
Czechoslovak Mathematical Journal, 72 (147) (2022), 1–38

A CHARACTERIZATION OF SETS IN R2

WITH DC DISTANCE FUNCTION

Dušan Pokorný, Luděk Zajíček, Prague

Received June 4, 2020. Published online July 15, 2021.

Abstract. We give a complete characterization of closed sets F ⊂ R
2 whose distance

function dF := dist(·, F ) is DC (i.e., is the difference of two convex functions on R
2). Using

this characterization, a number of properties of such sets is proved.
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1. Introduction

The present article is a continuation of the article [10] which studies closed sets

F ⊂ Rd, whose distance function dF := dist(·, F ) is DC (i.e., is the difference of two
convex functions on Rd). So we first briefly recall the motivation for our study and

mention some results of [10].

It is well-known (see, e.g., [1], page 976) that, for a closed F ⊂ Rd, the func-

tion (dF )
2 is always DC but dF need not be DC. The main motivation for the

paper [10] was the question whether dF is a DC function if F ⊂ Rd is a graph of

a DC function g : Rd−1 → R. This question naturally arises in the theory of WDC

sets (see [6], Question 2, page 829 and [5], Section 10.4.3). Let us note that WDC

sets form a substantial generalization of Federer’s sets with positive reach and still

admit the definition of curvature measures (see [5] or [8]) and F as in the above

question is a natural example of a WDC set in Rd. The main result of [10] gives

the affirmative answer to the above question in the case d = 2, but the case d > 2

remains open.

Following [10], we will use the following notation.
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Definition 1.1. For d ∈ N, we set

Dd := {∅} ∪ {∅ 6= A ⊂ R
d : A is closed and dA is DC}.

The elements of Dd will be called Dd sets.

Using this notation, the main result of [10] asserts that

(1.1) graph g ∈ D2, whenever g : R → R is DC.

If A ⊂ Rd is a set with positive reach, then (see [10], Proposition 4.2) A ∈ Dd and

also ∂A ∈ Dd and Rd \A ∈ Dd. It implies (see [10], Corollary 4.5) that graph g ∈ D2

whenever g : Rd−1 → R is a semiconcave function.

It is not known whether each WDC set A ⊂ Rd belongs to Dd, but the statement

is true for d = 2 by [11], Theorem 3.3.

Several results concerning general properties of classes Dd were obtained in [10],

Section 4; we recall them in Subsection 2.3 below.

In the present article, we use the results of [10] to give complete characterizations

of D2 sets. These characterizations are based on the notion of (s)-sets (“special

D2-sets”), which have a formally simple definition (see Definition 3.1) but their

structure can be rather complicated. The proofs of these characterizations are quite

long and technical; they are contained in Sections 3 and 4.

Section 5 contains applications of our characterizations. For example, we prove

(see Proposition 5.5) that each nowhere dense D2 set is a countable union of DC

graphs (defined in Definition 2.14). Further, the system of all components of each D2

set is discrete (see Theorem 4.20) and each component is pathwise connected and

locally connected (see Proposition 5.7). An important application is Theorem 5.12;

its particular case asserts that if F : R2 → R2 is a bilipschitz bijection which is C2

smooth (or, more generally, DC), then F (M) ∈ D2 for each M ∈ D2. It is an open

question whether Dd has this stability property for d > 2.

2. Preliminaries

2.1. Basic notation. We denote by B(x, r) (U(x, r)) the closed (open) ball with

centre x and radius r. The boundary and the interior of a setM are denoted by ∂M

and intM , respectively. A mapping is calledK-Lipschitz if it is Lipschitz with a (not

necessarily minimal) constant K > 0. In any vector space V , we use the symbol 0

for the zero element and spanM for the linear span of a set M .

In the Euclidean space Rd, the origin is denoted by 0, the norm by |·| and the
scalar product by 〈·, ·〉. By Sd−1 we denote the unit sphere in Rd. Tan(A, a) denotes
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the tangent cone of A ⊂ Rd at a ∈ Rd (u ∈ Tan(A, a) if and only if u = lim
i→∞

ri(ai−a)
for some ri > 0 and ai ∈ A, ai → a).

If x, y ∈ Rd, the symbol x, y denotes the closed segment (possibly degenerate). If

also x 6= y, then l(x, y) denotes the line joining x and y.

For B ⊂ R2 and t ∈ R, we set B[t] := {y ∈ R : (t, y) ∈ B}. We also define
π1 : R2 → R by π1(x, y) = x.

The distance function from a set ∅ 6= A ⊂ Rd is dA := dist(·, A) and the metric
projection of z ∈ Rd to A is ΠA(z) := {a ∈ A : dist(z, A) = |z − a|}.
A system A of subsets of Rd is called discrete, if each z ∈ R2 has a neighbourhood

which intersects at most one A ∈ A. A set D ⊂ Rd is called discrete, if {{d} : d ∈ D}
is discrete.

By a rotation in R2 we always understand a rotation around the origin.

For f : Rd → Rk and x, v ∈ Rd, the one-sided directional derivative of f at x in

direction v is

f ′
+(x, v) := lim

t→0+

f(x+ tv)− f(x)

t
.

2.2. DC functions. Let f be a real function defined on an open convex set

C ⊂ Rd. Then we say that f is a DC function, if it is the difference of two con-

vex functions. We say that F = (F1, . . . , Fk) : C → Rk is a DC mapping if all

components Fi of F are DC functions.

Semiconvex and semiconcave functions are special DC functions. Namely, f is

a semiconvex (or, semiconcave) function, if there exist a > 0 and a convex function g

on C such that

f(x) = g(x)− a|x|2 (or, f(x) = a|x|2 − g(x)), x ∈ C.

We will use the following well-known properties of DC functions and mappings.

Lemma 2.1. Let C be an open convex subset of Rd. Then the following assertions

hold.

(i) If f : C → R and g : C → R are DC, then (for each a ∈ R, b ∈ R) the

functions |f |, af + bg, max(f, g) and min(f, g) are DC.

(ii) Each locally DC mapping f : C → Rk is DC.

(iii) Each DC function f : C → R is Lipschitz on each compact convex set Z ⊂ C.

(iv) Let G ⊂ Rd and H ⊂ Rk be open sets. Let f : G → Rk and g : H → Rp be

locally DC, and let f(G) ⊂ H . Then g ◦ f is locally DC on G.
(v) Let G,H ⊂ Rd be open sets, and let f : G → H be a locally bilipschitz and

locally DC bijection. Then f−1 is locally DC on H .
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(vi) Let fi : C → R, i = 1, . . . , k, be DC functions. Let f : C → R be a continuous

function such that f(x) ∈ {f1(x), . . . , fk(x)} for each x ∈ C. Then f is DC

on C.

(vii) Each C2 function f : C → R is DC.

P r o o f. Property (i) follows easily from definitions, see, e.g., [15], page 84. Prop-

erty (ii) was proved in [7]. Property (iii) easily follows from the local Lipschitz

continuity of convex functions. Assertion (iv) is “Hartman’s superposition theorem”

from [7]; for the proof see also [15] or [16], Theorem 4.2. Statement (v) follows

from [16], Theorem 5.2. Assertion (vi) is a special case of [16], Lemma 4.8 (“Mixing

lemma”). Property (vii) follows, e.g., from [16], Proposition 1.11 and (ii). �

The following easy result (see [9], Lemma 2.3) is well-known.

Lemma 2.2. Let F : (a, b) → Rd be a DC mapping and x ∈ (a, b). Then the

one-sided derivatives F ′
±(x) exist. Moreover,

(2.1) lim
t→x+

F ′
±(t) = F ′

+(x) and lim
t→x−

F ′
±(t) = F ′

−(x),

which implies that F ′
+(a) is the strict right derivative of F at x, i.e.,

(2.2) lim
(y,z)→(x,x)

y 6=z, y>x, z>x

F (z)− F (y)

z − y
= F ′

+(x).

The notion of DC mappings between Euclidean spaces was generalized in [16] to

the notion of DC mappings between Banach spaces using the notion of a “control

function”. We will use this notion only for real functions defined on open intervals

I ⊂ R. In this context we have (cf. [16], Definition 1.1) that a convex function

ϕ : I → R is a control function for a function f : I → R if and only if both ϕ + f

and ϕ− f are convex functions.

It is an easy fact (cf. [16], Lemma 1.6 (b)) that f : I → R is DC if and only if

it has a control function. We will use the following immediate consequence of [16],

Proposition 1.13.

Lemma 2.3. If ϕ is a control function for f on an open interval I, then

∣∣∣f(z + k)− f(z)

k
− f(z)− f(z − h)

h

∣∣∣ 6 ϕ(z + k)− ϕ(z)

k
− ϕ(z)− ϕ(z − h)

h
,

whenever k > 0, h > 0, z ∈ I, z + k ∈ I and z − h ∈ I.
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For the origin of the following definition, see [12], page 28.

Definition 2.4. Let f be a function on [a, b]. For every partition D = {a =

x0 < x1 < . . . < xn = b} of [a, b], we put

K(f,D) :=

n−1∑

i=1

∣∣∣f(xi+1)− f(xi)

xi+1 − xi
− f(xi)− f(xi−1)

xi − xi−1

∣∣∣.

If n = 1, we put K(f,D) := 0. Then the convexity of f on [a, b] is defined as

Kb
af := supK(f,D),

where the supremum is taken over all partitions D of [a, b]. If Kb
af < ∞, we say

that f has bounded (or finite) convexity.

The following fact is a consequence of [17], Theorem 3.1 (b).

Lemma 2.5. If f is a DC function on (a, b) with a control function ϕ and a < c <

d < b, then Kd
c f 6 ϕ′

−(d)− ϕ′
+(c).

Following [9], page 1617, we use the following terminology.

Definition 2.6. We will say that a function defined on a set ∅ 6= D ⊂ R is

a DCR function, if it is a restriction of a DC function defined on R.

The following facts are well-known.

Lemma 2.7. Let f be a continuous real function on [a, b]. Then the following

conditions are equivalent:

(i) f is a DCR function.

(ii) f is the difference of two Lipschitz convex functions.

(iii) f has bounded convexity.

(iv) f ′
−(x) exists for each x ∈ (a, b) and V (f ′

−, (a, b)) <∞.
(v) f is a restriction of a DC function defined on some (u, v) ⊃ [a, b].

Here V (f ′
−, (a, b)) means the variation of f

′
− over (a, b) in the usual sense; see,

e.g., [17], page 322.

P r o o f. The implication (i)⇒ (ii) follows by Lemma 2.1 (iii), and (ii)⇒ (i) holds
since each convex Lipschitz function on [a, b] can be extended to a convex function

on R. The equivalence (ii) ⇔ (iii) easily follows from [12], Theorem D, page 26 and
(iii) ⇔ (iv) is a particular case of [17], Proposition 3.4, page 382. The implication

(i) ⇒ (v) is trivial and (v) ⇒ (iii) follows from Lemma 2.5. �
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We will need the following facts concerning DCR functions. They immedi-

ately follow from [17], Proposition 4.2 (or can be rather easily obtained using

Lemma 2.1 (iv), (v)).

Lemma 2.8. Let ϕ : [a, b] → [c, d] be a DCR increasing bilipschitz bijection and

let ω : [c, d] → R be a DCR function. Then

(i) the function ω ◦ ϕ is DCR on [a, b] and

(ii) the function ϕ−1 is DCR on [c, d].

We will need also the following “DCR mixing lemma”.

Lemma 2.9. Let I ⊂ R be a closed interval and let f : I → R be a continu-

ous function. Let fi : I → R, i = 1, . . . , k, be DCR functions such that f(x) ∈
{f1(x), . . . , fk(x)} for each x ∈ I. Then f is DCR.

P r o o f. Let f̃ : R → R be a continuous extension of f which is locally con-

stant on R \ I and let f̃i : R → R, i = 1, . . . , k, be a DC extension of fi. Then

there are two constant (and so DC) functions f̃k+1, f̃k+2 on R such that f̃(x) ∈
{f̃1(x), . . . , f̃k+2(x)}, x ∈ R. Consequently, f̃ is DC by Lemma 2.1 (vi), and so f

is DCR. �

The following lemma is a version of the “mixing lemma” [16], Lemma 4.8

(cf. Lemma 2.1 (vi)), which we need. Note that [16], Lemma 4.8 works even with DC

mappings between Banach spaces, and Lemma 2.10 follows from its proof but not

from its formulation.

Lemma 2.10. Let Fi, i = 1, . . . , k, be DC functions on an open interval J ⊂ R.

Then there exists a convex function ϕ on J with the following property:

(P) If F is a continuous function on an open interval I ⊂ J and

F (x) ∈ {F1(x), . . . , Fk(x)}, x ∈ I,

then F is a DC function with the control function ϕ|I .

P r o o f. Let fi be a control function for Fi on J , i = 1, . . . , k. Set

ϕ :=

k∑

i,j=1

hi,j , where hi,j := fi + fj +
1

2
|Fi − Fj |.

The proof of Lemma 4.8 in [16], where ϕ is denoted by f , gives the assertion of

property (P) for I = J . Observing that fi|I is a control function for Fi|I , property (P)
follows. �
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We will need also the following easy “Lipschitz mixing lemma”.

Lemma 2.11. Let K > 0 and fi, i = 1, . . . , k, be K-Lipschitz functions on an

interval (of arbitrary type) I ⊂ R. Let f be a continuous function on I such that

f(x) ∈ {f1(x), . . . , fk(x)}, x ∈ I. Then f is K-Lipschitz on I.

P r o o f. We will proceed by induction on k. The case k = 1 is trivial. Suppose

that k > 1 and the lemma holds for “k = k − 1”. To prove that f is K-Lipschitz,

consider arbitrary points a, b ∈ I, a < b. Choose 1 6 i0 6 k such that f(a) = fi0(a)

and set c := max{a 6 x 6 b : f(x) = fi0(x)}.
If c = b, then |f(b)− f(a)| = |fi0(b)− fi0(a)| 6 K(b− a).

If c < b, the induction hypothesis (applied to f |(c,b]) implies that f is K-Lipschitz
on (c, b], and, consequently, also on [c, b]. Therefore,

|f(b)− f(a)| 6 |fi0(c)− fi0(a)|+ |f(b)− f(c)| 6 K(c− a) +K(b− c) = K(b− a).

�

By well-known properties of convex and concave functions, we easily obtain that

each locally DC function f on an open set U ⊂ Rd has all one-sided directional

derivatives finite and

(2.3) g′+(x, v) + g′+(x,−v) 6 0, x ∈ U, v ∈ R
d, if g is locally semiconcave on U.

Recall that if ∅ 6= A ⊂ Rd is closed, then dA need not be DC; however (see, e.g., [2],

Proposition 2.2.2),

(2.4) dA is locally semiconcave (and so locally DC) on R
d \A.

In [9] and [10] we worked with “DC hypersurfaces” in Rd. Since we work here

in R2 only, we use the following terminology.

Definition 2.12. We say that a set A ⊂ R2 is a 1-dimensional DC surface if

there exist v ∈ S1 and a Lipschitz DC function (i.e., the difference of two convex

functions) g on W := (span{v})⊥ such that A = {w + g(w)v : w ∈W}.
Remark 2.13. The notion of a 1-dimensional DC surface in R2 coincides with

the notion of a DC hypersurface in R2 from [9] (but not with the notion of a DC

hypersurface in R2 from [10], where the Lipschitz continuity of g is not required).

We also define, following [10], the notion of a DC graph in R2.

Definition 2.14. A set P ⊂ R2 will be called a DC graph if it is a rotated copy

of graph f of a DCR function f on some compact (possibly degenerated) interval

∅ 6= I ⊂ R.
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Note that P is a DC graph if and only if it is a nonempty connected compact

subset of a 1-dimensional DC surface in R2.

We will need the following simple result which is possibly new and can be of some

independent interest.

Proposition 2.15. Let g be a continuous function on [a, b] which is DC on (a, b)

and let P ⊂ [a, b] be a nowhere dense set. Then the set g(P ) is nowhere dense.

P r o o f. We can suppose that P is closed. Suppose, to the contrary, that (the

compact set) g(P ) is not nowhere dense and choose an open interval I ⊂ g(P ). Set

S := {x ∈ (a, b) : g′+(x) = 0 or g′−(x) = 0}.

Then g(S) is Lebesgue null; it follows, e.g., from [13], Theorem 4.5, page 271 (cf. [13],

page 272, a note before Theorem 4.7). So we can choose a point y0 ∈ I \ (g(S) ∪
{g(a), g(b)}). Then the set K := g−1({y0}) ⊂ (a, b) is finite. Indeed, otherwise

there exists a point x ∈ K which is an accumulation point of the compact set K.

Then clearly x ∈ S, which contadicts y0 /∈ g(S). Let K = {x1 < . . . < xp}.
Lemma 2.2 implies that there exists δ > 0 such that a < x1 − δ < x1 + δ <

x2 − δ < . . . < xp + δ < b and g is strictly monotone both on [xi − δ, xi] and on

[xi, xi+δ], i = 1, . . . , p. Consequently, Q := g
(
P∩

p⋃
i=1

(xi−δ, xi+δ)
)
is nowhere dense.

Since Z := g
(
[a, b]\

p⋃
i=1

(xi−δ, xi+δ)
)
is compact and does not contain y0, there exists

σ > 0 such that (y0−σ, y0+σ) ⊂ I ⊂ g(P ) and (y0−σ, y0+σ)∩Z = ∅. Consequently,
(y0 − σ, y0 + σ) is a subset of the nowhere dense set Q, which is a contradiction. �

2.3. Known results concerning Dd. In, [10], we proved several general results

concerning systems Dd. First recall that if M ⊂ R is closed, then

(2.5) M belongs to D1 if and only if the system of all components ofM
is locally finite.

It easily implies that D1 is closed with respect to both finite unions and finite inter-

sections and that a closed M ⊂ R belongs to D1 if and only if ∂M ∈ D1.

However, the case d > 1 is different. It is easy to show that

(2.6) Dd is closed with respect to finite unions,

but [10], Example 4.1 shows that already D2 is not closed with respect to finite

intersections. We observed that, for a closed set M ⊂ Rd, d ∈ N,

(2.7) ∂M ∈ Dd ⇔ (M ∈ Dd and Rd \M ∈ Dd),

but [10], Example 4.1 provides an example of a set M ∈ D2 with ∂M /∈ D2.
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Important [10], Proposition 4.7 asserts that if d > 2 and M ∈ Dd, then each

bounded set C ⊂ ∂M can be covered by finitely many “DC hypersurfaces”.

In our terminology, we have in R2 the following result which has basic importance

for the present article.

Proposition 2.16. LetM ∈ D2. Then each bounded set C ⊂ ∂M can be covered

by finitely many 1-dimensional DC surfaces.

Let us note that this result is not a particular case of [10], Proposition 4.7 (cf.

Remark 2.13), but the proof of [10], Proposition 4.7 is based on [9], Corollary 5.4, and

so [10], Proposition 4.7 holds also with the definition of DC hypersurfaces from [9]

(“with Lipschitz continuity”) and so Proposition 2.16 holds. (Moreover, it is easy to

show that “Proposition 2.16 without Lipschitz continuity” implies “Proposition 2.16

with Lipschitz continuity”.)

Proposition 2.16 easily implies that each nowhere dense M ∈ D2 can be covered

by a locally finite system of DC graphs. On the other hand, (1.1) easily implies

(see [10], Proposition 4.9) that

(2.8) if M ⊂ R
2 is the union of a locally finite system of DC graphs, then M ∈ D2.

However, we have found an example (see [10], Example 4.10) of a nowhere dense

set M ∈ D2 which is not the union of a locally finite system of DC graphs.

Let us note that we will prove in Proposition 5.5 that each nowhere denseM ∈ D2

is the union of a countable system of DC graphs.

We will also use the following easy facts which are not mentioned explicitly in [10].

Remark 2.17.

(i) If M is a D2 set and ϕ a similarity on R2, then ϕ(M) is a D2 set.

(ii) The system D2 is closed with respect to locally finite unions.

P r o o f. The first part follows by Lemma 2.1 (i), (ii), (iv) and (vii) from the fact

that dϕ(M) = rdM ◦ ϕ−1, where r > 0 is the scaling ratio of ϕ.

To prove the second part, consider a locally finite system M ⊂ D2 and de-

note M :=
⋃M. We can suppose that M 6= ∅. If z ∈ M , choose r > 0 and

M1, . . . ,Mk ∈ M such that U(z, r)∩M = U(z, r)∩
k⋃

i=1

Mi. Since M̃ :=
k⋃

i=1

Mi ∈ D2

by (2.6), and d
M̃

= dM on U(z, 12r), we have that dM is DC on U(z, 12r).

Consequently, using also (2.4), we obtain that dM is locally DC on R2, and so it

is DC by Lemma 2.1 (ii). �

9



3. Every (s)-set is a D2 set

In the next section, we will give a complete characterization of D2 sets using

“special D2 sets” called (s)-sets. Their definition is formally rather simple, but it

is not easy to prove that each (s)-set is a D2 set. In this section we will prove this

important fact using the method of the proof of (1.1) from [10] together with (1.1)

and several additional ideas.

Definition 3.1. Let ∅ 6= S ⊂ R2 be a closed set. We say that S is an (s)-set if

there exists r > 0 such that

(3.1) S ⊂
k⋃

i=1

graphfi for some DCR functions fi : [0, r] → R

with (fi)
′
+(0) = fi(0) = 0

and

(3.2) S =
⋃

h∈H

graphh for a family H of continuous functions on [0, r].

Remark 3.2. We will prove some nontrivial properties of (s)-sets in Section 5,

here note only that each (s)-set is clearly nowhere dense and path connected.

Remark 3.3. Let S be an (s)-set with corresponding r > 0, functions f1, . . . , fk

and system H as in Definition 3.1. Pick 0 < ̺ < r and put S̃ := S ∩ ([0, ̺] × R).

Then clearly S̃ is an (s)-set (with corresponding functions f̃i = fi|[0,̺], i = 1, . . . , k,

and system H̃ = {h|[0,̺] : h ∈ H}).

Remark 3.4. Let us note that (3.1) gives that each (s)-set is a subset of a finite

union of DC graphs. However, there are (s)-sets which do not equal to a finite union

of DC graphs, see Example 5.6 below.

One of our technical tools is the following easy fact (see [10], Lemma 3.2).

Lemma 3.5. Let V be a closed angle in R2 with vertex v and measure 0 < α < π.

Then there exist an affine function S on R2 and a concave function ψ on R2 which

is Lipschitz with constant
√
2 tan(α/2) such that |z − v|+ ψ(z) = S(z), z ∈ V .

We will also use the following “concave mixing lemma” ([10], Lemma 3.1).
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Lemma 3.6. Let U ⊂ Rd be an open convex set and let γ : U → R have finite

one-sided directional derivatives γ′+(x, v), (x ∈ U , v ∈ Rd). Suppose that

(3.3) γ′+(x, v) + γ′+(x,−v) 6 0, x ∈ U, v ∈ R
d,

and that

(3.4) graphγ is covered by graphs of a finite number of concave functions

defined on U.

Then γ is a concave function.

The core of the present section is the proof of the following lemma, which easily

implies that (s)-sets are D2 sets.

Lemma 3.7. Let f1, . . . , fk be DC functions on R such that each fi is constant

on both (−∞, 0] and [1,∞). Let ∅ 6= M ⊂ R2 be a closed set and H a system of

continuous functions on R such that

(3.5) M =
⋃

h∈H

graphh ⊂
k⋃

i=1

graphfi.

Then M ∈ D2.

P r o o f. First observe that each h ∈ H is constant on both (−∞, 0] and [1,∞)

by the continuity of h and (3.5).

We will proceed in two steps.

Step I : In the first step, we will prove that

(3.6) there exists a concave function Γ on R
2 such that the function dM + Γ

is locally concave on R
2 \M.

Observe that Lemma 2.1 (iii) implies that there exists K > 0 such that the func-

tions f1, . . . , fk are K-Lipschitz on [0, 1] and, consequently,

(3.7) each function h ∈ H is K-Lipschitz on [0, 1]

by (3.5) and Lemma 2.11.

If h ∈ H and n ∈ N, denote by hn the function on R for which hn(i/n) = h(i/n),

i = 0, . . . , n, which is affine on each interval [(i− 1)/n, i/n], i = 1, . . . , n, and which

is constant on both (−∞, 0] and [1,∞).
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For n ∈ N, set Hn := {hn : h ∈ H} and

(3.8) Mn :=
⋃

h∈Hn

graphh.

Using (3.5), we obtain that each Hn is finite, and consequently each Mn is closed.

Obviously Mn ∩ ((−∞, 0] × R) = M ∩ ((−∞, 0] × R) and Mn ∩ ([1,∞) × R) =

M∩([1,∞)×R), n ∈ N, and (3.7) easily implies thatMn∩([0, 1]×R) →M∩([0, 1]×R)

in the Hausdorff metric. Consequently, we easily obtain that

dMn
→ dM on R

2.

Now we will show that, to obtain (3.6), it is sufficient to find D > 0 and concave

functions Ψn, n ∈ N, such that

(3.9) Ψn is D-Lipschitz on R
2 for each n ∈ N

and

(3.10) dMn
+Ψn is locally concave on R

2 \Mn for each n ∈ N.

So suppose that such D and {Ψn}, n ∈ N, are given and consider an arbitrary

z ∈ R2\M . Then there exist r > 0 and n0 ∈ N such that, for n > n0, B(z, r)∩Mn = ∅
and, consequently, (3.10) easily implies that dMn

+Ψn is concave on B(z, r).

Further observe that we can suppose that Ψn(0) = 0, n ∈ N. Then (3.9) gives that

the sequence {Ψn} is equicontinuous and pointwise bounded, and we can use a well-
known version of the Arzelà-Ascoli theorem (see, e.g., [3], Theorem 4.44, page 137) to

obtain a subsequence {Ψnp
} converging to a D-Lipschitz concave function Γ on R2.

Then dMnp
+Ψnp

→ dM +Γ, consequently, dM +Γ is concave on B(z, r), and so (3.6)

holds.

To find {Ψn} and D, we first define a finite subset An of Mn by

An :=
{( i

n
, h

( i
n

))
: 0 6 i 6 n, h ∈ H

}
.

For each n ∈ N and a = (a1, a2) ∈ An, set

s+(n, a) := max{h′+(a1) : h ∈ Hn, h(a1) = a2},
s+(n, a) := min{h′+(a1) : h ∈ Hn, h(a1) = a2},
s−(n, a) := max{h′−(a1) : h ∈ Hn, h(a1) = a2},
s−(n, a) := min{h′−(a1) : h ∈ Hn, h(a1) = a2}.

12



Now we will prove that there is a constant C > 0 such that, for each n ∈ N,

(3.11)
∑

a∈An

|s+(n, a)− s−(n, a)| 6 C,
∑

a∈An

|s−(n, a)− s+(n, a)| 6 C.

To this end, consider a convex function ϕ which corresponds to J := R and Fi := fi,

i = 1, . . . , k, by Lemma 2.10. Choose L > 0 such that ϕ is L-Lipschitz on [−1, 2].

Further consider an arbitrary n ∈ N, 0 6 i 6 n and a = (a1, a2) ∈ An with a1 = i/n.

Now choose h̃ ∈ H and ĥ ∈ H such that

h̃(i/n) = ĥ(i/n) = a2, (h̃n)
′
+(i/n) = s+(n, a), (ĥn)

′
−(i/n) = s−(n, a).

Set g(x) := h̃(x) for x > i/n and g(x) := ĥ(x) for x < i/n. Then clearly

|s+(n, a)− s−(n, a)| =
∣∣∣g((i + 1)/n)− g(i/n)

1/n
− g(i/n)− g((i− 1)/n)

1/n

∣∣∣.

Since graph g ⊂
k⋃

i=1

graph fi, by its choice, ϕ is a control function for g and so

Lemma 2.3 and the above equality imply

(3.12) |s+(n, a)−s−(n, a)| 6
ϕ((i + 1)/n)− ϕ(i/n)

1/n
− ϕ(i/n)− ϕ((i− 1)/n)

1/n
6 2L.

Consequently,
∑

a∈An

|s+(n, a)− s−(n, a)|

6

n∑

i=0

∑

(a1,a2)∈An,
a1=i/n

(ϕ((i + 1)/n)− ϕ(i/n)

1/n
− ϕ(i/n)− ϕ((i − 1)/n)

1/n

)

6 k

n∑

i=0

(ϕ((i + 1)/n)− ϕ(i/n)

1/n
− ϕ(i/n)− ϕ((i − 1)/n)

1/n

)

= k
(ϕ((n+ 1)/n)− ϕ(1)

1/n
− ϕ(0)− ϕ(−1/n)

1/n

)
6 2Lk =: C.

The second inequality of (3.11) follows quite analogously.

For each n ∈ N and a = (a1, a2) ∈ An, set

p+(n, a) := (a1 + 1/n, a2 + s+(n, a)/n),

p+(n, a) := (a1 + 1/n, a2 + s+(n, a)/n),

p−(n, a) := (a1 − 1/n, a2 − s−(n, a)/n),

p−(n, a) := (a1 − 1/n, a2 − s−(n, a)/n),

A1
n := {a ∈ An : s

+(n, a)− s−(n, a) > 0},
A2

n := {a ∈ An : s
−(n, a)− s+(n, a) > 0}.
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Further set

V 1
n,a := {z ∈ R

2 : 〈z − a, p+(n, a)− a〉 6 0, 〈z − a, p−(n, a)− a〉 6 0} if a ∈ A1
n

and

V 2
n,a := {z ∈ R

2 : 〈z − a, p+(n, a)− a〉 6 0, 〈z − a, p−(n, a)− a〉 6 0} if a ∈ A2
n.

It is easy to see that each V 1
n,a (or, V

2
n,a) is a closed angle with vertex a and measure

α1(n, a) := arctan s+(n, a)− arctan s−(n, a) ∈ (0, π),

(or, α2(n, a) := arctan s−(n, a)− arctan s+(n, a) ∈ (0, π)).

For a ∈ A1
n (or, a ∈ A2

n) let ψ
1
n,a and S

1
n,a (or, ψ

2
n,a and S

2
n,a) be the concave

and affine functions on R2 which correspond to V 1
n,a (or, V

2
n,a) by Lemma 3.5. If

a ∈ An \ A1
n (or, a ∈ An \ A2

n), put ψ
1
n,a(z) := 0 and S1

n,a(z) := 0 (or, ψ2
n,a(z) := 0

and S2
n,a(z) := 0), z ∈ R2. Set

Ψn :=
∑

a∈An

(ψ1
n,a + ψ2

n,a).

Now fix an arbitrary a ∈ A1
n. Using (3.12) we easily obtain

α1(n, a) 6 s+(n, a)− s−(n, a) 6 2L.

Further, since the tangent function is convex on [0, 12π), the function ω(x) = tanx/x

is increasing on (0, 12π). These facts easily imply

√
2 tan

(α1(n, a)

2

)
6

√
2 · α

1(n, a)

2
· L

arctanL
6 (s+(n, a)− s−(n, a)) ·

L√
2 arctanL

.

So, by the choice of ψ1
n,a, we have that

(3.13) ψ1
n,a is Lipschitz with constant (s

+(n, a)− s−(n, a)) ·
L√

2 arctanL
.

Quite similarly we obtain that, for each a ∈ A2
n,

(3.14) ψ2
n,a is Lipschitz with constant (s

−(n, a)− s+(n, a)) ·
L√

2 arctanL
.

Consequently, (3.13), (3.14) and (3.11) easily imply that there is a constant D > 0

such that (3.9) holds.
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To prove (3.10), it is enough to prove that

(3.15) dgraphh +Ψn is locally concave on R
2 \ graphh for each n ∈ N and h ∈ Hn.

Indeed, by (3.8) it is easy to see that

dMn
+Ψn = min

h∈Hn

(dgraphh +Ψn)

and it is enough to use (on each open ball U ⊂ R2 \Mn) the fact that the minimum

of a finite system of concave functions is a concave function.

To prove (3.15), fix an arbitrary n ∈ N and h ∈ Hn.

For i = −1, . . . , n+ 1 denote zi := (i/n, h(i/n)) and

Vi := {z ∈ R
2 : 〈z − zi, zi+1 − zi〉 6 0, 〈z − zi, zi−1 − zi〉 6 0}.

Now, for a fixed i, denote a := zi. Then clearly a ∈ An and, if the points zi−1, zi,

zi+1 are not collinear, then

(3.16) either a ∈ A1
n and Vi ⊂ V 1

n,a, or a ∈ A2
n and Vi ⊂ V 2

n,a.

Indeed, observe that

s+(n, a) 6
h((i+ 1)/n)− h(i/n)

1/n
6 s+(n, a),

s−(n, a) 6
h(i/n)− h((i − 1)/n)

1/n
6 s−(n, a).

So, if
h((i + 1)/n)− h(i/n)

1/n
>
h(i/n)− h((i− 1)/n)

1/n
,

then a ∈ A1
n and an easy geometrical observation shows that Vi ⊂ V 1

n,a. Similarly, if

h((i + 1)/n)− h(i/n)

1/n
<
h(i/n)− h((i− 1)/n)

1/n
,

then a ∈ A2
n and Vi ⊂ V 2

n,a.

Denote l− := R × {h(0)}, l+ := R × {h(1)} and for n ∈ N and i = 0, . . . , n − 1

denote

ηi := dl(zi,zi+1) +Ψn

and

η−1 := dl− +Ψn, ηn := dl+ +Ψn.
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We will prove that γ := dgraphh + Ψn is locally concave on R2 \ graphh using

Lemma 3.6. So fix an arbitrary b ∈ R2 \ graphh and δ > 0 such that U := U(b, δ) ⊂
R2 \ graphh. Then condition (3.3) of Lemma 3.6 holds by (2.3) and (2.4). To prove
condition (3.4), consider an arbitrary z ∈ U and choose z∗ ∈ graphh such that

dgraphh(z) = |z − z∗|.
First note that if z∗ 6∈ {z0, . . . , zn} or z∗ = zi for some i ∈ {0, 1, . . . , n} and the

points zi−1, zi, zi+1 are collinear, then clearly

(3.17) γ(z) = dgraphh(z) + Ψn(z) ∈
⋃

i∈{−1,...,n}

{ηi(z)}.

Further assume that z∗ = zi for some i ∈ {0, . . . , n} and the points zi−1, zi, zi+1 are

not collinear. Then clearly z ∈ Vi and (3.16) holds. Consequently,

either |z − z∗|+ ψ1
n,zi(z) = S1

n,zi(z), or |z − z∗|+ ψ2
n,zi(z) = S2

n,zi(z),

and therefore

(3.18) γ(z) = dgraphh(z) + Ψn(z)

∈ {S1
n,zi(z) + (Ψn − ψ1

n,zi)(z), S
2
n,zi(z) + (Ψn − ψ2

n,zi)(z)}.

Since the graph of each function ηi, −1 6 i 6 n, can be clearly covered by the graphs

of two concave functions and the functions Ψn − ψ1
n,zi , Ψn − ψ2

n,zi (i = 0, . . . , n) are

concave, (3.17) and (3.18) imply (3.4) and so γ is concave on U and therefore (3.15)

holds, which completes the proof of (3.6).

Step II : In the second step, we first observe that by (1.1) there exist concave

functions ωi, 1 6 i 6 k, such that each function dgraph fi + ωi is concave on R2. Set

ω :=
k∑

i=1

ωi and σ := Γ + ω.

Then

(3.19) dgraph fi + σ is concave, 1 6 i 6 k,

and by (3.6)

(3.20) dM + σ is locally concave on R
2 \M.

It is sufficient to prove that dM + σ is concave on R2.
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For i, j ∈ {1, . . . , k}, i 6= j, denote by Pi,j the set of all x ∈ R such that fi(x) =

fj(x) and such that for every ε > 0 there is z ∈ (x−ε, x+ε) satisfying fi(z) 6= fj(z).

Obviously, each Pi,j is a closed nowhere dense set and Pi,j ⊂ [0, 1].

Set

Pi :=
⋃

{Pi,j : 1 6 j 6 k, j 6= i}, P :=
k⋃

i=1

Pi,

P ∗
i :={(x, fi(x)) : x ∈ Pi}, P ∗ :=

k⋃

i=1

P ∗
i .

Note that for every z ∈ M \ P ∗, there is i ∈ {1, . . . , k} and ̺ > 0 such that

M ∩ U(z, ̺) = graph fi ∩ U(z, ̺), and so

(3.21) dM (u) = dgraph fi(u), u ∈ U
(
z,
̺

2

)
.

To prove the concavity of dM + σ, it is clearly sufficient to prove that for each

p, q ∈ R2 and ε > 0, there exists a line l which meets both U(p, ε) and U(q, ε) and

dM + σ is concave on l. To this end, choose arbitrary p, q, ε. Further, using the

notation

l(m, c) := {(x, y) : y = mx+ c}, m, c ∈ R,

we choose a line l(m0, c0) which meets both U(p, ε) and U(q, ε).

Now observe that for each c ∈ R we have l(m0, c) ∩ P ∗
i 6= ∅ if and only if there

is x ∈ Pi such that m0x + c = fi(x), i.e., c ∈ gi(Pi), where gi(x) := fi(x) −m0x,

x ∈ R. Since gi is DC and Pi ⊂ [0, 1] is nowhere dense, Lemma 2.15 implies that

Ci := {c ∈ R : l(m0, c) ∩ P ∗
i 6= ∅} is nowhere dense. Consequently, we can choose

c1 ∈ R such that l := l(m0, c1) ⊂ R2 \ P ∗ and l meets both U(p, ε) and U(q, ε).

By (3.21), (3.19) and (3.20) we obtain that dM + σ is locally concave at each point

of l, and thus concave on l. �

Corollary 3.8. LetM ⊂ R2 be as in Lemma 3.7. Then M̃ :=M∩([0, 1]×R) ∈ D2.

P r o o f. Let f1, . . . , fk andH be as in Lemma 3.7. First note that, by Lemmas 3.7

and (2.4), d
M̃
is locally DC on

R
2 \ ((M ∩ ({0} × R)) ∪ (M ∩ ({1} × R))) =: R2 \ (M0 ∪M1).

We prove that d
M̃
is DC on some neighbourhood of each point in M0. To do

that, pick some z ∈ M0. Let Hz be the system of all functions h ∈ H such that

(0, h(0)) = z and put

fz(x) = max
h∈Hz

h(x), gz(x) = min
h∈Hz

h(x), x ∈ [0,∞),

Dz := {(x, y) : x ∈ [0,∞), gz(x) 6 y 6 fz(x)}.
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Note that dM is DC by Lemma 3.7. Since the functions f1, . . . , fk are Lipschitz

on [0, 1] by Lemma 2.1 (iii), they are Lipschitz on [0,∞). Consequently, both fz
and gz are Lipschitz by (3.5) and Lemma 2.11, and therefore they are DCR by (3.5)

and Lemma 2.9. Therefore, dDz
is DC by (2.7) and (2.8), since ∂Dz is clearly the

union of a locally finite system of DC graphs. It is easy to see (using the fact that the

setM0 has cardinality at most k and so, in particular, is finite) that for a sufficiently

small ̺ > 0 we have d
M̃
(w) ∈ {dDz

(w), dM (w)} whenever w ∈ U(z, ̺), and so dM is

DC on U(z, ̺) by Lemma 2.1 (vi).

Quite analogously one can prove that d
M̃
is also DC on a neighbourhood of each

point of M1, and so dM̃ is locally DC, and therefore (by Lemma 2.1 (ii)) DC on R2

and M̃ ∈ D2. �

Corollary 3.9. Every (s)-set S ⊂ R2 is a D2 set.

P r o o f. Let S be an (s)-set and let r > 0, f1, . . . , fk and H be as in Definition 3.1.

We may assume (applying a suitable similarity and using Remark 2.17 (i) if necessary)

that r = 1. For h ∈ H define h̃ : R → R by h̃ = h on [0, 1], h̃ = h(0) on (−∞, 0] and

h̃ = h(1) on [1,∞). Set H̃ := {h̃ : h ∈ H}. Similarly we extend functions fi, calling
the extensions f̃i. Clearly (by Lemma 2.1 (vi)) each f̃i is a DC function on R. Put

M :=
⋃

h∈H̃

graphh. Then

M =
⋃

h∈H̃

graphh ⊂
k⋃

i=1

graph f̃i.

Since S =M ∩ ([0, 1]×R) and M satisfies the assumptions of Lemma 3.7, we obtain

S ∈ D2 by Corollary 3.8. �

4. Complete characterizations of D2 sets

Lemma 4.1. Let {an}∞n=1 and {An}∞n=1 be sequences of real numbers such that

(i) 0 < an+1 6 1
3an, n ∈ N, and

(ii)
∞∑
n=1

|An|/an <∞.
Then the function

f(x) =





An −An+1

an − an+1
(x− an+1) +An+1 if x ∈ (an+1, an],

0 if x = 0

is a DCR function on [0, a1].
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P r o o f. First note that condition (i) implies

(4.1) an − an+1 > an − an
3

=
2

3
an > 2an+1.

Since an → 0 by (i), we obtain An = f(an) → 0 by (ii), and so f is continuous.

Clearly f ′
−(x) = f ′

−(an) = (An −An+1)/(an − an+1) for x ∈ (an+1, an], n ∈ N.

Using (ii) and (4.1), we obtain

∞∑

n=1

|f ′
−(an)| 6

∞∑

n=1

(∣∣∣ An

an − an+1

∣∣∣+
∣∣∣ An+1

an − an+1

∣∣∣
)
6

∞∑

n=1

( |An|
2
3an

+
|An+1|
2an+1

)
<∞.

Therefore, we easily obtain

V (f ′
−, (0, a1)) =

∞∑

n=1

|f ′
−(an)− f ′

−(an+1)| <∞,

and so f is a DCR function by Lemma 2.7. �

For r > 0, put

Au
r = {(x, y) : 0 6 x 6 r, |y| 6 ux}, Au = {(x, y) : 0 6 x, |y| 6 ux},

Su
r = {(x, y) : |x| 6 r, |y| 6 u|x|}, Su = {(x, y) : x ∈ R, |y| 6 u|x|}.

In the proof of Lemma 4.3 we will use the following geometrically obvious lemma.

Lemma 4.2. Let u > 0. Then there exists α > 0 such that dM (x, y) > α · ̺,
whenever M ⊂ R2, z = (a, b) ∈ R2, ̺ > 0 and either

(4.2) M ∩ (z +A3u
̺ ) ⊂ {z}, (x, y) ∈ (z +A2u

̺ ), x = a+
̺

2
,

or

(4.3) M ∩ (z −A3u
̺ ) ⊂ {z}, (x, y) ∈ (z −A2u

̺ ), x = a− ̺

2
.

Lemma 4.3. Let M ⊂ R2 be closed, z ∈ M and u > 0. Let there exist se-

quences {zn} in M and {̺n} in (0,∞) such that zn → z and, for each n ∈ N,

(i) zn ∈ (z + Su) \ {z} and
(ii) either (zn +A3u

̺n
) ∩M = {zn} or (zn −A3u

̺n
) ∩M = {zn}.

Then M /∈ D2.
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P r o o f. Suppose, to the contrary, that dM is DC.

We can suppose z = 0. Let zn = (an, bn). Without any loss of generality, we can

suppose a1 > a2 > . . . > 0. To see this, we can pass to a subsequence and work with

M s := {(x, y) : (−x, y) ∈ M} (which belongs to D2 if and only if M ∈ D2) instead

of M , if necessary. Further, we can assume (passing several times to a subsequence)

that

(4.4) an+1 6
an
3
for each n ∈ N,

and for some K ∈ [−u, u],

(4.5)
bn
an

→ K and

∞∑

n=1

∣∣∣ bn
an

−K
∣∣∣ < ∞.

Note that also (by zn ∈ Au and (4.4))

(4.6)
∣∣∣ bn − bn+1

an − an+1

∣∣∣ 6
anu+ 1

3anu
2
3an

6 2u for each n ∈ N.

Set An := bn − anK. Then assumptions (i) and (ii) of Lemma 4.1 are satisfied

by (4.4) and (4.5), and consequently we know that the function

f(x) =





An −An+1

an − an+1
(x− an+1) +An+1 if x ∈ (an+1, an],

0 if x = 0

is a DCR function on [0, a1] and Lemma 2.1 (i), (ii), (iv) easily imply that the func-

tions g(x) = f(x) + Kx, x ∈ [0, a1], and F (x) = dM (x, g(x)), x ∈ [0, a1], are also

DCR functions. Observe that

(4.7) g(an) = bn, n ∈ N and g is linear on each interval [an+1, an].

Further, F (0) = 0 and F (an) = 0, n ∈ N. So Lemma 2.2 implies that

(4.8) 0 is the right strict derivative of Fat 0.

Now consider n > 1 and choose an α > 0 which corresponds to our u by Lemma 4.2.

If (zn + A3u
̺n
) ∩M = {zn}, choose 0 < rn < ̺n such that an + rn < an−1 and set

xn := an + 1
2rn, yn := g(xn). Since (4.7) and (4.6) imply (xn, yn) ∈ zn + A2u

rn , we

can apply Lemma 4.2 (with z = 0, ̺ = rn, x = xn, y = yn) and obtain dM (xn, yn) =

F (xn) > αrn. Consequently,

(4.9)
F (xn)− F (an)

xn − an
> 2α.
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If (zn − A3u
̺n
) ∩M = {zn}, choose 0 < rn < ̺n such that an − rn > an+1 and set

xn := an− 1
2rn, yn := g(xn). In the same way as in the first case we also obtain (4.9).

Now observe that, by the definition of the strict right derivative, (4.9) contra-

dicts (4.8). �

Lemma 4.4. Let M ∈ D2, z = (x, y) ∈M , s > 0 and u > 0. Then the following

assertions hold.

(i) If

(4.10) ∂M ∩ (z +A3u
s ) ⊂ z +Au

s ,

then there is s > r > 0 such that either M ∩ (z + A3u
r ) = {z}, or π1(M ∩

(z +A3u
r )) = [x, x+ r].

(ii) If

(4.11) ∂M ∩ (z −A3u
s ) ⊂ z −Au

s ,

then there is s > r > 0 such that either M ∩ (z − A3u
r ) = {z}, or π1(M ∩

(z −A3u
r )) = [x− r, x].

P r o o f. We will prove only assertion (i); the proof of (ii) is quite analogous.

Set K := π1(M ∩ (z +A3u
s )) and observe that condition (4.10) implies that either

π1(M ∩ (z +A3u
s )) = [x, x+ s] or

(4.12) M ∩ (z +A3u
s ) ⊂ z +Au

s .

So we can suppose that (4.12) holds.

Now suppose to the contrary that no s > r > 0 from the assertion of the lemma ex-

ists. SinceK is compact, we can clearly find sequences of positive numbers {xn}, {̺n}
such that xn → 0,

(4.13) xn ∈ K and (xn, xn + ̺n) ∩K = ∅ for each n ∈ N.

By the definition of K and (4.12), there exist yn, n ∈ N, such that zn := (xn, yn) ∈
M ∩ (z + Au

s ). Since (4.13) clearly implies (zn + A3u
̺n
) ∩M = {zn}, we obtain by

Lemma 4.3 that M /∈ D2, which is a contradiction. �

Lemma 4.5. Let M ∈ D2 and s, u > 0. Suppose that 0 ∈ M and f1, . . . , fk :

[0, s] → R are u-Lipschitz functions such that fi(0) = 0, i = 1, . . . , k, and

(4.14) ∂M ∩A3u
s ⊂

k⋃

i=1

graph fi.
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Let 0 be an accumulation point of ∂M ∩Au
s . Then there is some 0 < ̺ < s such that

for every

(x, y) ∈M ∩
k⋃

i=1

graphfi

with x ∈ (0, ̺), there exist δ > 0 and a u-Lipschitz function g : [x − δ, x + δ] → R

such that g(x) = y and graph g ⊂M ∩
k⋃

i=1

graph fi.

P r o o f. For the sake of brevity, we set M∗ :=M ∩
k⋃

i=1

graph fi and observe that

the properties of fi imply M
∗ ⊂ Au

s .

Now consider an arbitrary z = (x, y) ∈ M∗ with x ∈ (0, s). Since z ∈ Au
s , it is

easy to see that we can assign to z a number Rz > 0 such that

(4.15) z + S3u
Rz

⊂ A3u
s

and

graphfi ∩ (z + S3u
Rz

) = ∅, whenever 1 6 i 6 k and fi(x) 6= y.

Then, using the u-Lipschitz continuity of all fi and (4.14), we obtain

(4.16) ∂M ∩ (z + S3u
Rz

) ⊂ z + Su
Rz
.

So, by Lemma 4.4, we can choose 0 < rz 6 Rz such that π1(M ∩ (z + S3u
rz )) is one

of the following sets:

{x}, [x− rz, x], [x, x+ rz ], [x− rz, x+ rz ].

Using Lemma 4.3, we easily obtain that there exists s > ̺ > 0 such that

(4.17) π1(M ∩ (z + S3u
rz )) = [x− rz, x+ rz ], whenever x ∈ (0, ̺).

We claim that even

(4.18) π1(M
∗ ∩ (z + S3u

rz )) = [x− rz , x+ rz ], whenever x ∈ (0, ̺).

Indeed, pick t ∈ [x − rz, x + rz ]. To prove t ∈ π1(M
∗ ∩ (z + S3u

rz )), we distinguish

two cases. If (∂M ∩ (z + S3u
rz ))[t] = ∅, we observe that ((z + S3u

rz ) \ M)[t] = ∅,
and so (t, fi(t)) ∈ M∗ ∩ (z + S3u

rz ), where i is chosen so that z ∈ graph fi. If

(∂M ∩ (z + S3u
rz ))[t] 6= ∅, then (4.18) follows from (4.15) and (4.14). Now fix an
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arbitrary z = (x, y) ∈ M∗ with x ∈ (0, ̺) and denote C :=M∗ ∩ (z + S3u
rz ). So C is

compact, and thus (4.18) implies that we can correctly define

g(t) = minC[t], t ∈ (x− rz , x+ rz).

Then g is continuous on (x − rz , x + rz) ∩ (0, ̺). Indeed, the compactness of C

easily implies that g is lower semicontinuous on (x − rz, x + rz) ∩ (0, ̺). To prove,

moreover, the upper semicontinuity of g, consider t ∈ (x − rz , x + rz) ∩ (0, ̺) and

observe that (4.18) applied to z∗ := (t, g(t)) implies that

g(τ)− g(t) 6 3u|τ − t|, τ ∈ (t− rz∗ , t+ rz∗) ∩ (x− rz , x+ rz),

which implies that g is upper semicontinuous at t. By Lemma 2.11, we obtain that g

is u-Lipschitz on (x − rz, x+ rz) ∩ (0, ̺).

Now, choosing δ > 0 such that [x− δ, x+ δ] ⊂ (x− rz, x + rz) ∩ (0, ̺), we obtain

the assertion of the lemma. �

Below, we will need some easy facts concerning 1-dimensional DC surfaces in R2,

which are proved in [9], Remark 7.1 and Lemma 7.3. Let us note that in these

observations from [9], the term “DC graph” has a different meaning than in [10] and

the present article: it means there a 1-dimensional DC surface in R2.

Thus, in the present terminology, [9], Remark 7.1 gives the following.

Remark 4.6. Let P ⊂ R2 be a 1-dimensional DC surface in R2 and a ∈ P .

Then

(i) Tan(P, a) ∩ S1 is a two-point set, and

(ii) there exist 1-dimensional DC surfaces P1, P2 ⊂ R2 such that P ⊂ P1 ∪ P2,

a ∈ P1 ∩ P2 and Tan(Pi, a) is a 1-dimensional space, i = 1, 2.

Further, [9], Lemma 7.3 corresponds to the following result.

Lemma 4.7. Let P be a 1-dimensional DC surface in R2 and 0 ∈ P . Suppose

that Tan(P, 0) is a 1-dimensional space and (0, 1) /∈ Tan(P, 0). Then there exists

̺∗ > 0 such that, for each 0 < ̺ < ̺∗, there exist α < 0 < β and a DCR function f

on (α, β) such that P ∩ U(0, ̺) = graphf |(α,β).
We will also need the following simple fact, which is a standard consequence of

the Zorn lemma.

Lemma 4.8. Let L > 0, ̺ > 0 and F ⊂ [0, ̺]× R be a closed set such that

(i) for each (x, y) ∈ F with 0 < x < ̺, there exist δ > 0 and an L-Lipschitz

function g on [x− δ, x+ δ] such that g(x) = y and graph g ⊂ F ;

(ii) for each (x, y) ∈ F with 0 < x < ̺, there exists an L-Lipschitz function γ

on [0, ̺] such that γ(x) = y and graph γ ⊂ F .
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P r o o f. To prove (ii), consider an arbitrary (x, y) ∈ F with 0 < x < ̺.

Denote by P the set of all L-Lipschitz functions f : (af , bf ) → R such that

(af , bf ) ⊂ (0, ̺), x ∈ (af , bf ) , f(x) = y and graphf ⊂ F . By (i), we obtain P 6= ∅.
Define a partial order on P by inclusion (i.e., f1 6 f2 ⇔ graph f1 ⊂ graph f2).

Let ∅ 6= T ⊂ P be a totally ordered set. Then
⋃{graph f : f ∈ T } is clearly

the graph of a function g ∈ P which is an upper bound of T . Consequently, by

the Zorn lemma, P contains a maximal element f : (af , bf ) → R and we can ex-

tend f to an L-Lipschitz function γ on [af , bf ]. Observe that the points (af , γ(af)),

(bf , γ(bf)) belong to F since the latter set is closed. We claim that af = 0 and

bf = ̺. Indeed, otherwise we can use (i) (applied either to (x, y) = (af , γ(af )) or

to (x, y) = (bf , γ(bf ))) and easily obtain a contradiction with the maximality of f .

Consequently, γ has all properties from (ii). �

Lemma 4.9. Let M ∈ D2 and 0 ∈ M . Let u > 0 and A4u ∩ Tan(∂M, 0) ∩ S1 =

{(1, 0)}. Then there exist r > 0 and an (s)-set S such that

(4.19) ∂M ∩ Au
r ⊂ S ⊂M ∩ Au

r .

P r o o f. By Proposition 2.16, there exist η > 0 and 1-dimensional DC surfaces

P1, . . . , Pn such that

∂M ∩B(0, η) ⊂ P1 ∪ . . . ∪ Pn.

Diminishing η if necessary, we can suppose that 0 ∈ Pi for all i. Due to Remark 4.6 (ii)

we can also suppose (changing n, if necessary) that Tan(Pi, 0) is a 1-dimensional

linear space for every i. Put

(4.20) I := {1 6 i 6 n : Tan(Pi, 0) = span{(1, 0)}}.

By our assumptions, clearly I 6= ∅; we can suppose that I = {1, . . . , k}. By our
assumptions and the definition of I, we can choose t > 0 such that

∂M ∩ A3u
t ⊂ P1 ∪ . . . ∪ Pk.

Using Lemma 4.7, we obtain that for each 1 6 i 6 k there exist si ∈ (0,∞) and

a DCR function ϕi on [0, si] such that Pi ∩ A3u
si = graphϕi. Note that (by (4.20))

(ϕi)
′
+(0) = 0 and so, using Lemma 2.2, we obtain 0 < s 6 min{s1, . . . , sk} such that,

denoting fi := ϕi|[0,s], we have that each fi is u-Lipschitz on [0, s] and

(4.21) ∂M ∩A3u
s ⊂

k⋃

i=1

graph fi.

Moreover, by the assumptions, 0 is an accumulation point of ∂M ∩ Au
s .
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Thus the assumptions of Lemma 4.5 are satisfied. Let 0 < ̺ < s be the corre-

sponding number from the assertion of Lemma 4.5. Set r := 1
2̺ and

(4.22) S :=M ∩
k⋃

i=1

graphfi ∩ ([0, r]× R).

Using (4.21), it is easy to see that (4.19) holds. So it remains to prove that S is an

(s)-set. Since S ⊂
k⋃

i=1

graphfi and S \ {0} 6= ∅, it is sufficient to prove that for every
(x, y) ∈ S with x 6= 0 there exists a continuous function h : [0, r] → R such that

h(x) = y and graphh ⊂ S.

To construct h, observe that, by the choice of ̺, the assertion of Lemma 4.5 holds.

Consequently, for F :=M ∩
k⋃

i=1

graph fi∩ ([0, ̺]×R) and L := u, the assumptions of

Lemma 4.8 hold. Therefore, there exists a u-Lipschitz function γ on [0, ̺] such that

γ(x) = y and graph γ ⊂ F .

Consequently, the function h := γ|[0,r] has the required properties. �

Lemma 4.10. Let M and K be closed sets in R2 and let x ∈ M and ̺ > 0 be

such that K∩U(x, ̺) ⊂M and ∂M∩U(x, ̺) ⊂ ∂K. If dK is DC on U(x, ̺), then dM

is DC on U(x, 12̺).

P r o o f. Pick z ∈ U(x, 12̺). First note that if z ∈M , then dM (z) = 0. If z /∈M ,

then dM (z) = d∂M (z) > d∂K(z) > dK(z) since dM (z) 6 |x− z|, ∂M ∩U(x, ̺) ⊂ ∂K

and ∂K ⊂ K. On the other hand, K ∩ U(x, ̺) ⊂ M implies dM (z) 6 dK(z) and so

dM (z) = dK(z). Consequently, dM (z) ∈ {0, dK(z)}, z ∈ U(x, 12̺), and so dM is DC

on U(x, 12̺) by Lemma 2.1 (vi). �

Now we can prove the following “local” characterization of D2 sets by (s)-sets.

Theorem 4.11. Let M ⊂ R2 be a closed set and let P be the set of all isolated

points of M . Then the following statements are equivalent:

(i) M ∈ D2,

(ii) for every z ∈ ∂M \P , there are ̺ > 0, (s)-sets S1, . . . , Sm and pairwise different

rotations γ1, . . . , γm such that

(4.23) ∂M ∩ U(z, ̺) ⊂
m⋃

i=1

(z + γi(Si)) ⊂M,

(iii) for every z ∈ ∂M \ P , there are ̺ > 0, (s)-sets S1, . . . , Sm and rotations

γ1, . . . , γm such that (4.23) holds.

25



P r o o f. First we prove the implication (i) ⇒ (ii). Let M be a D2 set and

z ∈ ∂M \ P . Then z is not an isolated point of ∂M and we obtain by Proposi-

tion 2.16 and Remark 4.6 (i) that T := Tan(∂M, z) ∩ S1 is a nonempty finite set.

Let T = {t1, . . . , tm} and let γi be the rotation that maps (1, 0) to ti, i = 1, . . . ,m.

Since T is finite, there is u > 0 such that

A4u ∩ (Tan(γ−1
i (∂M − z), 0) ∩ S1) = γ−1

i (ti) = (1, 0), i = 1, . . . ,m.

By Lemma 4.9, there is, for every i = 1, . . . ,m, an ri > 0 and an (s)-set Si such that

γ−1
i (∂M − z) ∩ Au

ri = ∂(γ−1
i (M − z)) ∩Au

ri ⊂ Si ⊂ γ−1
i (M − z), i = 1, . . . ,m,

and consequently,

(4.24) ∂M ∩ (z + γi(A
u
ri)) ⊂ z + γi(Si) ⊂M.

By the definition of the tangent cone, there is some ̺ > 0 such that

∂M ∩ U(z, ̺) ⊂
m⋃

i=1

(z + γi(A
u
ri)),

and so (4.24) implies that (4.23) holds, and the proof of the implication is finished.

The implication (ii) ⇒ (iii) is clear and the implication (iii) ⇒ (i) follows easily

from Corollary 3.9, Lemma 4.10 (withK =
m⋃
i=1

(z+γi(A
u
̺))), (2.6) and Lemma 2.1 (ii),

which concludes the proof of the theorem. �

Remark 4.12. In (ii) (and in (iii)) we can demand that both ̺ and

diam

( m⋃

i=1

(z + γi(Si))

)

“are arbitrarily small” (i.e., smaller than any ε > 0 prescribed together with z ∈
∂M \ P ). To see this, choose a sufficiently small 0 < ̺∗ < ̺ and observe that (4.23)

remains hold if we write ̺∗ instead of ̺ and S∗
i := Si ∩ ([0, ̺∗] × R) (which is an

(s)-set by Remark 3.3) instead of Si, i = 1, . . . ,m.

Corollary 4.13. IfM ∈ D2, then the set P of all isolated points ofM is discrete.

P r o o f. Suppose to the contrary that there exists a point z ∈ P \P . Then clearly
z ∈ ∂M \P and we can choose ̺, S1, . . . , Sm and γ1, . . . , γm as in Theorem 4.11 (ii);

so (4.23) holds. Since P ⊂ ∂M , there exists p ∈ P such that p ∈
m⋃
i=1

(z+γi(Si)) ⊂M ,

which contradicts the connectivity of
m⋃
i=1

(z + γi(Si)) (cf. Remark 3.2). �
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Next we prove Theorem 4.15, which gives a “global” characterization of general D2

sets by nowhere dense D2 sets. We will need the following simple observation.

Lemma 4.14. Let K, M , K ⊂ M , be closed subsets of R2. Then the following

conditions are equivalent:

(i) M = K ∪ C, where C is the union of a system of components of R2 \K,
(ii) ∂M ⊂ ∂K.

If these conditions hold and K ∈ D2, then M ∈ D2.

P r o o f. Let (i) hold. Since C ⊂ intM , we have ∂M =M \ intM ⊂M \C ⊂ K.

Obviously, ∂M ⊂ R2 \ intK, and consequently ∂M ⊂ K \ intK = ∂K. We have

proved (i) ⇒ (ii).
To prove (i) from (ii), it is sufficient to prove that if D is a component of R2 \K,

then either D ⊂ M or D ∩M = ∅, but it follows from the fact that ∂M ∩ D ⊂
∂K ∩D = ∅, and so M ∩D is both open and closed in the open connected set D.
To prove the last part of the lemma, it is sufficient to observe that if K ∈ D2 and

M 6= ∅, then (ii) together with Lemma 4.10 and (2.4) imply that dM is locally DC.
Indeed, then dM is DC on R2 by Lemma 2.1 (ii), and so M ∈ D2. �

Theorem 4.15. Let M ⊂ R2 be a closed set. Then the following conditions are

equivalent:

(i) M ∈ D2,

(ii) there exists a nowhere dense K ∈ D2 such that ∂M ⊂ K ⊂M ,

(iii) there exists a nowhere dense K ∈ D2 such that M = K ∪ C, where C is the
union of a system of components of R2 \K.

P r o o f. The implication (i) ⇒ (ii) follows from Theorem 4.11 as follows.
Suppose that M ∈ D2 and let P be the set of all isolated points of M . By

Corollary 4.13, P is discrete. We know that, for every z ∈ ∂M \P , there are ̺z > 0,

mz ∈ N, (s)-sets Sz
1 , . . . , S

z
mz
and rotations γz1 , . . . , γ

z
mz
as in Theorem 4.11 (iii). By

Remark 4.12, we can suppose ̺z 6 1 and diamSz
i 6 1, i = 1, . . . ,mz. The system

{U(z, ̺z) : z ∈ ∂M \P} is an open cover of ∂M \P . Hence, since ∂M \P is closed and
locally compact, we can find I ⊂ N such that for every n ∈ I, there are zn ∈ ∂M \P ,
̺n > 0, kn ∈ N, (s)-sets Sn

k , k = 1, . . . , kn, and isometries γ
n
k , k = 1, . . . , kn, such

that

(a) ∂M \ P ⊂ ⋃
n∈I

U(zn, ̺n),

(b) the system {U(zn, ̺n) : n ∈ I} is locally finite,
(c) diamSn

k 6 1, n ∈ I, k = 1, . . . , kn,

(d) ∂M ∩ U(zn, ̺n) ⊂
kn⋃
k=1

(zn + γnk (S
n
k )) ⊂M for every n ∈ I.
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Put

(4.25) K := P ∪
⋃

n∈I

kn⋃

k=1

(zn + γnk (S
n
k )).

By (b) and (c) we obtain that the system {
kn⋃
k=1

(zn + γnk (S
n
k )) : n ∈ I} is a locally

finite system of closed nowhere dense sets, and therefore K is closed nowhere dense.

Moreover, ∂M ⊂ K = ∂K by (a) and (d) and K ⊂ M by (d). Finally, K ∈ D2 by

Corollary 3.9, Remark 2.17 (ii) and Corollary 4.13.

The implications (ii) ⇒ (iii) and (iii) ⇒ (i) follow from Lemma 4.14. �

Remark 4.16.

(i) Lemma 4.14 shows that each nowhere denseD2 setK yields (via Lemma 4.14 (i))

some (sometimes infinitely many) D2 sets M with nonempty interior.

(ii) The problem whether a given closed set M ⊂ R2 belongs to D2 does not re-

duce (by our results) to the problem whether a corresponding nowhere dense set

K ⊂ R2 belongs to D2, since there are usually many nowhere dense sets K ⊂M

with ∂M ⊂ K. Note that these conditions hold for K := ∂M , but [10], Exam-

ple 4.1 (or Example 5.9 below) gives an example of M ∈ D2 with ∂M /∈ D2.

Finally, as a consequence of Theorem 4.11 and the proof of Theorem 4.15, we

easily obtain the following characterizations of nowhere dense sets in D2:

Theorem 4.17. Let M ⊂ R2 be a nowhere dense closed set and let P be the set

of all isolated points of M . Then the following conditions are equivalent:

(i) M ∈ D2,

(ii) for every z ∈ M \ P , there are ̺ > 0, finitely many (s)-sets S1, . . . , Sm and

pairwise different rotations γ1, . . . , γm such that

(4.26) M ∩ U(z, ̺) =
m⋃

i=1

(z + γi(Si)) ∩ U(z, ̺),

(iii) for every z ∈ M \ P , there are ̺ > 0, finitely many (s)-sets S1, . . . , Sm and

rotations γ1, . . . , γm such that (4.26) holds,

(iv) P is discrete and there exists a system (Sα)α∈A of (s)-sets and a system (γα)α∈A

of isometries of R2 such that the system (γα(Sα))α∈A is locally finite and such

that

M = P ∪
⋃

α∈A

γα(Sα).
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P r o o f. Denote by (ii)* (or, (iii)*) the condition which we obtain if we replace

in (ii) (or, (iii)) equation (4.26) by the inclusions

(4.27) M ∩ U(z, ̺) ⊂
m⋃

i=1

(z + γi(Si)) ⊂M.

Since M = ∂M , condition (4.27) is equivalent to (4.23), and so the equivalence

of (i), (ii)* and (iii)* follows immediately from Theorem 4.11. Further, (4.27) clearly

implies (4.26), and consequently (ii)* implies (ii) and (iii)* implies (iii).

Now we will show (iii) ⇒ (iii)*. So suppose that (iii) holds and x ∈ M \ P
is given. Find S1, . . . , Sm and γ1, . . . , γm by (iii) and choose ˜̺ > 0 so small that

S̃i := Si ∩ ([0, ˜̺] × R) ⊂ U(0, ̺), i = 1, . . . ,m. Then each S̃i is an (s)-set by

Remark 3.3 and clearly M ∩ U(z, ˜̺) ⊂
m⋃
i=1

(z + γi(S̃i)) ⊂ M, and thus we have

proved (iii)*. The above argument proves also (ii) ⇒ (ii)*.
Thus we obtain the equivalence of (i), (ii) and (iii).

To prove (i) ⇒ (iv), suppose M ∈ D2. Then P is discrete by Corollary 4.13.

Further observe that K from Theorem 4.15 equals to M (by Theorem 4.15 (ii)). So,

chosing zn, γ
n
k and S

n
k as in the proof of Theorem 4.15, we obtain that (4.25) holds

and M = K. Since we know that the system of all sets of the form zn + γnk (S
n
k )

from (4.25) is locally finite, (iv) holds. Finally, the implication (iv) ⇒ (i) follows

from Corollary 3.9 and Remark 2.17. �

Remark 4.18. In Theorem 4.17, M = ∂M and so (4.23) implies (4.26). Con-

sequently, Remark 4.12 shows that, in conditions (ii) and (iii) of Theorem 4.17, we

can demand that both ̺ and diam(
m⋃
i=1

(z + γi(Si))) “are arbitrarily small”.

An immediate consequence of Theorem 4.17 is the following result.

Corollary 4.19. A nonempty nowhere dense perfect compact set is a D2 set if

and only if it is a finite union of isometric copies of (s)-sets.

The following result shows that, in some sense, it suffices to investigate con-

nected D2 sets only.

Theorem 4.20. A closed set ∅ 6=M ⊂ R2 is a D2 set if and only if

(i) each component of M is a D2 set and

(ii) the system of all components of M is discrete.

P r o o f. SupposeM ∈ D2 and consider an arbitrary z ∈M and the component Cz

of M that contains z. To prove (ii), we will find ̺ > 0 such that

(4.28) Cz is the only component of M intersecting U(z, ̺).
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The existence of ̺ is obvious if z is an isolated point ofM . Otherwise we can find, by

Theorem 4.11, ̺ > 0, (s)-sets S1, . . . , Sm and rotations γ1, . . . , γm such that (4.23)

holds. Using Remark 3.2, we obtain

(4.29)

m⋃

i=1

(z + γi(Si)) ⊂ Cz.

Let C be a component of M with C ∩ U(z, ̺) 6= ∅.
If ∂C ∩ U(z, ̺) = ∅, then C ∩ U(z, ̺) is nonempty and both open and closed in

U(x, ̺), so U(z, ̺) ⊂ C, and thus C = Cz .

If ∂C ∩U(z, ̺) 6= ∅, choose a point q ∈ ∂C∩U(z, ̺) and observe that q ∈ ∂C ⊂ C.

Further, since q ∈ ∂C ⊂ ∂M , by (4.23) and (4.29) we obtain z ∈ Cz. Thus C = Cz

and (ii) is proved.

To prove (i), consider a component C of M . To prove C ∈ D2, by Lemma 2.1 (ii)

it is sufficient to show that dC is locally DC on R2. Using (2.4), we see that it is

sufficient to show that, for each z ∈ C, the function dC is DC on a neigbourhood

of z. By (ii) we can choose ̺ > 0 such that (4.28) holds. Then clearly dC = dM on

U(z, 12̺), and thus dC is DC on U(z, 12̺).

Finally note that if (i) and (ii) hold, then M ∈ D2 by Remark 2.17 (ii). �

5. Properties of D2 sets and images of D2 sets

First we will prove several properties of (s)-sets. Then, using our characterization

theorems, we will obtain some results on general D2 sets. Finally we will prove

Theorem 5.12 on the stability of D2 sets with respect to some deformations.

Recall that we already mentioned some simple properties of (s)-sets; see Re-

marks 3.2 and 3.3.

Further note that (3.1) easily implies that, for each (s)-set S,

(5.1) Tan(S, (0, 0)) ∩ S1 = (1, 0).

An easy consequence of the “mixing lemmas” is the following fact.

Lemma 5.1. Let S ⊂ R2 be an (s)-set and π1(S) =: [0, r]. Then there exists

K > 0 such that each continuous f : [0, r] → R with graphf ⊂ S is a K-Lipschitz

DCR function.

P r o o f. Let f1, . . . , fk and H be as in Definition 3.1. By Lemma 2.7 (ii) we can

chooseK > 0 such that all fi, 1 6 i 6 k, areK-Lipschitz functions. Let f : [0, r] → R

be a continuous function with graph f ⊂ S. Then, using (3.1), we obtain that f is

K-Lipschitz by Lemma 2.11 and DCR by Lemma 2.9. �
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Corollary 5.2. If S is an (s)-set and H is as in (3.2), then all functions h ∈ H

are DCR functions, and they are equally Lipschitz.

Lemma 5.3. Let S ⊂ R2 be an (s)-set with π1(S) =: [0, r] and let H be as

in (3.2). Then there exists a countable set H∗ ⊂ H such that S =
⋃

h∈H∗

graphh.

P r o o f. By (3.2), we have

(5.2) S =
⋃

h∈H

graphh

and, by Corollary 5.2, there exists K > 0 such that each function h ∈ H is

K-Lipschitz. Further choose k ∈ N by (3.1).

Now choose (using the definition of k and (5.2)), for each t ∈ Q ∩ [0, r], functions

ht1, . . . , h
t
k ∈ H such that

S[t] = {ht1(t), . . . , htk(t)}

and set

H∗ :=
⋃

{hti : t ∈ Q ∩ [0, r], 1 6 i 6 k}.

Then H∗ is countable. To prove

(5.3) S =
⋃

h∈H∗

graphh,

consider an arbitrary point (x, y) ∈ S. Since S[x] is finite, we can choose ε > 0

such that S[x] ∩ (y − ε, y + ε) = {y}. Further choose x∗ ∈ Q ∩ [0, r] such that

|x− x∗| < ε(2K)−1. By (5.2) there exists h ∈ H with h(x) = y. Since h(x∗) ∈ S[x∗],

by the definition of H∗ there exists h∗ ∈ H∗ with h∗(x∗) = h(x∗). Since h, h∗ are

K-Lipschitz, we have

|h(x∗)−h(x)| 6 K|x−x∗| < ε

2
, |h(x∗)−h∗(x)| = |h∗(x∗)−h∗(x)| 6 K|x−x∗| < ε

2
,

and so |h∗(x) − y| = |h∗(x) − h(x)| < ε. Since h∗(x) ∈ S[x], we have h
∗(x) = y, and

thus (5.3) follows. �

Corollary 5.2 and Lemma 5.3 have the following immediate consequence.

Corollary 5.4. Each (s)-set is a countable union of DC graphs.

The following result easily follows.

Proposition 5.5. Each nowhere dense D2 set M is a countable union of DC

graphs.
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P r o o f. The statement follows from Theorem 4.17 (iv), Corollaries 4.13 and 5.4

and the easy fact that the image of a DC graph under an isometry of R2 is a DC

graph. �

The following example (which essentially coincides with [10], Example 4.10) shows

a rather simple (s)-set which is not a finite union of DC graphs.

Example 5.6. Let r := 1
2 ,

f1(x) = x5, f2(x) = −x5, x ∈ [0, r], and

f3(x) = x5 cos
π

x
, x ∈ (0, r], f3(0) = 0.

Then Lemma 2.1 (vii) easily implies that f1, f2, f3 are DCR functions. Let

Ak := graph(f3|((2k+1)−1,(2k)−1)), k = 1, 2, . . . ,

S := graph f1 ∪ graph f2 ∪
∞⋃

k=1

Ak.

Since f3((2k)
−1) = f1((2k)

−1) and f3((2k+1)−1) = f2((2k+1)−1), k = 1, 2, . . ., it is

easy to see that S is an (s)-set. Further, it is easy to show (using, e.g., Remark 4.6 (i))

that every DC graph B ⊂ S intersects at most one of the sets Ak. Consequently, S is

not a finite union of DC graphs.

Proposition 5.7.

(i) Each D2 set M is locally pathwise connected; in particular, it is locally con-

nected.

(ii) Each connected D2 set M is pathwise connected. Moreover, any two points

x, y ∈M can be connected by a rectifiable curve lying in M .

P r o o f. Let z ∈ M , r > 0, and U := U(z, r) ∩M . To prove (i), it is sufficient
to find a pathwise connected neigbhourhood V ⊂ U of z in the subspace M . If z

is an isolated or an interior point of M , the existence of V is obvious. Otherwise

z ∈ ∂M and we can find, by Remark 4.12, ̺ ∈ (0, r), (s)-sets S1, . . . , Sm and rotations

γ1, . . . , γm such that

(5.4) ∂M ∩ U(z, ̺) ⊂ Z ⊂M and Z ⊂ U(z, r),

where Z :=
⋃
i=1

m(z + γi(Si)). Set

(5.5) V := (M ∩ U(z, ̺)) ∪ Z.
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It is clearly sufficient to prove that V is pathwise connected. Note that Remark 3.2

implies that Z is pathwise connected and consider an arbitrary y ∈ (M ∩U(z, ̺))\Z.
Using (5.4), we obtain y ∈ intM∩U(z, ̺). It is easy to show that there exists a point

w ∈ y, z ∩ ∂M such that y, w ⊂ M . Since clearly y, w ⊂ U(z, ̺), we have y, w ⊂ V .

So y can be connected by a path in V with the point w which belongs to Z by (5.4).

Consequently, V is pathwise connected.

The first part of (ii) holds since every connected, locally pathwise connected topo-

logical space is pathwise connected (see, e.g., [18], Theorem 27.5). To argue that

the “moreover part” holds, we will say (for a while) that a set A ⊂ R2 is r-path

connected, if any two points x and y in A can be connected in A by a rectifiable

path. Corollary 5.2 implies that each (s)-set is r-path connected. Consequently, the

argument in the proof of (i) gives that each V as in (5.5) is even r-path connected

(and thus M is “locally r-pathwise connected”). So an obvious modification of the

(standard easy) proof of [18], Theorem 27.5 gives that M is r-path connected. �

Remark 5.8. Using a straightforward easy (but not trivial) modification of the

proof of [18], Theorem 27.5, we can obtain the following stronger result:

If M is a connected D2 set and x 6= y ∈ M , then there exist numbers t1 <

t2 < . . . < tm and a continuous injective f : [t1, tm] → M such that f(t1) = x,

f(tm) = y and each set f([tk, tk+1]), k = 1, . . . ,m− 1, is a DC graph.

Note that this statement is equivalent to the assertion that every x 6= y ∈M can be

connected inM by a simple curve of finite turn; for the notion of the turn see, e.g., [3].

Indeed, it is not difficult to see that each (s)-set and, consequently, also each V as

in (5.5) has this connectivity property.

For each D2 set M , the system of all components of M is discrete (and so count-

able) by Theorem 4.20. In the following example, we show that the system of all

components of ∂M can be uncountable.

Example 5.9. Let C ⊂ [0, 1] be the classical Cantor ternary set and let {In :
n ∈ N} be all bounded components of R \ C. For each n ∈ N, choose an interval

[un, vn] ⊂ In and set F :=
⋃

n∈N

[un, vn]. Then f := (dF )
2 is DC on R (see, e.g., [1],

page 976), and so the set

K := graph f ∪ graph(−f)

is a (nowhere dense) D2 set by (1.1) and (2.6). Put

M := {(x, y) : y > f(x)} ∪ {(x, y) : y 6 −f(x)}.
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Then M is a D2 set by Lemma 4.14. It is easy to see that π1(∂M) = R \ ⋃
n∈N

(un, vn)

and so π1(∂M) has uncountably many components. Consequently, ∂M has uncount-

ably many components as well.

In particular, ∂M is not a D2 set by Theorem 4.20.

We already observed (see Corollary 4.13) that, for each D2 set M , the set of all

isolated points ofM is discrete. Now we prove a related result concerning exceptional

points of D2 sets of another type.

Proposition 5.10. Let M be a D2 set. Then the set

(5.6) EM := {z ∈M : card(Tan(M, z) ∩ S1) = 1}

is discrete.

P r o o f. First consider the case when M is an (s)-set; let r > 0, f1, . . . , fk and H

be as in Definition 3.1. Then

(5.7) EM ∩ U(0, r) ⊂ {0}.

Indeed, if z = (x, y) ∈ (M ∩ U(0, r)) \ {0}, then 0 < x < r and by (3.2) there exists

h ∈ H with h(x) = y. Since h is a DCR function by Corollary 5.2, we have z /∈ EM

(e.g., by Remark 4.6 (i)).

Further consider the case when M is a nowhere dense D2 set. Let P be the set of

all isolated points of M . Obviously, for each z ∈ (R2 \M) ∪ P , there is an ω > 0

such that EM ∩U(z, ω) = ∅. If z ∈M \P , let ̺ > 0, S1, . . . , Sm and γ1, . . . , γm be as

in Theorem 4.17 (iii). Using (5.7) for M = Si, i = 1, . . . ,m, we easily obtain ω > 0

such that EM ∩ U(z, ω) ⊂ {z} and conclude that EM is a discrete set.

Finally consider the case of a general D2 set M . Let M = K ∪ C be the de-

composition of M from Theorem 4.15 (iii). Since K is a nowhere dense D2 set, we

know that EK (defined as in (5.6)) is a discrete set. Thus it is sufficient to prove

EM ⊂ EK . To this end, consider an arbitrary point z ∈ EM . Then clearly z /∈ C,

and consequently z ∈ K. It is easy to see that z is not an isolated point of K,

and therefore card(Tan(K, z) ∩ S1) > 1. Since Tan(K, z) ⊂ Tan(M, z), we obtain

z ∈ EK , which completes the proof. �

An important application of our characterizations of D2 sets is Theorem 5.12 below

on images of D2 sets. First we prove a lemma on images of (s)-sets.

Lemma 5.11. Let 0 ∈ G ⊂ R2 be an open set, c > 0, and let F : G → R2 be

a locally DC mapping such that F (0) = 0 and F ′
+(0, (1, 0)) = (c, 0). Let S ⊂ G be
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an (s)-set. Then there exist a > 0 and b > 0 such that

(5.8) S∗ := F (S ∩ ((−∞, a]× R)) ∩ ((−∞, b]× R)

is an (s)-set.

P r o o f. First note that F is locally Lipschitz on G by Lemma 2.1 (iii). Let

f1, . . . , fk be DCR functions on [0, r] and H be a set of continuous functions on [0, r]

as in Definition 3.1. Without any loss of generality, we can suppose that graph fi ⊂ G,

i = 1, . . . , k. Indeed, otherwise we can diminish r > 0 and use Remark 3.3.

For i = 1, . . . , k, let

ϕi(x) = (ϕi
1(x), ϕ

i
2(x)) := F ((x, fi(x))), x ∈ [0, r].

Since fi is a DCR function, we can find εi> 0 and a DC extension f̃i : (−εi, r+εi)→R

of fi such that (x, f̃i(x)) ∈ G, x ∈ (−εi, r + εi). Then

ϕ̃i(x) = (ϕ̃i
1(x), ϕ̃

i
2(x)) := F ((x, f̃i(x))), x ∈ (−εi, r + εi),

is a DC mapping by Lemma 2.1 (ii), (iv). Consequently, ϕi
1 and ϕ

i
2 are DCR functions

on [0, r] by Lemma 2.7 ((i) ⇔ (v)). Let ηi(x) := (x, f̃i(x)), x ∈ (−εi, r + εi).

Then (ηi)
′
+(0) = (1, 0) and consequently, by the chain rule for one-sided directional

derivatives (see, e.g., [14], Propositions 3.6 (i) and 3.5),

(ϕ̃i)′+(0) = (c, 0), (ϕi
1)

′
+(0) = (ϕ̃i

1)
′
+(0) = c, (ϕi

2)
′
+(0) = (ϕ̃i

2)
′
+(0) = 0.

Consequently, Lemma 2.2 gives that c is the strict right derivative of ϕ̃i
1 at 0, which

easily implies that there exist 0 < ri < r and 0 < ̺i such that ψi := ϕi
1|[0,ri] is

an increasing DCR function and ψi : [0, ri] → [0, ̺i] is a bilipschitz bijection. Then

Lemma 2.8 implies that hi := ϕi
2 ◦ (ψi)

−1 is a DCR function on [0, ̺i] and it is easy

to see that

F (graph(fi|[0,ri])) = graphhi and (hi)
′
+(0) = 0.

Set

a := min(r1, . . . , rk), b := min(ϕ1
1(a), . . . , ϕ

k
1(a)) and f∗

i := hi|[0,b], i = 1, . . . , k.

Then clearly the set S∗ from (5.8) satisfies S∗ ⊂ ⋃
i=1

k graphf∗
i .

For each h ∈ H , put

Eh := F (graphh|[0,a]) ∩ ((−∞, b]× R).

Since S∗ =
⋃

h∈H

Eh, to prove that S
∗ is an (s)-set it suffices to show that, for each

h ∈ H , the set Eh is a graph of a continuous function h
∗ on [0, b]. Since Eh is
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compact (and each function with compact graph is continuous), it is sufficient to

prove that

(5.9) Eh is a graph of a function h
∗ on [0, b].

Set ω(x) := π1(F ((x, h(x)))), x ∈ [0, a]. Then ω is continuous and, consequently,

ω([0, a]) is a closed interval. Since ω(0) = 0 and, for some 1 6 i 6 k, ω(a) =

ϕi
1(a) > b, we obtain [0, b] ⊂ ω([0, a]). So, to prove (5.9), it is sufficient to show

that ω is injective. Suppose, to the contrary, that there exist 0 6 x1 < x2 6 a such

that ω(x1) = ω(x2). Set u0 := x1. Further observe that there exists 1 6 i0 6 k

such that h(x1) = fi0(x1) and u1 := max{u ∈ [x1, x2] : h(u) = fi0(u)} > u0. Then

clearly either u1 = x2 or we can choose 1 6 i1 6 k such that h(u1) = fi1(u1) and

u2 := max{u ∈ [x1, x2] : h(u) = fi1(u)} > u1. Proceeding in this way, we obtain

numbers x1 = u0 < u1 < . . . < uq = x2 with 1 6 q 6 k and pairwise different indices

i0, i1, . . . , iq−1 such that h(uk) = fik(uk) and h(uk+1) = fik(uk+1) for each 0 6 k 6

q−1. Then ω(uk) = ϕik
1 (uk) < ϕik

1 (uk+1) = ω(uk+1), and therefore ω(x1) = ω(u0) <

ω(u1) < . . . < ω(uq) = ω(x2), a contradiction, which completes the proof. �

Theorem 5.12. Let G ⊂ R2, G∗ ⊂ R2 be open sets and let F : G → G∗ be

a bijection which is locally bilipschitz and locally DC. Let M ⊂ G be a D2 set such

that F (M) is a closed set. Then F (M) is a D2 set.

P r o o f. First consider the case when M is nowhere dense.

To prove that M∗ := F (M) ∈ D2, we will verify the validity of condition (iii) of

Theorem 4.17 forM∗. To this end, consider an arbitrary point z∗ ∈M∗ which is not

an isolated point of M∗ and set z := F−1(z∗). Since M ∈ D2, by Theorem 4.17 (iii),

there exist ̺ > 0, (s)-sets S1, . . . , Sm and rotations γ1, . . . , γm such that

(5.10) M ∩ U(z, ̺) =

m⋃

i=1

(z + γi(Si)) ∩ U(z, ̺).

Remark 4.18 shows that we can suppose that

(5.11) U(z, ̺) ⊂ G and z + γi(Si) ⊂ G, i = 1, . . . ,m.

For each i = 1, . . . ,m, we will apply Lemma 5.11 in the following way. Set vi :=

γi((1, 0)) and wi := F ′
+(z, vi). Since F is locally bilipschitz, we have wi 6= 0, and

consequently, we can choose a rotation γ∗i and ci > 0 such that γ∗i ((ci, 0)) = wi.

Now, for each i = 1, . . . ,m, set βi(u) := z + γi(u), β
∗
i (u) := z∗ + γ∗i (u), u ∈ R2, and

(5.12) F i := (β∗
i )

−1 ◦ F ◦ βi.
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Then F i is a locally bilipschitz and locally DC bijection from Gi := (βi)
−1(G) onto

G∗
i := (β∗

i )
−1(G∗), F i(0) = 0 and (F i)′(0, (1, 0)) = (ci, 0). Since Si ⊂ Gi by (5.11),

Lemma 5.11 implies that there exist ai > 0 and bi > 0 such that

S∗
i := F i(Si ∩ ((−∞, ai]× R)) ∩ ((−∞, bi]× R)

is an (s)-set. Now choose ̺∗ > 0 so small that

(5.13) ̺∗ < min(b1, . . . , bm) and diamF−1(U(z∗, ̺∗)) < min(̺, a1, . . . , am).

Set V := F−1(U(z∗, ̺∗)). Then clearly, for each i,

(βi)
−1(V ) ⊂ (−∞, ai)× R and (β∗

i )
−1(U(z∗, ̺∗)) ⊂ (−∞, bi)× R

and, consequently,

(5.14) F (βi(Si) ∩ V ) = β∗
i (S

∗
i ) ∩ U(z∗, ̺∗).

Since V ⊂ U(z, ̺) by (5.13), using (5.10) we obtain M ∩ V =
m⋃
i=1

(βi(Si) ∩ V ).

Consequently, (5.14) implies

M∗ ∩ U(z∗, ̺∗) = F (M ∩ V ) =

m⋃

i=1

β∗
i (S

∗
i ) ∩ U(z∗, ̺∗),

and thus condition Theorem 4.17 (iii) holds for M∗.

To finish the proof, consider an arbitrary D2 set M ⊂ G. By Theorem 4.15

there exists a nowhere dense D2 set K such that ∂M ⊂ K ⊂ M . Observe that

K∗ := F (K) is closed, since it is clearly closed in G∗ and K∗ ⊂M∗ := F (M) ⊂ G∗.

Consequently, ∂M∗ = F (∂M) ⊂ F (K) = K∗, and so ∂M∗ ⊂ K∗ ⊂ M∗. Since K∗

is clearly nowhere dense and K∗ ∈ D2 by the first part of the proof, Theorem 4.15

implies that M∗ ∈ D2. �
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