

is exactly the area below the graph of fn and over the x axis, which should be less

than or equal to the “area” (yet to be defined) below the graph of f because fn 6 f

on [a, b].

Analogously, the integral of each gn is larger than the “area” below the graph of f .

Finally, the integral of f on [a, b] is the unique real number between the integrals

of the fn’s and the integrals of the gn’s, so it must be equal to the area that we want

to define.

5. Appendix

For completeness, this appendix contains the proof of an elementary result used

in final part of the proof of Theorem 3.1.

Let a, b ∈ R, a < b. The right derivative of a function f : [a, b] → R at a point

x ∈ [a, b) is defined as

f ′+(x) = lim
y→x+

f(y)− f(x)

y − x
,

provided that the limit exists.

The definition of f ′−(x), the left derivative at x ∈ (a, b], is analogous with limits

from the left.

Proposition 5.1. Let f : [a, b] −→ R be continuous on [a, b]. If f ′+(x) > 0 for

all x ∈ (a, b), then f is increasing on [a, b].

P r o o f. Assume, reasoning by contradiction, that for some a 6 x < y 6 b we

have f(x) > f(y).

If f is constant on [x, y], then f ′+ = 0 on [x, y), a contradiction, so we assume

that f(x) > f(y) and f is not constant on [x, y]. In this case, we can find some

c ∈ [x, y] such that either f(x) > f(c) or f(c) > f(y). Summing up, we can assume
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without loss of generality that f(x) > f(y). Since we may have x = a and we have

no information on f ′+(a), it is necessary to replace x by a sufficiently close z ∈ (x, y)

for which f(z) > f(y). Such a point z exists by continuity of f at x. Also thanks to

continuity (at y), there exists some δ ∈ (0, y − z) such that

(5.1) f(z) > f(t) for all t ∈ (y − δ, y].

Put w = sup{t ∈ [z, y] : f(t) = f(z)}. We have f(w) = f(z) and, by (5.1), w < y.

Moreover, by definition of w, we also have f(w) > f(t) for all t ∈ (w, y], hence

f ′+(w) = lim
t→w+

f(t)− f(w)

t− w
6 0,

a contradiction. �

As a corollary, we get the following mean value theorem for continuous right

derivatives.

Corollary 5.2. If f : [a, b] → R is continuous on [a, b], f ′+(x) exists for all

x ∈ (a, b), and f ′+ is continuous on (a, b), then there exists c ∈ (a, b) such that

f(b)− f(a) = f ′+(c)(b− a).

P r o o f. Define F (x) = f(x) − f(a) − (f(b) − f(a))(x − a)/(b − a), x ∈ [a, b].

Observe that F is continuous on [a, b] and there exists

F ′
+(x) = f ′+(x)−

f(b)− f(a)

b− a
for all x ∈ (a, b).

Since F (a) = F (b) = 0, F is not increasing on [a, b], so F ′
+ cannot be positive

everywhere on (a, b). The assumptions imply that F ′
+ is continuous on (a, b), hence

there must be at least one c ∈ (a, b) such that F ′
+(c) = 0. �

Corollary 5.2 is false if we remove the continuity assumption on f ′+. Indeed,

consider f(x) = |x|, x ∈ [−1, 1].

Corollary 5.3. Let f : [a, b] → R be continuous on [a, b].

If f ′+ exists and is continuous on (a, b), then f is differentiable on (a, b). Moreover,

if f ′+(x) tends to a limit f
′
+(b

−) as x tends to b−, then there exists f ′−(b) = f ′+(b
−).
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P r o o f. We prove all the information in the statement at one stroke. Let

x0 ∈ (a, b] be fixed; we have to show that f ′−(x0) exists and is equal to f
′
+(x

−

0 ) (the

limit from the left of f ′+ at x0). To do so, we fix ε > 0 and we take δ > 0 such that

c ∈ (x0 − δ, x0) ⇒ |f ′+(c)− f ′+(x
−

0 )| < ε.

For any x ∈ (x0 − δ, x0) we use Corollary 5.2 to ensure that there exists cx ∈ (x, x0)

such that
f(x)− f(x0)

x− x0
= f ′+(cx),

hence ∣∣∣f(x)− f(x0)

x− x0
− f ′+(x

−

0 )
∣∣∣ < ε for all x ∈ (x0 − δ, x0).

�
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