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Abstract. This paper deals with additive decompositions A = A1 + ...+ Ap of a given
matrix A, where the ranks of the summands Aj,..., Ap are prescribed and meet certain
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1. INTRODUCTION

Let m, n be positive integers. The linear space of all m x n (complex) matrices will
be denoted by C™*™. We will consider subspaces of C"™*™ determined by a pattern
of zeros. Here is how these are defined.

Let Z be a binary relation between the sets M = {1,...,m} and N = {1,...,n}
(later to be identified with a directed bipartite graph from M to N). With Z we
associate the subset C™*"[Z] of the set C™*" of all m x n (complex) matrices
consisting of all A = [a; ;{2 ,_; € C™*™ such that a; ; = 0 whenever (i,7) ¢ 2.
Evidently, C™*"[Z] is closed under scalar multiplication and addition. So, regardless
of additional properties of Z, the set C™*"[Z] is a linear subspace of C™*".
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The question that we will consider is the following: Given A € C™*"[Z], a positive
integer p, and integers r1,...,r, satisfying

(1.1) 1<rj<rankA, j=1,...,p, rankA<ri+...4+71p,
does there exist a decomposition A = Ay + ...+ A, such that
(1.2) A;j e C™MZ], rankAj=r;, j=1,...,p7

Note here that the second part of (1.1) is a necessary condition for the rank part
of (1.2) to be fulfilled.

Generally, the answer to the above question is negative. Section 3 contains an
example demonstrating this. In the same section, a positive answer is formulated in
the main theorem of this paper featuring the condition that Z is L-free. This notion
is modeled after a concept that has been introduced in [3] for directed graphs. It
(also) plays a crucial role in [4] which is concerned with additive decompositions of
a type different from the one considered in the present setting. References to related
concepts featuring in the literature will be given in Section 2, where the necessary
terminological framework is developed and auxiliary observations are presented.
Section 4 is devoted to the proof of the main theorem referred to above. The section
also contains a couple of illustrative examples. A requirement leading to additional
conclusions is that in the second part of (1.1) equality instead of inequality is re-
quired. Such decompositions, named minimal, are discussed in Section 5. Attention
is also payed to the issue of how many minimal decompositions can exist. The
smallest number that can occur is described in terms of the so called Bell number,
but there are also situations, where it is infinite. Section 6, the final section of
the paper, consists of two subsections. In the first one, a norm optimization issue
for the decompositions considered here is raised. The second subsection has as its
background the fact that in the definition of L-freeness, the natural orders of the
underlying sets of nodes M = {1,...,m} and N = {1,...,n} play a role. It is ex-
plained that, without giving up the main results of the paper, it is possible to relax
the definition so that it becomes order independent. In this context the challenge to
give a graph theoretical characterization presents itself.

2. GRAPH THEORETICAL PREPARATIONS AND BACKGROUND

Let m and n be positive integers. The linear space of all m x n (complex) matri-
ces will be denoted by C™*"™. We will consider subspaces of C"™*™ determined by
a pattern of zeros. Here is how these are defined.

Write M = {1,...,m} and N = {1,...,n}. The integers 1, ..., m constituting M
correspond to the row numbers of matrices in C™*"™, the integers 1, ..., n constitut-
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ing N to the column numbers. In this sense we may assume M and N to be disjoint.
In line with this, a binary relation Z between M and N, i.e., a subset of M x N, will
be viewed as a directed bipartite graph from M to N. The directedness emphasizes
the fact that no reflexivity is assumed (in accordance with Z consisting of ordered
pairs). The notation k —< [ is employed to indicate that (k,I) € Z. In the same
vein, k -+ [ signals that (k,l) ¢ Z. If this happens to be convenient, [ <% k is used
instead of k —Z [.

With a directed bipartite graph Z as above, we associate the subset C™*"[Z]
of C™ ™ of all A = [ak];2] ,—; € C™ ™ such that ax; = 0 whenever k »< [ .
Evidently, C"™*"[Z] is closed under scalar multiplication and addition. So, regardless
of additional properties of Z, the set C™*"[Z] is a linear subspace of C™*".

In line with [3] and [4], a quadruple (p, ¢, r, s) with p,q € M and r, s € N is called
an L for Z if

(2.1) pfrefg=Zs, p<q r<s, p-»°s.

(Caveat: in expressions of this type, attention should be paid to the direction of the
arrows.) Here is an example illustrating the definition.

Example 2.1. Take m = 6 and n = 9, and let the directed bipartite graph Z

be given by the matrix diagram

1 2 8 4 5 6 7 8 9

17 = 0 0 x 0 x 0 0 =«

2 0 0 %= 0 0 % 0 O O
Z=18 = 0 « 0 0 0 O 0 O
4 0 0 0 0 0 0O 0 0 O

5 0 x 0 0 0 % 0 % O

6 0 0 0 0O 0O = 0 0 =

Here a star or a zero at position (k,l) means that k& —Z [ or k -+~ [, respectively.
Also, row and column numbers (corresponding to the nodes in the graph) are written
in italics. The quadruple (2,5,6,8) is an L for Z (cf. the emphasized stars and zero).
Indeed, 2 - 6 <~ 5 — 8 and 2 » 8.

An arrow diagram for the directed bipartite graph Z is

1 2 3 4 5 6 7 8 9
OWO
. ° ° . ° °
1 2 3 4 5 6
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where the solid dots and the circles correspond respectively to the rows and the
columns in the matrix diagram (symbols also to be used later in similar contexts).
Note that in the matrix diagram, the L shape stands out prominently, whereas in
arrow diagram this is not the case. There it looks more like an N. As will become
apparent in the next paragraph, this is not by coincidence.

Circling back to the general situation, we say that Z is L-free if Z does not feature
any L. Thus, Z is L-free if and only if

p,geEM, rseN
p=Zre?qg=Fsy=>poZs

P<q r<s

This definition is modeled after a notion that has appeared in the literature earlier,
actually in the context of working with directed graphs. The concept in question is
that of being N-free, cf. [8]. In the present situation it directly translates into requir-
ing that Z has no N’s; an N being a quadruple (p,q,r,s) with p,q € M and r,s € N
satisfying

(2.2) p=Zreqafs, ptq s#r, p-szs
In other words, Z is N-free if and only if

p=Zrefqg=®s

=p—Zs.
pPFEG TFES

Clearly, each L for Z is an N. The converse in not true, however. As a matter of
fact, the quadruple (2,3,3,1) is an N but not an L for the directed bipartite graph Z
considered in Example 2.1.

Obviously, the property of being N-free implies that of being L-free. But, as is
easily seen, the converse is not true, cf. Example 3 in [4].

The difference between (2.1) and (2.2) is that in (2.1), reference is made to the
(standard) linear orders on the ground sets M and N, whereas this is not the case
n (2.2). Thus, for N-freeness, the specific form of the ground set is irrelevant.

As was mentioned, N-freeness was delineated as a property of directed graphs, or
equivalently, as a property on a binary relation on a single ground set K = {1,..., k}.
For a characterization of N-free partial orders in terms of the so called Hasse dia-
gram (cf. [6]), see Theorem 2 in [8]. Other notions that are closely related to the
concept of being L-free are in-ultra transitivity and out-ultra transitivity, pertain-
ing again to directed graphs, and introduced in [1] and [2]. The first of these also
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contains a characterization in terms of the Hasse diagram. A characterization of
a similar type seems to be out of reach for L-free partial order, cf. the last two

paragraphs of Subsection 3.2 in [4].

3. MAIN THEOREM: FORMULATION AND RELEVANCE
OF THE L-FREENESS ASSUMPTION

If A is a matrix, the expressions rank A, Im A and Ker A denote the rank, image
and null space of A, respectively. The main result of this paper now reads as follows.

Theorem 3.1. Let m,n be positive integers, let Z be a directed bipartite graph
from M = {1,...,m} to N = {1,...,n}, and suppose Z is L-free. Then, given
a nonzero matrix A in C"™*"[Z] and positive integers p,r1, ..., r, satisfying

ry <rankA, j=1,...,p, rankA<r +...+71p,
there exists a decomposition A = A; + ...+ A, such that

(3.1) A e C™ " Z], rankA; =7, 1=1,...,p,
(3.2) ImA=ImA; +...+ImA,, Kerd=Kerd;n...NKerA,.

The condition that the given matrix A is nonzero is imposed in order to avoid
trivialities. The proof of the theorem will be given in the next section. Here we will
make clear, by means of an example, that the requirement that Z is L-free, cannot
simply be missed. The example is also of significance for Theorem 5.1 in Section 5,
which is concerned with what we shall call minimal decompositions.

Example 3.1. For n = 3,4,5,..., let the directed bipartite graph Z be given
by the matrix diagram

1 2 3 n
1 = 0 O 0 =
2 x 0
(3.3) Z = 0 = * 0 ,
0 = * 0
n 0 ... ... 0 *

which can also be depicted by an arrow diagram, e.g. for the case n = 5,
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5./r0 C<—¢9
\4(0 0‘2/
(o)
0/3\0
4 3

in which, as before, the solid dots and the circles correspond respectively to the rows
and the columns in the matrix diagram.
Note that Z is not L-free. Indeed, each of the n — 1 quadruples

(1a271a2)7(2a372a3)7“~7((n_ 1);”7 (n_ 1),71)

isan L for Z.
Introduce the (circulant) matrix

M1 0o 0 ... 0 -—17

Clearly A € C**"[Z], the null space of A has dimension one and correspondingly,
rank A = n — 1. We claim that A cannot be written as a sum of n — 1 rank one
matrices Ay, ..., A,—1 having the required zero pattern, i.e., belonging to C"*"[Z].
Here is the argument.

Suppose A = A;+...+ A, _1 and the matrices Ay = [a(k)]" belong to C"*"[Z]

ij li,j=1
for k = 1,...,n — 1. Considering the n diagonal entries of A, we obtain the n
equations,
agil)ﬁ—agf)—i—...—i—agf_l) =1, 1<i<n.

In each of these n equations at least one of the n — 1 summands must be nonzero.
Therefore, by the pigeonhole principle, there exists an integer £k among 1,...,n — 1
such that at least two of the diagonal entries of Ay are nonzero, say

agf) # 0, a;];-) #0,

with 1 <i < j < n.
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Since Ay, is assumed to have the zero pattern determined by Z in (3.3) and n > 3,

it follows that at least one of a( )

or ay;) is zero. On the other hand, A having rank
one implies that the submatrlx of Ay obtained by deleting all but the ith and jth

rows and columns, that is
(k) o)
{ (k) (k)}

J'L JJ

must have rank at most one, too. However, the above statements imply that its
(k) (k) _ (k) (k) a® (k)
JJ J’L 1] g
reached a contradlctlon.

determinant a;; # 0 is nonzero. And with this we have

4. MAIN THEOREM: PROOF AND ILLUSTRATIVE EXAMPLE

This section is devoted to the proof of Theorem 3.1, the main result in this paper.
For the purpose of adequate presentation it is divided into a couple of subsections.
In the final one of these, the material will be illustrated with an example.

4.1. Decomposition ensembles and distribution schemes. Let p,r,ry,...,7p
be positive integers. The (p+ 2)-tuple £ = (p,r;r1,...,7p) is called a decomposition
ensemble if

r;<r, j=1,...,p, T<ri+...+71p

Clearly, this definition is motivated by Theorem 3.1.

Lemma 4.1. Let £ = (p,r;r1,...,7p) be a decomposition ensemble. Then there
exists a matrix A = [N ;177 j=1 € CP*" such that in each column of A the entries
add up to 1, while for I = 1, ..., p the number of nonvanishing entries in the [th row

of A is equal to ;.

Such a matrix is called a distribution scheme associated with £.

From the proof as given below it will appear that there is always a distribu-
tion scheme associated with £ having rational entries, even being positive whenever
nonzero. It will also become clear that generally, one can associate many different
distribution schemes with a given decomposition ensemble. Anticipating on what
we will see in Section 5, we mention here already that there is an exception to this
standard state of affairs: when r = r; + ... + 1}, there is just one scheme modulo
the trivial changes brought about by column permutations.

831



Proof. Asry < r, there exist integers ¢t among 1, ..., p such that ri+...+r; < 7.
Write s for the largest of these and introduce

0, jzl,...,T1+...+Tl_1,
O =<1, j=rm+...+na+1,...,m+...+r, 1=1,...5,
0, j=m+...+m+1,...,m,
0, j=1,...,r—my,
01, = ] l=s+1,...,p.
1, j=r—r+1,...,m
Then © = [0,;]], ;—, is a real (in fact a zero/one) matrix, and for | = 1,...,p,
the Ith row of © contains precisely r; nonzero entries (all equal to 1). Also, in each
column the entries add up to a positive integer.
Now let = [w; ;|7 =1 be a complex matrix with nonzero entries and satisfying

w17j917j+...+wp’j9p7j:1, j=1,...,nr
Further introduce
)\l,j:wl,ﬂl,j, l:].,...,p,j:].,...,r.

Then A = [N;]77) ;_; has the desired features.
Perhaps needless to point out, but there does exist a matrix €2 with the properties
required above. Indeed, one can take

1
wy,j , I=1,...0p, j=1,...m.

v 91’j+...+9p’j
This choice leads to a distribution scheme associated with £ having rational entries,
even being positive whenever nonzero. ([

We illustrate the foregoing with an example.

Example 4.1. Let £ = (6,7;4,2,2,5,3,1). Then £ is a decomposition ensemble.
Note that 71 + 71710 =6 < 7=rand ri +ra+713 =8 > 7 =7r. So s = 2, using the
notation of the proof of Lemma 4.1. In line with what we did there, we now produce
the 6 x 7 matrix

1 1 1 1 0 0 07
00001 10
o— 0 000O0T171
0 01 1111
0 000 1 11
L0 00 0 0 0 1]
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The corresponding column sums are 1, 1, 2, 2, 3, 4, 4. Using their inverses as
multiplication factors for the respective columns, we obtain

11 2 L g o0 0]
2 2

1 1
0000510
1 1
A:OOOOOZZ
1 1 1 1 1/’
00 35 33 711
1 1 1
0000511
1
_OOOOOOZ_

which is, indeed, a distribution scheme associated with &£.
Other schemes can, of course, be obtained by permuting columns. This, by far,
does not exhaust all possibilities. Just by way of example, we exhibit

1 1 —-4+i —-1+31 0 0 0 7
0 0 0 0 -3—-4i —4 0

0 0 0 0 0 2 —3+i
0 0 5+i 2-3i 5 -3 5+4i|’
0 0 0 0 —-1+41 6 -1
L0 0 0 0 0 0 —5i |

involving complex numbers, some of them nonreal.

4.2. Lean forms. Let M be an m xn matrix. Here m and n are positive integers.
We say that M is in lean form or alternatively, has lean column structure if the
nonzero columns of M are linearly independent. This, of course, implies that the
number of nonzero columns of M is equal to the rank of M. If M happens to be
the m x n zero matrix, then M is in lean form (trivially).

Let A be an arbitrary m x n matrix. Then A can be brought in lean form, without
changing its rank, via multiplication on the right with a suitable upper triangu-
lar n X n matrix. A simple Gaussian elimination type procedure for doing this is

as follows. Write A = [a; ...a,] with aq,...,a, € C" being the columns of A. For
l=1,...,n, we leave the Ith column of A unchanged whenever a; is not a linear com-
bination of the columns ay, ..., a;—1 preceding a;; otherwise we replace a; by a zero

column. (Here, of course, a vector is a linear combination of an empty collection of
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columns if and only if it is the zero vector. In this way, the case [ = 1 is covered
without ambiguity.) The resulting matrix A certainly has lean column structure,
and its rank is equal to that of A. Also, A can be written in the form AU with U
a monic n X n matrix, i.e., an upper triangular matrix with ones on the diagonal.

Generally this is not the only way to bring A in lean form. For proving Theo-
rem 3.1, it needs to be done in a special manner. This is the motivation for the next
lemma, which is crucial for what follows. A square matrix is said to be monic if it
is upper triangular and all its diagonal entries are equal to one.

Lemma 4.2. Let Z be an L-free directed bipartite graph from M = {1,...,m}
to N ={1,...,n}. Then given A € C™*"[Z], there exists a monic n X n matrix U
such that AU is in lean form, AU € C™*"[Z], and AUDU~! € C"™*"[Z] for every
diagonal n X n matrix D.

A direct proof of Lemma 4.2 is possible but very cumbersome, not in the least
notationally. Therefore, we will take advantage of Theorem 4.2 in [4] in the proof of
which these complications have already been dealt with, following up on the material
in [5], highly intricate in its own right. Theorem 4.2 in [4] has an upper triangularity
aspect to it. Thus, falling back on it involves an embedding trick of a type also
employed in [3] and [4].

All in all, the argument is of a constructive nature and provides an algorithm for
obtaining the matrix U. This is relevant for constructing decompositions of the type
considered in Theorem 3.1 in concrete examples.

Proof. Write A = [ai7j];n=’f_j=1, put £k = m + n and introduce the square matrix
A= [6i7j]f7j=1 via

] Gig—m, 1=1,...,mand j=m+1,...,k,
o, i=m+1,...,korj=1,...,m.

In other words,

(4.1) A= [8 ‘g].

With the directed bipartite graph Z we now associate a directed graph Z with
ground set K = {1,...,k}. In suggestive shorthand

(4.2) 2:(8 ‘OZ)

analogously to (4.1). More precisely, using the notation — 5 for the arrows deter-
mining Z,

i,jeEK, i—zj ifandonlyif ieM, jeK\M, i »% (j —m).

834



By assumption Z is an L-free directed bipartite graph. For the directed graph Z this

translates into

p—>§r<—§q—>§s} Sposs

p<gq, r<s
This means that Z is L-free as this was defined for directed graphs in [4]. Again
borrowing terminology from [4], we also observe that Zis of upper triangular type,
meaning that i =z j for all 4,5 € K, i > j.

Theorem 4.2 in [4] — specialized to the situation, where the blocks are scalar, i.e.,
have size 1 x 1 — now guarantees the existence of a monic k x k matrix U such that AU
is in lean form, AU € Cka[é’\] and AUDU! € Cka[é’\] for every diagonal k x k
matrix D. The remainder of the argument consists of translating this back to the
originally given matrix A and directed bipartite graph Z.

In line with (4.1) and (4.2), and taking into account that U is upper triangular,

~

we decompose U as

~ U_ Uil
U= .
{ O U -
Identifying U with an n x n matrix, which is then clearly monic, one gets
A~ 0 AU
AU = )
[0 0

implying that AU has lean form and belongs to C™*"[Z].
Finally, let D € C"*™ be a diagonal matrix, and introduce

~ [0 0
D= :
o o]

Then D is (more precisely, can be identified with) a diagonal k x k matrix, and so
AUDU ! € Ck*¥[Z]. Straightforward computation gives

PN A - -1 _-1 -1 AUDU 1

ATHT-1 = 0 U_ UL]]0 0]]UC Uz I_ZJ{U _ [0 AUDU 7
00 0 U]J][0D 0 U 0 0

and it follows that AUDU ! € C™*"[Z], as was claimed. O

The L-freeness requirement in Lemma 4.2 is essential. This appears from the
following example.

Example 4.2. Let the directed bipartite graph Z and A € C3*3 be given by

1 2 8
1o 0 1 0 1
(4.3) Z = , A=|1 -1 0
2 x % 0 0 1 1

3 0 x x
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Then A € C3*3[Z] and Z is not L-free. The latter can, of course, be checked directly,
but can also be read off from Example 3.1 (case n = 3). We shall make clear that
with this choice for Z and A there is no matrix U with the properties mentioned in
Lemma 4.2.

Suppose there is one, say

1
U=10
0

(==
— N

By assumption AU € C3*3[Z], i.e.,

1 T y+1
1 z—1 y—z| eC¥32z2],
0 1 z+1

and it ensues that x = 0 and y = z. From this we get

1 0 y 10 —y1! 1 0 y+1
U=|01 y|=1]0 1 —y , AU=1]1 -1 0
00 1 00 1 0 1 y+1

Now, again by hypothesis, the matrix AU has lean column structure, yielding y = —1

and
1 0 —1 1 0 17°¢ 1 0 0
U=101 -1|=10 11| , AU=1]1 -1 0
00 1 00 1 0 1 0

Write D for the 3 x 3 diagonal matrix having one at the first diagonal position and
zero at the two others. Then

10 1
(4.4) AUDU = |1 0 1
000

This matrix has a nonzero entry in the position (2,1), hence it does not belong
to C3*3(Z].

We close this subsection with another comment on Lemma 4.2. Considering the
situation of the lemma, involving an L-free graph, the following question arises. Can
it happen that for some monic n X n matrix U, the matrix AU is lean and belongs
to C™*™[Z] while, nevertheless, there does exist an n x n diagonal matrix D such
that AUDU ! fails to be in C™*"[Z]? Clearly, such a matrix U has to be different
from the one whose existence is guaranteed by Lemma 4.2. As will appear from
Example 4.3 in Subsection 4.4, the answer is affirmative.
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4.3. Proof of main result. In the situation of Theorem 3.1, writing r for the
(positive) rank of the given matrix A, the (p + 2)-tuple € = (p,7;71,...,7p) is a de-
composition ensemble. By Lemma 4.1, there exists a distribution scheme associated
with £. Choose one, A = P‘l,j]f!l,j:p say. Further, referring to Lemma 4.2, we
take U to be a monic n x n matrix such that AU is in lean form, AU € C™*"[Z], and
AUDU~! € C™*"[Z] for every diagonal n x n matrix D. Using these ingredients we
shall construct an additive decomposition of A of the type indicated in Theorem 3.1.

Put B = AU. The nonvanishing columns in B are linearly independent, hence the
number of them is rank B = rank A = r. Let us denote their positions by I1,..., .,
taken in standard order, so l1 < ... < [l,.. Also write u1,...,u, for the standard unit

vectors in C". Clearly
(4.5) B= Z BuljulTl = BZuljulTl.
j=1 j=1

Note that uy, ul—: is the diagonal n x n matrix having zeros on the diagonal except for
the [;th position, where the entry is 1. Thus, Buy, ul—lr is the matrix obtained from B
by leaving the [;th column intact and replacing all the others by zero columns. Hence,
along with B, the matrix Buy, u; belongs to C™*"[Z].

For k =1,...,p, introduce

T
(4.6) By = Z /\k,jBuljul:.
j=1
The matrices By, . .., By have (positive) rank rq, . . ., rp, respectively, and they belong

to C™*"[Z]. Also B = By + ...+ B,. For this we argue as follows.
Let ¢ be one of the integers 1,...,n. Then, employing the Kronecker delta nota-

tion,

P p T P T

OIS 3) ST 5) SR

k=1 k=1j=1 k=1 j=1

and hence
P 07 t#llv"'alrv
Bk)ut = P
(l; Z/\k,sBuls7 t=ls,s=1,...,r,
k=1

B’U,t, t#llw"alTW
— p
(Z)‘k7S)But’ t=ls,s=1,...,7
k=1
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The sum in the latter expression is equal to 1, and we conclude that

(Z Bk) u; = Buy.

As t was taken arbitrarily among 1,...,p, it ensues that B = By + ...+ By, indeed.

We have now obtained a decomposition of B = AU in which the summands
By, ..., By have rank r1,...,7p, respectively, and are in C™*"[Z]. For k =1,...,p,
define Ay, = ByU 1. Then A = (AU)U~! = A;+...+A4,, and this is a decomposition
of A involving terms A, ..., A, having rank r,...,p, respectively. Later we shall

see that these terms feature the desired zero pattern. But first we consider their
images and null spaces.

For k = 1,...,p, we have Im By, C Im B. This is clear from the definition of By
via (4.6). Evidently, Im Ay, = Im By, and Im A = Im B. Thus,

ImA;+...+ImA,=ImB; +...+Im B, CIm B =ImA.

Also ImA C ImA; + ... +ImA, because A = A; + ...+ A, and it follows that
ImA; +...+ImA, =ImA.

Next we look at the null spaces of A and A;,...,A,. Again taking into account
the identity A = A; + ... + A,, it ensues that

KerA;N...NKerA, C Ker A.

Let € Ker A, and put y = U~ 'z, so that By = 0. Write B = [Bu; ... Bu,] and
y=1[y1...yn]". Then y; Buj+...y,Bu, = 0. The columns of B not in the positions
li,...,l, vanish, hence y;, Bui, +. . .+yi, Bu;, = 0. Also Bu, +. ..+ Bu;, are linearly
independent, it entails that y;,, ...,y vanish. But then

T T
Bky = Z)\k’jBulJul:y = Z)\k,jyljBulj = 0, k= ]., .oy D
Jj=1 j=1

Recalling that Ay = B,U ! and y = U~ 'z, we arrive at Ayx = Bry = 0, ie.,
x € Ker Ay, which is what we wanted to establish.

It remains to prove that Ay,..., A, € C™*"[Z]. Take k among 1,...,p, and deﬁne
the diagonal n x n matrix by Dy = /\k71ullul—'; + o Ay, ul Then AUD;U !
in C™*™[Z]. On the other hand,

A = BkU_1 (Z Ak ]Bul Uy ) (Z Ak, RAURY )U_l = AUl)kU_l7

and the upshot is that A, € C™*"[Z], as desired. O
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4.4. Example. We illustrate what we did in the preceding subsections with an
elucidating example. It will underscore that a special monic matrix U is needed to
bring the given matrix A in lean form. The crux lies here in the necessity to have
AUDU™! in C™*"[Z] whenever D is a diagonal matrix, as stated in Lemma 4.2.
The example will also exhibit a concrete decomposition of A obtained along the
lines suggested by the proof of Theorem 3.1 the way it is given in the preceding
subsection.

Example 4.3. Let the directed bipartite graph Z and the matrix A be given by

1 2 8 5 6 7

4 1 3 01 3 0 5
7 x *x 0 * x x x%
2 0 0 * 0 *x * =% 00 10236

Z = , A=10 0 2 0 4 6 6
g 0 0 % 0 * * =% 01013 0 2
40 0w 0 1 200001
5 % x 0 0 0 0 =

with the zero entries forced upon A by the required zero pattern emphasized. Then Z
is L-free and A € C°*7[Z]. We first bring A in lean form via the procedure described
in the second paragraph of Subsection 4.2. Note that the columns of A at the
positions 1, 2, 3 and 7 are linearly independent. So the rank four matrix

)

Il
===
N = O O W
o o N~ O
o oo oo
o oo oo
o o o oo
= N O O Ot

has lean column structure. Introducing the monic matrix

T 0 0 2 6 0 07 rt. o 0 -2 -6 0 0
010 -1 -3 0 0 01 0 1 3 00
001 0 -2 =320 0 01 O 2 3 0

U=10 0 0 1 0 0 0|=1]0 0 0 1 0 0 0
0 00 O 1 0 0 0 00 O 1 0 0
0 00 0 O 10 000 0 0 10
L0 00O 0 0 0 1l LO 0O 0 0 0 0 1.

we have A = AU € C*7[Z].
Now let D be the diagonal 7 x 7 matrix having all diagonal entries equal to zero,
except for the second, which is one. Straightforward calculation shows that the last
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row in AUDU~' = ADU~" is [0 2 0 2 6 0 0] Butthen AUDU! fails to
be in C°*7[Z]. Note that we have a validation here of the comment on Lemma 4.2
made at the end of Subsection 4.2.

As we see, the straightforward approach taken above, fails to bring in a crucial
element of Lemma 4.2. Indeed, the lemma guarantees the existence of a monic
7 x 7 matrix U such that not only AU is in lean form and AU € C°*7[Z], but also
AUDU~! € C°¥7[Z] for every diagonal n x n matrix D. In the present situation,
it is not completely trivial to identify such a matrix. It can be done by using the
material developed in [4].

Leaving the details for what they are, we give the end result, namely the matrix

rn -2 0 2 6 0 37
0o 1 0 -1 -3 0 =2
o 0 1 0 -2 -3 -3
U=10 0 0 1 0 0 0,
0 0 0 O 1 0 0
0 0 0 0 O 1 0
L0 0 0 0 0 O 1 J
yielding for B = AU € C**"[Z] and U~*
rtr 2 0 0 0 0 17
1 1.0 0 0 0 2 01013 0 2
0 01 00 0 3 0010 2 3 3
B=|0 0 2 0 0 0 0|, U'=]000 1000
01 0 0 0 0 O 000 O0T1O0O0
10 0 0000 000 O0O0T1FPO0
LO O 0 0 0 0 1.

Note that, indeed, B is in C5*7[Z] and has lean column structure.

Suppose we are looking for an additive decomposition of A = A; + As + Az + Ay,
involving summands A;, Az, Az, Ay belonging to A € C°*7[Z], and having
rank 3, 3, 2, 1, respectively. Theorem 3.1 assures that such decompositions ex-
ist. Here is how we can get one in concrete form.

Let £ be the decomposition ensemble (4,4;3,3,2,1), and let
A1 A2 A1z Al
A2l 22 A2z Aog
A31 A3z Az3 Az
A1l A2 A3 Mg

)

(4.7) A=
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be a distribution schemes associated with £. For k = 1,2,3,4, in line with the
expression (4.6), introduce

B = /\]¢7lB’l1,1111r + )\k7QBU2'U,; + /\]¢73B’u,3u;r + )\k74BU7u;r

and put Ay = BRU ™1, i.e.,
Al 221+ X2 00 Ap2 32 0 A1+ 22+ 204

0 0 /\k,3 0 2/\k,3 3/\k,3 3/\k,3 + 3)\k,4
(4.8) A = 0 0 223 04Xz 6Ap3 6Ak,3
0 )\kyg 0 )\kyg 3>\k,2 0 2>\k,2
Aol 2\ 0 0 ©0 0 A1

Then A = A; + As + A3 + A4 is a decomposition of A respecting the zero pattern
and having the desired rank characteristics.
Specializing the right-hand side of (4.7) to

rin 1 1 7
33 2"
0 x + o1
(4.9) L
1 1
3 3 0 O
1
'3 0 O O_
we obtain concrete numerical instances for A, Ay, Az, A4, namely
(2 6 0 2 6 0 6 [0 2 0 2 6 0 16
) 00306 9 9 1 0030 6 9 27
Al:é 0 0 6 0 12 18 18], AQZE 0 0 6 0 12 18 18],
020 2 6 0 4 020 2 6 0 4
2 400 0 0 2 0000 0 0 0
1 3 01 3 0 3 (1 2 0 0 0 0 1
) 000 0 O0O0O0 1 000 0 O0O0°TO
Agzg 000 0 O0O0 O0f, A4:§ 0000 O0O0°0O
0 1 01 3 0 2 00 0 0 0 00
11 2 0 0 0 0 1 11 2 0 0 0 0 1

Inspection confirms that A = A; + As + Az + Ay with Ay, Ay, A3, Ay belonging
to C°*7[Z] and having rank 3, 3, 2, 1, respectively. Also it can be checked by hand

that
ImA=ImA; +ImAs +Im Az + Im Ay

Ker A = Ker A; NKer As N Ker A3 NKer Ay,

which was to be expected in view of Theorem 3.1.
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5. MINIMAL DECOMPOSITIONS

In this section we consider decompositions that are minimal in the sense that the
ranks of the summands add up exactly to the rank of the given matrix.

5.1. Decomposition under minimality requirements. Let m, n be positive
integers, and suppose A € C™*". Consider a decomposition A = A; + ... + 4,
with p a positive integer and A, ..., A, nonzero matrices in C™*". Then, clearly,
rank A < rank A;+...+rank A, and we have equality here as the extreme possibility.
In that case, when

rank A =rank A; + ...+ rank 4,,

we call the decomposition minimal. This obviously implies that p cannot exceed
rank A and that rank A; <rank A, j=1,...,p.

Theorem 5.1. Let m, n be positive integers, let Z be a directed bipartite
graph from M = {1,...,m} to N = {1,...,n}, and suppose Z is L-free. Then,
given A in C"™*"[Z], a positive integer p (not exceeding rank A) and positive integers
T1,...,Tp satisfying rank A = r + ... + rp, there exists a minimal decomposition
A=A +...+ A, such that

(1) Ai,...,A, belong to C™*"[Z], are linearly independent, and have rank
T1,...,Tp, respectively,

(2) Im A is the direct sum of Im Ay,...,Im A,, and Ker A is the interlaced inter-
section of Ker Ay, ..., Ker A4,.

By saying that a subspace N of a linear space X is the interlaced intersection of
the subspaces Ny, ..., N, of X we mean that N = N;N...N N, and

X=N,+(MnN...ANo 1N Nep1+...0N,), s=1,....p.

Recall that a subspace R of X is the direct sum of the subspaces Ry,..., R, of X if
R=Ri+...+ R, and

{0}=RsN(R1i+...+Re—1+Rsp1+...+Rp), s=1,...,p.

Thus, the notion of an interlaced intersection is, so to speak, the intersection coun-
terpart of the familiar concept of a direct sum.

Proof. The proof is a continuation of the argument given in Subsection 4.3. So
we elaborate on this argument under the additional assumption that the positive
integers 71, ...,7, add up to r, where r = rank A.
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Recall that A = [\ ;|17 _j—1 Is a distribution scheme associated with the decom-
position ensemble €& = (p,r,71,...,7p). For I = 1,...,p, let A; be the set of all j
among 1,...,r such that A; ; # 0. Then the cardinality §A; of A; is equal to r;. Now
take k in {1,...,r}. By assumption, Ay + ...+ Aprx = 1, and so the terms in the
sum cannot all vanish. Thus, k € A; for some [ among 1,...,p, and we conclude
that {1,...,7} is the union of the (nonempty) sets Aq,...,A,. But then

{1,...,7‘}: (Al\(Alu...UAl_l))

=

=1

as well. This, however, is a disjoint union, so

p » »
STHAN (AU UAC) < S =Y =
=1 =1

=1

From this we get
A]‘\(Alu...UAjfl):Aj, j=1...m

and it follows that {1,...,r} is not only the union, but in fact the disjoint union of
the (nonempty) sets Aq,..., Ap.

We can prove even more. Take j in A;, where [ is one of the integers 1,...,p.
Then \;j #0. For t =1,...,p, t # I, we have that A; N Ay = 0, therefore A, ; = 0.
But A1 j +...+ Xy ; =1, and it ensues that A; ; = 1. Thus, the nonzero entries of A
are all equal to 1. Also each column of A contains precisely one nonzero entry, which
is equal to 1.

For B as in Subsection 4.3, we have B = AU with U as in Lemma 4.2. Also, the

matrices By, ..., B, are given by (4.6), so in the present situation
Bk = Z)\k]Bul ul = Z Bul ul
JEAK
with {1, ..., being the consecutive positions of the nonzero columns in the matrix B.

As {1,...,7} is the disjoint union of the sets Aq,...,A,, we have, using (4.5),

zp:B ZZBulul —BZulul = B.
k=1

k=1j€A;

Further, By, ..., B, belong to C™*"[Z] and have rank rq, ..., 7,, respectively. As B
is in lean form, its nonzero columns Buy,, ..., Bu;, are linearly independent vectors

r

in C™. It immediately follows that B, ..., B, are linearly independent and that Im B
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is the direct sum of Im By,...,Im B,. The conclusion that Ker A is the interlaced
intersection of Ker A;,...,Ker A, can be reached by a straightforward expansion of
the reasoning contained in the all but last paragraph of Subsection 4.3.

For k = 1,...,p, define Ay = ByU~!. Then A = BU™! = A; + ...+ A,, and
this is a decomposition of A involving linearly independent terms Ai,..., A, from
C™*"[Z] having rank 71,...,rp, respectively. Thus, statement (1) in the theorem
that we are proving is correct. Claim (2) holds as well. This is immediate from the
validity of the corresponding assertions for the decomposition B = By + ...+ B,,.
The minimality of the decomposition A = A; + ... + A, stems directly from the
assumption rank A =1 + ...+ 1. O

Just as this was the case for The