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1. Introduction

Differential equations of one-dimensional prescribed curvature problems of the

form
( u′√

1 + u′2

)′

= f(t, u)

with f a continuous or Carathéodory function and Dirichlet boundary conditions

on [0, T ] have been considered by Kusahara-Usame (see [8]) and Habets-Omari

(see [6]) using the method of lower and upper solutions and time-maps, and by

Bonheure-Habets-Obersnel-Omari (see [4]) using lower and upper solutions and

variational methods. Existence and multiplicity results for more general quasilinear

problems of the form

(ϕ(u′))′ = f(t, u, u′)
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with ϕ : R → (−a, a) an increasing homeomorphism such that ϕ(0) = 0 and Dirichlet

or Neumann boundary conditions have been given in [2], [3], [11] using topological

degree techniques and lower and upper solutions. With the exception of [4], [6], who

discuss the case of solutions singular at 0 and T , all those papers consider classical

solutions such that u is of class C1 on [0, T ] and φ ◦ u′ is of class C1 or absolutely

continuous on [0, T ].

In papers (see [2], [3], [10]) the boundary value problems are reduced to some

nonlinear integral equations in the Banach space of continuous functions verifying the

linear two-point boundary conditions, in order to apply some topological fixed point

theorem in order to prove the existence of a solution and to show that such a fixed

point is a solution of the boundary value problem in the sense mentioned above.

It is therefore, a natural question to consider more general boundary conditions

involving linear continuous functionals on the space of continuous functions. In this

paper, we consider some perturbations of Dirichlet boundary conditions by a linear

functional expressed in terms of a Riemann-Stieltjes integral. Let us add that bound-

ary value problems with nonlocal boundary conditions defined by Riemann-Stieltjes

integrals were studied, for example, in [1], [5], [7], [13].

By refining some technical tools used in [3], we are able to extend its results to

those more general nonlocal boundary conditions in such a way that the existence

results are improved even for classical Dirichlet conditions and are sharp in a sense

described in the paper.

2. Preliminaries

In what follows, C[0, T ] denotes the Banach space of all real-valued continuous

functions on [0, T ] with the usual supremum norm ‖u‖∞ and C1[0, T ] denotes the

Banach space of all continuously differentiable real-valued functions on [0, T ], with

the norm ‖u‖1 = max{‖u‖∞, ‖u′‖∞}.
By BV[0, T ] we will denote the Banach space of all real-valued functions u defined

on [0, T ] of bounded variation in the sense of Jordan (briefly: BV-functions), endowed

with the norm

‖u‖BV = |u(0)|+Var(u, [0, T ]).

The symbol Var(u, [0, T ]) denotes the Jordan variation of the function u : [0, T ] → R,

that is,

Var(u, [0, T ]) = sup
π

n
∑

i=1

|u(ti)− u(ti−1)|,
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where the supremum is taken over all finite partitions π : 0 = t0 < t1 < . . . < tn = T

of the interval [0, T ]. Let us recall that BV-functions are bounded and

‖u‖∞ 6 ‖u‖BV for every u ∈ BV[0, T ].

Recall also that if v ∈ BV[0, T ], then any function u ∈ C[0, T ] is integrable in the

Riemann-Stieltjes sense and the following inequality holds:

∣

∣

∣

∣

∫ T

0

u(t) dv(t)

∣

∣

∣

∣

6 ‖u‖∞ Var(v, [0, T ]).

(The interested reader can find more information about functions of bounded varia-

tion as well as Riemann-Stieltjes integral, e.g. in [12].)

We finally need the following technical result, which sharpens Lemma 3 in [3]. For

each h ∈ C[0, T ], we denote by H ∈ C1[0, T ] its indefinite integral

H(t) :=

∫ t

0

h(s) ds (t ∈ [0, T ])

and by osc [0,T ]H we denote the oscillation of H on [0, T ], that is, osc [0,T ]H =

max
t∈[0,T ]

H(t)− min
t∈[0,T ]

H(t). Since now on, (−a, a), a > 0 will denote a bounded interval.

Theorem 2.1. Let ϕ : R → (−a, a), be an increasing homeomorphism such that
ϕ(0) = 0. For each h ∈ C[0, T ] such that osc [0,T ]H < a, there exists a unique Qϕ[h]

such that H(s)−Qϕ[h] ∈ (−a, a) for all s ∈ [0, T ] and

∫ T

0

ϕ−1(H(s)−Qϕ[h]) ds = 0.

Furthermore, Qϕ : {h ∈ C[0, T ] : osc [0,T ]H < a} → R is continuous, and if ϕ : R →
(−a, a) is a diffeomorphism, then Qϕ is of class C

1.

P r o o f. Let τm ∈ [0, T ] and τM ∈ [0, T ] be such that

H(τm) = min
s∈[0,T ]

H(s), H(τM ) = max
s∈[0,T ]

H(s).

Then for all s ∈ [0, T ],

H(s)−H(τM ) 6 0 6 H(s)−H(τm),

and hence, using the increasing character of ϕ−1 and the fact that ϕ−1(0) = 0,

∫ T

0

ϕ−1(H(s)−H(τM )) ds 6 0 6

∫ T

0

ϕ−1(H(s)−H(τm)) ds.
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Consequently, by the continuity of the integral depending on a parameter, there

exists τ∗ ∈ [0, T ] such that

ψ(τ∗) :=

∫ T

0

ϕ−1(H(s)−H(τ∗)) ds = 0.

Now, if ψ(τ∗) = ψ(τ∗∗) = 0, then

∫ T

0

[ϕ−1(H(s)−H(τ∗))− ϕ−1(H(s)−H(τ∗∗))] ds = 0

and there exists s0 ∈ [0, T ] such that

ϕ−1(H(s0)−H(τ∗))− ϕ−1(H(s0)−H(τ∗∗)) = 0,

which implies that

H(τ∗) = H(τ∗∗).

Consequently, for each h ∈ C[0, T ] such that osc [0,T ]H < a, there exists a unique

Qϕ[h] := H(τ∗) such that

∫ T

0

ϕ−1(H(s)−Qϕ[h]) ds = 0.

To show that Qϕ is continuous, let (hk)k∈N be a sequence in C[0, T ] such that

osc [0,T ]Hk < a for all k ∈ N, hk → h∗, h∗ ∈ C[0, T ], osc [0,T ]H
∗ < a, and

∫ T

0

ϕ−1(Hk(s)−Qϕ[hk]) ds = 0 (k ∈ N).

Then there is a sequence (τk)k∈N such that

∫ T

0

ϕ−1

(
∫ s

τk

hk(ξ) dξ

)

ds = 0 (k ∈ N).

Going if necessary to a subsequence, we can assume that τk → τ∗ ∈ [0, T ], and hence,

by the dominated convergence theorem

0 =

∫ T

0

ϕ−1

(
∫ s

τ∗

h∗(ξ) dξ

)

ds =

∫ T

0

ϕ−1(H∗(s)−H∗(τ∗)) ds,

so that H∗(τ∗) = Qϕ[h
∗], a result independent of the subsequence of (τk)k∈N. Hence,

Qϕ[h
∗] = lim

k→∞

Qϕ[hk]. Finally, if ϕ is a diffeomorphism, the implicit function theo-

rem applied to the implicit equation

Ψ(h, c) :=

∫ T

0

ϕ−1(H(s)− c) ds = 0

implies that Qϕ is of class C
1. �
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Remark 2.2. It follows from the proof of Theorem 2.1 that Qϕ[h] can always

be written in the form
∫ τ

0
h(ξ) dξ for some τ ∈ [0, T ].

3. BVP with nonlocal boundary conditions involving

Riemann-Stieltjes integral

Let ϕ : R → (−a, a) be an increasing homeomorphism, f : [0, T ] × R
2 → R be

continuous and A ∈ BV[0, T ]. Consider the second-order differential equation

(3.1) (ϕ(u′))′ = f(t, u, u′)

with the nonlocal boundary conditions

(3.2) u(0) = u(T ) =

∫ T

0

u(t) dA(t).

By a solution of (3.1)–(3.2) we mean a function u ∈ C1[0, T ] such that ϕ ◦ u′ ∈
C1[0, T ] and equations (3.1) and (3.2) are satisfied. Clearly, if ϕ : R → (−a, a) is
a diffeomorphism, then such a solution is of class C2 in [0, T ].

Lemma 3.1. Assume that f satisfies the condition

(3.3)

∣

∣

∣

∣

∫ t

τ

f(ξ, u(ξ), u′(ξ)) dξ

∣

∣

∣

∣

< a for all u ∈ C1[0, T ], t ∈ [0, T ], τ ∈ [0, T ].

Then the BVP (3.1)–(3.2) is equivalent to

(3.4)

u(t) =

∫ T

0

u(t) dA(t) +

∫ t

0

ϕ−1

(
∫ s

0

f(ξ, u(ξ), u′(ξ)) dξ −Qϕ[f(·, u(·), u′(·))]
)

ds,

that is, every solution u : [0, T ] → R of (3.1)–(3.2) is a solution in C1[0, T ] to (3.4)

and vice-versa.

P r o o f. First, let us assume that u : [0, T ] → R is a solution to (3.1)–(3.2).

By (3.2) and Rolle’s Theorem, there exists τ ∈ (0, T ) such that u′(τ) = 0. Integrating

both sides of (3.1) on the interval [τ, t] we get

ϕ(u′(t)) =

∫ t

τ

f(ξ, u(ξ), u′(ξ)) dξ.

Since condition (3.3) holds, then

u′(t) = ϕ−1

(
∫ t

τ

f(ξ, u(ξ), u′(ξ)) dξ

)

.
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Integrating both sides of the above equation on [0, t] and using the first boundary

condition, we obtain for all t ∈ [0, T ],

(3.5)

u(t) = u(0) +

∫ t

0

ϕ−1

(
∫ s

τ

f(ξ, u(ξ), u′(ξ)) dξ

)

ds

=

∫ T

0

u(t) dA(t) +

∫ t

0

ϕ−1

(
∫ s

0

f(ξ, u(ξ), u′(ξ)) dξ −
∫ τ

0

f(ξ, u(ξ), u′(ξ)) dξ

)

ds.

Now, introducing the second boundary condition in (3.5), we obtain

0 =

∫ T

0

ϕ−1

(
∫ s

0

f(ξ, u(ξ), u′(ξ)) dξ −
∫ τ

0

f(ξ, u(ξ), u′(ξ)) dξ

)

ds,

so that, by Theorem 2.1,

∫ τ

0

f(ξ, u(ξ), u′(ξ)) dξ = Qϕ[f(·, u(·), u′(·))]

and u is a solution of (3.4). Now, let us assume that u ∈ C1[0, T ] and solves (3.4).

Then

u′(t) = ϕ−1

(
∫ t

0

f(ξ, u(ξ), u′(ξ)) dξ −Qϕ[f(·, u(·), u′(·))]
)

, t ∈ [0, T ],

so

ϕ(u′(t)) =

∫ t

0

f(ξ, u(ξ), u′(ξ)) dξ −Qϕ[f(·, u(·), u′(·))],

and hence,

(ϕ(u′))′(t) = f(t, u(t), u′(t)) (t ∈ [0, T ]).

Further, by (3.4), we have

u(0) =

∫ T

0

u(t) dA(t)

and by the definition of Qϕ,

u(T ) =

∫ T

0

u(t) dA(t) +

∫ T

0

ϕ−1

(
∫ s

0

f(ξ, u(ξ), u′(ξ)) dξ −Qϕ[f(·, u(·), u′(·))]
)

ds

=

∫ T

0

u(t) dA(t).

Thus, u satisfies (3.1)–(3.2). �
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Theorem 3.2. Let ϕ : R → (−a, a) be an increasing homeomorphism, f : [0, T ]×
R

2 → R be continuous, A ∈ BV[0, T ] and assume that the following conditions hold:

(i) there exists b ∈ (0, a) such that

(3.6)

∣

∣

∣

∣

∫ t

τ

f(ξ, u(ξ), u′(ξ)) dξ

∣

∣

∣

∣

6 b for all t ∈ [0, T ], τ ∈ [0, T ], u ∈ C1[0, T ],

(ii)
∫ T

0
dA(s) 6= 1.

Then problem (3.1)–(3.2) has at least one solution.

P r o o f. For λ ∈ [0, 1], consider the family of BVP

(3.7) (ϕ(u′))′ = λf(t, u, u′), u(0) = u(T ) =

∫ T

0

u(s) dA(s),

which reduces to (3.1)–(3.2) for λ = 1. The nonlinear operatorM given by

(3.8) M[λ, u](t) =

∫ T

0

u(s) dA(s)

+

∫ t

0

ϕ−1

(
∫ s

0

λf(ξ, u(ξ), u′(ξ)) dξ −Qϕ[λf(·, u(·), u′(·))]
)

ds

is well defined on [0, 1] × C1[0, T ], and from Lemma 3.1, its fixed points are the

solutions of BVP (3.7). The fact thatM is completely continuous on C1[0, T ] directly

follows from Ascoli-Arzela’s theorem. Furthermore, for all u ∈ C1[0, T ] and λ ∈ [0, 1]

we have

(3.9)

∣

∣

∣

∣

ϕ−1

(
∫ t

0

λf(ξ, u(ξ), u′(ξ)) dξ −Qϕ(λf(·, u(·), u′(·)))
)
∣

∣

∣

∣

=

∣

∣

∣

∣

ϕ−1

(
∫ t

0

λf(ξ, u(ξ), u′(ξ)) dξ −
∫ τλ

0

λf(ξ, u(ξ), u′(ξ) dξ

)
∣

∣

∣

∣

=

∣

∣

∣

∣

ϕ−1

(
∫ t

τλ

λf(ξ, u(ξ), u′(ξ)) dξ

)∣

∣

∣

∣

< max{−φ−1(−b), φ−1(b)} :=M.

Let λ ∈ [0, 1] and u be a possible fixed point ofM[λ, ·]. Then we deduce from (3.9)
that for all t ∈ [0, T ],

|u′(t)| =
∣

∣

∣

∣

ϕ−1

(
∫ t

0

λf(ξ, u(ξ), u′(ξ)) dξ −Qϕ[λf(·, u(·), u′(·))]
)∣

∣

∣

∣

< M.

Now the Fredholm linear equation in C[0, T ]

(3.10) u(t) =

∫ T

0

u(s) dA(s)
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has of course only constant solutions u(t) = c with c such that c = c
∫ T

0
dA(s), and

hence, only the trivial solution c = 0 by assumption (ii). Consequently, the linear

operator

L : C[0, T ] → C[0, T ], u 7→ u−
∫ T

0

u(s) dA(s)

has a continuous inverse and equation u = M[λ, u] can be written equivalently as

u = L−1

[
∫

·

0

ϕ−1

(
∫ s

0

λf(ξ, u(ξ), u′(ξ)) dξ −Qϕ[λf(·, u(·), u′(·))]
)

ds

]

,

so that by using estimate (3.9),

‖u‖∞ < ‖L−1‖M.

If we define the open bounded set Ω ⊂ C1[0, T ] by

Ω = {u ∈ C1[0, T ] : ‖u‖∞ < ‖L−1‖M, ‖u′‖∞ < M},

we deduce from the homotopy invariance and the reduction formula of the Leray-

Schauder degree (see [9], [10]) that

dLS[I −M(1, ·),Ω, 0] = dLS[I −M(0, ·),Ω, 0] = dB[(I −M(0, ·))|R,Ω ∩ R, 0]

= sgn

(

1−
∫ T

0

dA(s)

)

= ±1,

where dLS and dB, respectively, denote the Leray-Schauder and Brouwer de-

gree, see [10]. Then the existence property of the Leray-Schauder degree implies

thatM(1, ·) has a fixed point in Ω, which is a solution of (3.1)–(3.2), by Lemma 3.1.
�

Remark 3.3. If f depends only upon t, namely for the problem

(3.11) (ϕ(u′))′ = f(t), u(0) = u(T ) =

∫ T

0

u(s) dA(s),

assumption (i) of Theorem 3.2 becomes

∣

∣

∣

∣

∫ t

τ

f(ξ) dξ

∣

∣

∣

∣

6 b for some b ∈ (0, a) and all t ∈ [0, T ], τ ∈ [0, T ]

and is clearly equivalent to condition

∣

∣

∣

∣

∫ t

τ

f(ξ) dξ

∣

∣

∣

∣

< a for all t ∈ [0, T ], τ ∈ [0, T ].
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Now, if the BVP (3.11) has a solution u, then there exists τ ∈ [0, T ] such that
∣

∣

∣

∣

∫ t

τ

f(ξ) dξ

∣

∣

∣

∣

= |ϕ(u′(t))| < a,

so that a necessary condition for the solvability of BVP (3.11) is our sufficient con-

dition (i) holds for all t ∈ [0, T ] and some τ ∈ [0, T ]. This shows the sharpness of

assumption (i) in Theorem 3.2.

Remark 3.4. Let us consider the BVP

(3.12)
( u′√

1 + u′2

)′

= ε, u(0) = u
(1

2

)

= u(1),

a special case of (3.1)–(3.2) with ϕ(v) = v/
√
1 + v2, f(t, u, v) = ε > 0, T = 1,

A = χ(1/2,1], where χE denotes the characteristic function of a set E, so that

∫ 1

0

u(s) dA(s) = u
(1

2

)

and

∫ 1

0

dA(s) = Var(A, [0, 1]) = 1,

so that assumption (ii) of Theorem 3.2 is not satisfied. If (3.12) has a solution u,

then u′/
√
1 + u′2, and hence u′ is increasing on [0, 1] and u is strictly convex on [0, 1].

Consequently,

u
(1

2

)

= u
(0

2
+

1

2

)

<
u(0) + u(1)

2
,

a contradiction with the boundary conditions. Hence, the conclusion of Theorem 3.2

may be violated for some f when assumption (ii) does not hold.

Corollary 3.5. If ϕ : R → (−a, a) is an increasing homeomorphism, f : [0, T ] ×
R

2 → R is continuous and such that

(3.13) |f(t, u, v)| 6 c <
a

T
for all (t, u, v) ∈ [0, T ]× R

2

holds and if A ∈ BV [0, T ] satisfies
∫ T

0
dA(s) 6= 1, then problem (3.1)–(3.2) has at

least one solution.

Remark 3.6. In the special case of the Dirichlet problem (A constant), as-

sumption (ii) is trivially satisfied and assumption (i) of Corollary 3.5 improves the

assumption of Theorem 5 in [3] by a factor two.

Example 3.7. If follows from Corollary 3.5 that the Dirichlet problem

( u′√
1 + u′2

)′

= α(sinu+ cos t), u(0) = 0 = u
(π

2

)

has at least one solution if |α| < π−1.
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4. Other boundary conditions

The preceding arguments can be used to study other BVP like nonlocal perturba-

tions of mixed boundary conditions

(4.1) (ϕ(u′))′ = f(t, u, u′), u(0) =

∫ T

0

u(s) dA(s), u′(T ) = 0,

where ϕ : R → (−a, a) is an increasing homeomorphism, f : [0, T ] × R
2 → R is

continuous and A ∈ BV[0, T ].

By mimicking the proof of Lemma 3.1, we obtain the corresponding version for

BVP (4.1).

Lemma 4.1. Assume that f satisfies the condition

(4.2)

∣

∣

∣

∣

∫ T

t

f(ξ, u(ξ), u′(ξ)) dξ

∣

∣

∣

∣

< a for all u ∈ C1[0, T ] and t ∈ [0, T ].

Then BVP (4.1) is equivalent to

(4.3) u(t) =

∫ T

0

u(t) dA(t) +

∫ t

0

ϕ−1

(
∫ s

T

f(ξ, u(ξ), u′(ξ)) dξ

)

ds,

that is, every solution u : [0, T ] → R of (4.1) is a solution in C1[0, T ] to (4.3) and

vice-versa.

Notice that because of the second boundary condition there is no need to use

Theorem 2.1 and condition (4.2) is slightly simpler than condition (3.3).

An easy adaptation of the proof of Theorem 3.2 provides the following existence

conditions for BVP (4.1).

Theorem 4.2. Let ϕ : R → (−a, a) be an increasing homeomorphism, f : [0, T ]×
R

2 → R be continuous, A ∈ BV[0, T ] and assume that the following conditions hold:

(i) there exists b ∈ (0, a) such that

∣

∣

∣

∣

∫ T

t

f(ξ, u(ξ), u′(ξ)) dξ

∣

∣

∣

∣

6 b for all t ∈ [0, T ], u ∈ C1[0, T ],

(ii)
∫ T

0
dA(s) 6= 1.

Then problem (4.1) has at least one solution.
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Corollary 4.3. If ϕ : R → (−a, a) is an increasing homeomorphism, f : [0, T ] ×
R

2 → R is continuous and such that condition (3.13) holds and if A ∈ BV[0, T ]

satisfies
∫ T

0
dA(s) 6= 1, then the problem (4.1) has at least one solution.
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