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Abstract. Suppose that f is a primitive Hecke eigenform or a Mass cusp form for Γ0(N)
with normalized eigenvalues λf (n) and let X > 1 be a real number. We consider the sum

Sk(X) :=
∑

n<X

∑

n=n1,n2,...,nk

λf (n1)λf (n2) . . . λf (nk)

and show that Sk(X)≪f,ε X1−3/(2(k+3))+ε for every k > 1 and ε > 0. The same problem
was considered for the case N = 1, that is for the full modular group in Lü (2012) and
Kanemitsu et al. (2002). We consider the problem in a more general setting and obtain
bounds which are better than those obtained by the classical result of Landau (1915) for
k > 5. Since the result is valid for arbitrary level, we obtain, as a corollary, estimates on
sums of the form Sk(X), where the sum involves restricted coefficients of some suitable half
integral weight modular forms.

Keywords: generalized divisor problem; cusp form of higher level

MSC 2020 : 11N37, 11F30

1. Introduction

The main theorem of this paper concerns the convoluted sums of Fourier coeffi-

cients of holomorphic modular forms as well as Maass forms. Since the proof follows

through almost verbatim for the case of Maass forms, we shall focus only on holo-

morphic forms.

Let f be a primitive Hecke eigen cusp form of weight l for Γ0(N) and let

(1) f(z) =

∞
∑

n=1

λf (n)n
(l−1)/2e(nz)
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be the Fourier expansion of f at infinity. For the rest of the paper we assume

that λf (n)s are normalized. For every k ∈ N and X > 1 we study sums of the form

Sk(X) :=
∑

n<X

λk,f (n),

where

λk,f (n) =
∑

n=n1,n2,...,nk

λf (n1)λf (n2) . . . λf (nk).

Sums of a much general type are considered in [11] for the case when f is a new

form of full level. In the notation of [11], Sk(X) corresponds to Sk(X, 1). The novelty

of our work is that we are introducing the generalized divisor problem for the case of

new forms of higher level, which to the best of the author’s knowledge has not been

considered before except for the case when k = 1. The case of larger k was studied

only for the case of modular forms of the full group, notably by Fomenko and others

(see [3] for example). Latest results (for N = 1) include the following result of Lü,

see [8],

(2) Sk(X) ≪

{

X3/5+ε, k = 3,

X1−3/(2k)+ε, k > 4.

Associated to f is the L function defined as the series

(3) L(s, f) =

∞
∑

n=1

λf (n)

ns
.

It is known that L(s, f) satisfies very nice properties including having an Euler

product into local factors. From the work of Deligne, we know that |λf (n)| ≪ nε for

every positive ε. Therefore L(s, f) converges absolutely for R(s) > 1. Furthermore,

it is known that L(s, f) admits an analytic continuation to the whole complex plane

and satisfies a functional equation. The strip 0 < R(s) < 1 is known as the critical

strip for L(s, f).

Our proof follows from the Weyl type subconvexity bound for L(f, s). Under-

standing the behaviour of L functions in the critical strip is an age old problem and

is a source of many conjectures and open problems. Of particular interest are the so

called t-aspect bounds. They are bounds of the form

|L(12 + it, f)| ≪ |t|α

for some positive number α.
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Using the Phragmen-Lindelöf principle, it is possible to derive such bounds. They

are called convexity bounds. Bounds which improve upon the convexity bounds are

called subconvexity bounds.

When f is a holomorphic cusp form of full level, the convexity bound on |L(s, f)|

was broken by Good, see [4]. It is a long standing record and is yet to be improved

upon1. For the case of a primitive holomorphic new form of higher level, similar

bounds have been obtained recently by Booker et al. (see [2]) when f ∈ Sk(Γ1(N))

and by Aggarwal (see [1]) for holomorphic modular forms as well as Maass forms of

higher level. In particular we have the following theorem, see Theorem 1.3 of [1].

Theorem 1 (Aggarwal). Let f be a holomorphic or Hecke-Maass cusp form

for Γ0(N). Then for every ε > 0, we have

L(12 + it, f) ≪f,ε |t|
1/3+ε.

Using this subconvexity bound we prove the following theorem.

Theorem 2. Let f be a holomorphic modular form or a Maass cusp form

for Γ0(N) and Sk(X) be as above. Then for every ε > 0 we have

Sk(X) ≪f,ε X
1−3/(2(k+3))+ε.

2. Main results

2.1. Preliminaries. We recall a few basic facts that will be used in the rest of

the paper.

We start with the following equality, valid whenever R(s) > 1,

(4) L(s, f)k =

∞
∑

n=1

λk,f (n)

ns
.

Our second ingredient in the proof of Theorem 2 is Perron’s formula, see Propo-

sition 5.54 of [5]. Therefore from equation (4) and Perron’s formula we have

(5) Sk(X) =
1

2πi

∫ 1+ε+iT

1+ε−iT

L(s, f)k
Xs

s
ds+O

(X1+ε

T

)

.

For the remainder of the article, let ε denote an arbitrary small positive number

which may be different at each occurrence.

1Recently Munshi has announced an improvement on Good’s subconvexity bound, see [9].

261



2.2. Proof of Theorem 2. Let ε > 0 and X > 1. Let 1 < T < X be a positive

quantity which will be optimally chosen later. We remark here that all the implied

constants are dependent on f, ε which are hence omitted from the notation for the

sake of brevity. We start with equation (5) and shift the line of integration to

R(s) = 1
2 + ε. Since L(s, f) is entire, it has no poles, and therefore no residues.

Therefore from the Cauchy residue theorem we have

(6) Sk(X)

=
1

2πi

{
∫ 1/2+ε+iT

1/2+ε−iT

+

∫ 1+ε−iT

1/2+ε−iT

+

∫ 1/2+ε+iT

1+ε+iT

}

L(s, f)k
Xs

s
ds+O

(X1+ε

T

)

.

Suppose we call the integrals in equation (6) as J1, J2, J3, respectively. Then

for J1 we have

|J1| 6

∫ 1/2+ε+iT

1/2+ε−iT

∣

∣

∣
L(s, f)k

Xs

s

∣

∣

∣
ds ≪ X1/2+ε +X1/2+ε

∫ T

1

∣

∣

∣
L
(1

2
+ ε+ it, f

)
∣

∣

∣

k

t−1 dt.

From Theorem 1 we have

(7) |J1| ≪ X1/2+ε +X1/2+ε

∫ T

1

tk/3−1 dt ≪ X1/2+ε +X1/2+εT k/3.

For the horizontal segments we proceed similarly. From the Phragmen-Lindelöf

principle, we have

|J2|+ |J3| ≪

∫ 1+ε

1/2+ε

XσT 2k(1−σ)/3−1 dσ,

where σ = R(s). Therefore we have

(8) |J2|+|J3| ≪ T 2k/3−1

∫ 1+ε

1/2+ε

XσT−2kσ/3 dσ ≪ T 2k/3−1 max
1/2+ε6σ61+ε

XσT−2kσ/3.

The maximum in equation (8) will occur either at σ = 1
2 + ε or σ = 1 + ε,

respectively, when T 2k/3 > X and T 2k/3 < X . From equation (7), however, it is

clear that the better bound for Sk(X) is obtained when we assume the latter case,

that is T 2k/3 < X . Therefore we have

(9) |J2|+ |J3| ≪ T 2k/3−1X1+εT−2k/3 = X1+εT−1.

Then, if we suppose T = Xα we see from equations (6), (7) and (9) that the

optimal choice for α is α = 3/(2(k + 3)). Therefore we have that

(10) Sk(X) ≪f,ε X
1−3/(2(k+3))+ε

thus completing the proof. �
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3. Concluding remarks

Remark 1. We remark here that for k > 5, equation (10) provides a sharper

bound than the one obtained by employing the classical result of Landau which gives

the exponent as 1 − 2/(2k + 1) + ε, but is weaker than the estimates of Lü for the

case of modular forms of full level, see equation (2).

Remark 2. We also remark here that, since Theorem 2 holds for an arbitrary

level, using the Shimura lift (or the Shimura correspondence), it is possible to obtain

an estimate for sums of the type Sk(X) with the coefficients being the non-square

free Hecke eigenvalues of certain suitably chosen half integral weight modular forms,

see [10] for more details. The previous results did not supply this corollary as they

were not applicable for integral weight modular forms of higher level.
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