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Abstract. Let N be a normal subgroup of a group G. The structure of N is given when
the G-conjugacy class sizes of N is a set of a special kind. In fact, we give the structure
of a normal subgroup N under the assumption that the set of G-conjugacy class sizes of N

is (p(f:l’ll PPN 1) XX (p%’f,...,p:f{l,l), where r > 1, n; > 1 and p;; are distinct

primes for i € {1,2,...,r}, 5 € {1,2,...,n;}.
Keywords: index; conjugacy class size; Baer group

MSC 2020: 20E45, 20D60

1. INTRODUCTION

All groups considered in this paper are finite. Let G be a group and x an element
in G. We denote by ¢ the conjugacy class of G’ containing z, that is, 2% = {g~lxg:
g € G}. Then the size of 2% is |G : Cg(w)|, which is sometimes called the index
of x in G. Let cs(G) = {|z%|: = € G}. Suppose that cs(G) = {n1,n2,...,n.},
where ni,ns,...,n, are different numbers with ny > ny > ... > n, = 1. In 1953,
Ito in [9] called the vector (nq,na,...,n,) the conjugate type vector of G, and the
group G is said to be a group with type (n1,n2,...,n,) if G has conjugate type
vector (ni,ne,...,n,). In the same paper, Itd6 proved that a group G is nilpotent
if G has type (n1,1). Since then, the relationship between the conjugate type of
a group G and the property of G attracts interest of many authors. Camina in [§]
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gave the structure of a group G under the assumption that the conjugate type vector
of G is the product of several conjugate type vectors, see [4], [5] for more examples.

Let N be a normal subgroup of a group G and write csg(N) = {|z%|: 2 € N}.
Since N is a union of some G-conjugacy classes contained in N, the set csg(N) has
a strong influence on the structure of N, and many interesting results are obtained,
for instance, see [1], [11].

Suppose that csg(N) = {ni,ng,...,n,}, where ny,ng,...,n, are different num-
bers with n; > n2 > ... > n, = 1. In this paper, we call the vector (ny,n2,...,n,)
the G-conjugate type vector of N. It is obvious that csg(N) = {mi1,ma,...,m;}
and for each m; there exists n; such that m; is a divisor of n;. Furthermore, if
w = (a1,02,...,as) and v = (by,ba,...,b;), we define w x v = {a;b;: i =1,2,...,s,
j=1,2,...,th

Motivated by the results in [8], in this short paper, we consider the structure of
a normal subgroup NV of G under the assumption that the G-conjugate type vector
of N is of a particular type, and the following theorem is obtained:

Theorem 3.1. Let G be a group and N a normal subgroup of G. Suppose that
G-conjugate type vector of N is

Alng Arn,.

(D1t DI 1) X X (Drn s DR 1),

wherer > 1, n; > 1 and p;; are distinct primes fori € {1,2,...,r}, j € {1,2,...,n;}.
Then n; = 2 and N = A; X ... X A,, and the G-conjugate type vector of A; is
(psa?,piit, 1) for eachi € {1,...,r}.
Furthermore, one of the following holds for A; (up to multiplication by central
Sylow subgroups):
(1) A; is abelian;
(2) A; is a non-abelian p;1 or p;a-group;

(3) A; is a non-nilpotent {p;1, pia }-group with abelian Sylow subgroups.

Recall that a group G is called a p-Baer group if every p-element in G has prime
power index in G, and G is called a Baer group if every element of the group with
prime power order has prime power index in GG. The structure of p-Baer groups and
Baer groups are characterized in [2]. If S is a nonempty subset of G, following [4], we
set Kg = {z € G: S = S}. Then |Kg| divides |S|. Other notation and terminology
are standard, see [10] for instance.
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2. PRELIMINARIES

In this section, we give some lemmas which are useful in the proofs of our main
results.

The following lemma is a famous result as Thompson’s Lemma, and the proof can
be found in many books of group theory, see Theorem 8.2.8 of [10] for example.

Lemma 2.1. Let P x ) be the direct product of a p-group P and a p’-group Q
and suppose that P x @ acts on a p-group G. If Cq(P) C Cq(Q), then Q acts
trivially on G.

Lemma 2.2 (Wielandt). Let G be a group and x an element of G. If both |z|
and |z¥| are powers of a prime p, then x € O,(G).

Lemma 2.3. Let G be a group and N a normal subgroup of G. Suppose that p®
is the highest power of the prime p which divides the G-conjugacy class sizes of
elements in N. If there is a p-element x in N such that |t©| = p®, then N has

a normal p-complement.

Proof. Since = is a p-element and |29 = p?, we have that (%) < O,(G)
by Lemma 2.2. Therefore, (z¢) < O,(G) N N < O,(N). Write H = (z%) and
Z = Cg(H)N'N = Cn(H). For every p'-element y € Cn(z), the hypothesis of
this lemma implies that (p,|Cq(z) : Ca(zy)|) = 1. Since N is normal in G, we
conclude that (p, |Cn(x) : Cn(zy)|) = 1. That is, (p, |Cn(z) : Cy(x) NCn(y)|) = 1.
Therefore, H N Cy(xz) < HNCyn(y), that is, Cy(z) < Cy(y). Now by Lemma 2.1,
we have that y € Cy(H) = Z.

Since |zVV| divides |z¥|, we have that |zV| is a power of p. From the above
paragraph, we see that Z contains all the p’-elements in Cy(x), and thus |N : Z|
is a power of p. Now let w be an arbitrary p’-element in Z. By the previous
argument, p does not divide |Cn(z) : Cn(w) N Cn(z)|. As Z is a normal subgroup
of Cn(x), we have that p does not divide |Z : Cz(w)|. Therefore, every p’-element
in Z has index in Z prime to p, so by [6], Lemma 1, we have that Z = K x P,
where K is a p-complement of Z and P is a Sylow p-subgroup of Z. Therefore, K is

a normal p-complement of N since |N : Z| is a power of p. O

Lemma 2.4. Let G be a group and N a normal subgroup of G such that p® is the
highest power of the prime p which divides the G-conjugacy class size of an element
in N. Assume that there exists a p-element z in N such that |z¢| = p®. If m is
a G-conjugacy class size in N such that (m,p) = 1, then there exists a p’-element
G| —

in N, say y, such that |(xy) pim.
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Proof. By Lemma 2.3, we see that N has a normal p-complement K. As |27
divides |29|, |#V| is a power of p, and thus K < Cy(z). Let u be a p’-element
in Cy(z). Then p does not divide |Cg(x) : Cg(ux)|. Since N is normal in G, we
have that p does not divide |Cn(x) : Cn(uz)|. That is to say, p does not divide the
index of w in Cn(z). Therefore, by [6], Lemma 1, Cny(x) = P, x K with P, a Sylow
p-subgroup of Cy(z) and K a normal p-complement of C(z). Let y be an element
in N such that |[y“| = m. Then p does not divide |y”| since |y”| divides |y°|,
whence y centralizes a Sylow p-subgroup of N, and thus y centralizes O,(N). Since
z € Op(G) by Lemma 2.2, we have that x € Op(G) N N < Op(N). Therefore,
G| =

y centralizes x. We may assume that y € K, and thus |(zy) p®m, as required.

O

Lemma 2.5 ([7], Proposition 1). Let G be a group and p a prime. Suppose that
x € G such that || is a power of p. Then [z%,2%] C O,(Q).

Lemma 2.6. Let G be a group and p and r two primes. Suppose that there
is an r-element x € G such that |v%| is a power of p. If we set B = 2, then

(BB™') C 0,.,.(G).

Proof. First suppose that O,(G) = 1. Then by Lemma 2.5, [B,B] = 1. It
follows that (B) is an abelian normal subgroup of G, and thus (B) < F(G). As x
is an r-element, we have that (B) < O,(G). Since (BB~!) < (B), we have that
(BB < O0,.(G).

Now suppose that O,(G) # 1, we can set G = G/O,(G). Then O,(G) = 1.
Since |§:§| divides |z%|, we have that |§:a| is a power of p. By the above paragraph,
we have that (BB~1) < O,.(GQ). Therefore, (BB~1) C O, ,(G). O

Lemma 2.7. Let G be a group and N a normal subgroup of G. Suppose
that z,y € N such that |z%| = p® and |y“| = ¢*, where p and q are distinct primes
with p® < q°. If there is no element in N with G-conjugacy class size divisible by pq,
then z is a g-element (up to multiplication by central elements).

Proof. Write x = x122...xs such that each x; is an element of a prime power
order, z;x2; = x;jx; for all ¢ and j and (|z,|, |x;]) =1 for ¢ # j. Since x is not central
in G, we may assume that x; ¢ Z(G) and that z; is an r-element for a prime 7.

Write B = 2§, C = y© and D = CB. Since |B| divides |2%|, we have
that (|B|,|y®|) = 1. Therefore, similarly as in [3], Lemma 1(b), we see that D
is a G-conjugacy class contained in N and |D| divides |C||B|. In fact, since
(ly%1, |z¢|) = 1, we have that G = Cg(y)Cg(z1). For every y9z! € CB, we have
that gh=' € G = Cg(y)Cq(x1). Then there exist a € Cg(y) and b € Cg(x1) such
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that gh~! = a~'b. So ag = bh. Furthermore, y9z" = 392" = (yx1)% € (yz1)®.
Therefore, CB C (yx1)“. Conversely, it is obvious that (yx;)¢ C y“z§ = OB.
Therefore, CB = y%z{ = (yx1)% is a conjugacy class. Now it is clear that
|D| = |C]. So by the hypothesis of this lemma, |D| = |C|. Repeating the argument
we see that DB~! is a G-conjugacy class contained in N, and thus C = CBB~!
since C C CBB~!. Therefore, H = (BB~!) < K¢. Since |K.| divides |C|, we have
that |H| divides |C|, whence |H| is a power of ¢. According to Lemma 2.6, we have
that (BB™!) C O, (G), which forces r = q. Therefore, zox3. ..z is central in G
and by replacing z with ;1 we can assume that = is a g-element. (I

Lemma 2.8 ([11], Lemma 2.2). Let G be a group. A prime p does not divide any
conjugacy class size of G if and only if G has a central Sylow p-subgroup.

3. PROOF OF THE MAIN RESULT
In this section, we give the proof of the main result.

Theorem 3.1. Let G be a group and N a normal subgroup of G. Suppose that
the G-conjugate type vector of N is

(Pry s+ s I 1) XX (pra s P 1),
wherer > 1, n; > 1 and p;; are distinct primes fori € {1,2,...,r}, j € {1,2,...,n;}.
Then n; = 2 and N = Ay X ... X A,, and the G-conjugate type vector of A; is
(pia?,piit, 1) for eachi € {1,...,7}.
Furthermore, one of the following holds for A; (up to multiplication by central
Sylow subgroups):
(1) A; is abelian;
(2) A; is a non-abelian p;1 or p;a-group;
(3) A; is a non-nilpotent {p;1, pia }-group with abelian Sylow subgroups.
Proof. We first consider the case r = 2. Let x,7; € N such that [2¥| = piit and

a

|yzG | =i
ny = 2 and z is a py-element. For every pl,-element y € Cy(z), the hypothesis
implies that pi12 does not divide |Cn(x) : Cn(zy)|, whence Cn(x) = P, x L by [6],
Lemma 1, where P, is a Sylow pjs-subgroup of N. Therefore, p12 does not divide

1 for 2 < i < s. Then by Lemma 2.7, x is a pis-element for each 7. Thus,

the index of any pyj-element in N for j = 1,...,¢. Similarly, we have ny = 2, and
if 2 is an element in N such that [2¥| = p33!, then z is a pao-element. Furthermore,
we have that Cy(z) = Q2 x K, where @2 is a Sylow pag-subgroup of N, and pag does
not divide the index of any pi;-element in N for ¢ = 1, 2.
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G|: a2

P12
graph we see that w is neither a po1-element nor a pao-element. If w is a pio-element,
we may assume that w € P,. It follows that L < Cg(w). Then pis* = [w®| di-
vides |G : L| = |G : Cg(2)||Cq(x) : Cn(x)||Cn(z) : K|, which is a contradiction.
Therefore, w must be a pij-element. Let v be an arbitrary p};-element in Cn(w).

Now assume that w is an element in N such that |w By the above para-

Since p11p12 does not divide any G-conjugacy class size of element in IV, p1; does not
divide |Cg(w) : Ce(wv)| and thus, p11 does not divide |Cn(w) : Cn(wv)| since N is
normal in G. Therefore, Cn(w) = Py x M, where P; is a Sylow pi1-subgroup of N.
Recall that |N : Cy(w)] is a p1a-number. If w is a po1- or pag-element in N, then u
is contained in a conjugation of M and thus, p1; does not divide |uN |. Combining
this with the above paragraph, we see that |uV| is a power of pa; or pas. Similarly,
if b is a p11- or pio-element in N, then |hYV| is a power of p11 or pia.

In the following, we suppose that » > 2. Let x be an element of N such that

a1l

|z¥| = p{i*. Then as in the first paragraph of the proof we have that n; = 2 and
that = is a pia-element. For every p),-element y € Cy(x) we have that

[Ca(x) : Ca(r) NCa(y)| = |Ca(x) : Calzy)|

is prime to p12. Since Cy(z) < Cg(z), we have that |[y“¥®)| is a p|,-number.
Therefore, we have that Cy(x) = Pia X K, where Pj5 is a Sylow pjs-subgroup of N.
It is easy to see that N is a pio-Baer group. Furthermore, all {pi1,p12}’-elements
have index coprime to p12. On the other hand, it follows from Lemma 2.4 that all
piz-elements have index p{i' or are central. So an element of index p{3?> must be
a p11-element, we can assume that w is such an element. Then by arguing similarly as
for the element x, we have that N is a p11-Baer group. Thus, by [7], Theorem A, we
see that P Ppo is a normal subgroup of N. Notice that every element of order prime
to p11 and p12 have index prime to p1; and pio. Therefore, Pi; Pis is centralized by
all {p11,p12}'-elements of N. If we set A1 = Pi1 Pi2, then A; satisfies the theorem.
Similarly, we can find all A; for 2 <i < r.

Let ¢ € {1,...,r}. Suppose that A, is not abelian. For every element z €
A;\ Z(A;), since A; is normal in G, we have that |z4i Gl.
{p%2,p%i*, 1}, we have that |z
Lemma 2.8, the {pi1,pio}-complement of A; is central in A;. Up to multiplica-

Since csg(4;) =

divides |z

is a power of p;; or p;s. Then according to

tion by central Sylow subgroups, we can assume that A; is a {p;1, pi2 }-group. Recall
for any = € A;. If A; is nilpotent, then A; is a p;;

that p;1pi2 does not divide |z
or a p;o-group. If A; is not nilpotent, since A; is a Baer group, we have that every
Sylow subgroup of A; is abelian by Theorem of [2]. O
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