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Abstract. We prove two supercongruences involving Almkvist-Zudilin sequences, which
were originally conjectured by Z.-H. Sun (2020).
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1. Introduction

In 1979, Apéry (see [3]) in his ingenious proof of the irrationality of ζ(2) and ζ(3)

introduced the following two kinds of numbers:

An =

n
∑

k=0

(

n

k

)2(
n+ k

k

)2

and A′

n =

n
∑

k=0

(

n

k

)2(
n+ k

k

)

.

These numbers are now known as the famous Apéry numbers. It is well-known that

the Apéry numbers satisfy the following recurrences (see [5]):

(n+ 1)3An+1 = (2n+ 1)(17n(n+ 1) + 5)An − n3An−1,

and

(n+ 1)2A′

n+1 = (11n(n+ 1) + 3)A′

n + n2A′

n−1.
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For integers a, b and c 6= 0, the Apéry-like numbers of the first kind {un} satisfy

u0 = 1, u1 = b, (n+ 1)3un+1 = (2n+ 1)(an(n+ 1) + b)un − cn3un−1,

and the Apéry-like numbers of the second kind {u′

n} satisfy the recurrence (see [33]):

u′

0 = 1, u′

1 = b, (n+ 1)2u′

n+1 = (an(n+ 1) + b)u′

n − cn2u′

n−1.

In 2006, Almkvist and Zudilin in [1] introduced many interesting Apéry-like num-

bers such as

Gn =

n
∑

k=0

(

2k

k

)2(
2n− 2k

n− k

)

4n−k,

and

γn =

n
∑

k=0

(−1)n−k 3
n−3k(3k)!

(k!)3

(

n

3k

)(

n+ k

k

)

.

Note that the numbers γn and Gn are Apéry-like numbers of the first kind with

(a, b, c) = (−7,−3, 81) and Apéry-like numbers of the second kind with (a, b, c) =

(32, 12, 256), respectively. We remark that the numbers γn are also called Almkvist-

Zudilin numbers.

A supercongruence is a p-adic congruence which happens to hold not just modulo

a prime p as predicted by formal group laws or other considerations but a higher

power of p. Since the appearance of the Apéry numbers and Apéry-like numbers,

some interesting supercongruences for these numbers have been gradually discovered

(see, for instance, [2], [4], [5], [6], [8], [10], [12], [13], [19], [20], [22], [23], [25], [29]).

A typical example is

Anpr ≡ Anpr−1 (mod p3r)

for any prime p > 5, which was proved by Coster (see [7]) in a more general form.

Another example due to Amdeberhan and Tauraso (see [2]) is the beautiful super-

congruence

γnp ≡ γn (mod p3)

for any prime p > 5. It is worth mentioning that Sun in [27], Conjecture 2.5 conjec-

tured a similar supercongruence for Gn

Gnpr ≡ Gnpr−1 (mod p2r)

for positive integers n, r, and an odd prime p.

The motivation of this paper is to prove the following two supercongruences in-

volving the Almkvist-Zudilin sequence {Gn}, which were originally conjectured by

Sun, see [27], Conjectures 2.1 and 2.2.

1212



Theorem 1.1. For any prime p > 5 we have

(1.1) Gp−1 ≡ (−1)(p−1)/2256p−1 + 3p2Ep−3 (mod p3).

Here the Euler numbers are defined as

2

ex + e−x
=

∞
∑

n=0

En
xn

n!
.

Theorem 1.2. For any prime p > 5 we have

(1.2)

p−1
∑

k=0

Gk

16k
≡ p2(4(−1)(p−1)/2 − 3) (mod p3).

For Theorem 1.1, that would be comparatively easy from the definition as all the

terms in the sum for Gp−1 are divisible by p except for the central term. Hence, the

expected congruence is

Gp−1 ≡

(

p− 1
1
2 (p− 1)

)3

4(p−1)/2 ≡ (−1)(p−1)/2256p−1 (mod p).

For Theorem 1.2 we can easily deduce from (3.11) that

p−1
∑

k=0

Gk

16k
≡ 0 (mod p).

However, Theorems 1.1 and 1.2 prove that they not only hold modulo a higher

power p2, but also refine them further modulo p3.

In the next section, we first recall some auxiliary results. We shall prove Theo-

rems 1.1 and 1.2 in the final section.

2. Auxiliary results

Let

H(r)
n =

n
∑

j=1

1

jr

denote the nth generalized harmonic number of order r with the convention that

Hn = H
(1)
n . The Fermat quotient of an integer a with respect to an odd prime p is

given by qp(a) = (ap−1 − 1)/p.

In order to prove Theorems 1.1 and 1.2, we need the following identities.
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Lemma 2.1. For any non-negative integer n and positive integer r we have

n
∑
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)2(
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)2
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∑
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(−1)k
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(
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k
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n+ k

k

)

=
(−1)n

r
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∏
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(r − j

r + j

)

,(2.2)

n
∑

k=0

(−1)k
(

n

k

)(

n+ k

k

)

H2
k = 2(−1)n

(

2H2
n +

n
∑

k=1

(−1)k

k2

)

,(2.3)

n
∑

k=0

(−1)k

k + 1

(

n

k

)(

n+ k

k

)

Hk =
(−1)n − 1

n(n+ 1)
.(2.4)

P r o o f. Identities (2.1)–(2.4) have already been proved by Sun in [27], The-

orem 2.1, Mortenson in [21], Lemma 3.1, Wang in [31], Lemma 2.2, and the first

author in [16], Lemma 2.2, respectively.

In fact, all of these identities can be proved by the symbolic summation pack-

age Sigma developed by Schneider, see [26]. By using Sigma, we find that both

sides of (2.1)–(2.4) satisfy the same recurrences. More specifically, we list out these

recurrences:

(2.1): 256(n+ 1)2Sn − 4(8n2 + 24n+ 19)Sn+1 + (n+ 2)2Sn+2 = 0,

(2.2): (r − n− 1)Sn + (n+ r + 1)Sn+1 = 0,

(2.3): (2n+ 5)(n+ 1)2Sn + (2n+ 3)(3n2 + 12n+ 11)Sn+1

+ (2n+ 5)(3n2 + 12n+ 11)Sn+2 + (2n+ 3)(n+ 3)2Sn+3

=
4(2n+ 3)(2n+ 5)

n+ 2
,

(2.4): nSn + (n+ 2)Sn+1 = −
2

n+ 1
.

It is trivial to verify that both sides of (2.1)–(2.4) are equal for initial values. One can

also refer to [9], [14], [15], [17], [18], [24] for the computerized approach to proving

such identities. �

We also require some known congruences.

Lemma 2.2. For any prime p > 5 we have

H(p−1)/2 ≡ −2qp(2) (mod p),(2.5)

(p−1)/2
∑

k=1

(−1)k

k2
≡ 2(−1)(p−1)/2Ep−3 (mod p),(2.6)
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(p−1)/2
∑

k=0

1

16k

(

2k

k

)2

≡ (−1)(p−1)/2 + p2Ep−3 (mod p3),(2.7)

p−1
∑

k=(p+1)/2

1

16k

(

2k

k

)2

≡ −2p2Ep−3 (mod p3),(2.8)

(p−1)/2
∑

k=0

1

16k

(

2k

k

)2

Hk ≡ (−1)(p−1)/2(−4qp(2) + 2pqp(2)
2) (mod p2),(2.9)

(p−1)/2
∑

k=0

1

16k

(

2k

k

)2

H
(2)
k ≡ −4Ep−3 (mod p).(2.10)

P r o o f. See [11], (30), (45), [28], (1.7), (1.9), Lemma 2.4 and [30], (4.8), (4.9).

�

3. Proof of Theorems 1.1 and 1.2

P r o o f of Theorem 1.1. By (2.1), we have

(3.1) Gp−1 =

p−1
∑

k=0

(−1)k
(

p− 1

k

)(

2k

k

)2

16p−1−k.

Now we split the sum on the right-hand side of (3.1) into two pieces:

(3.2) S1 =

(p−1)/2
∑

k=0

(−1)k
(

p− 1

k

)(

2k

k

)2

16p−1−k,

and

(3.3) S2 =

p−1
∑

k=(p+1)/2

(−1)k
(

p− 1

k

)(

2k

k

)2

16p−1−k.

We first evaluate S1 modulo p
3. Note that

(3.4)

(

p− 1

k

)

≡ (−1)k
(

1− pHk +
p2

2
(H2

k −H
(2)
k )

)

(mod p3).

It follows from (3.2) and (3.4) that

(3.5) S1 ≡ 16p−1

(p−1)/2
∑

k=0

1

16k

(

2k

k

)2
(

1− pHk +
p2

2
(H2

k −H
(2)
k )

)

(mod p3).
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Letting n = 1
2 (p− 1) in (2.3) and noting that

(3.6) (−1)k
(1

2 (p− 1)

k

)(1
2 (p− 1) + k

k

)

≡
1

16k

(

2k

k

)2

(mod p2),

we obtain

(3.7)

(p−1)/2
∑

k=0

1

16k

(

2k

k

)2

H2
k ≡ 2(−1)(p−1)/2

(

2H2
(p−1)/2 +

(p−1)/2
∑

k=1

(−1)k

k2

)

(mod p).

Applying (2.5) and (2.6) to the right-hand side of (3.7) gives

(3.8)

(p−1)/2
∑

k=0

1

16k

(

2k

k

)2

H2
k ≡ 16(−1)(p−1)/2qp(2)

2 + 4Ep−3 (mod p).

Furthermore, substituting (2.7), (2.9), (2.10) and (3.8) into the right-hand side

of (3.5), we arrive at

(3.9) S1 ≡ (−1)(p−1)/216p−1(1 + 4pqp(2) + 6p2qp(2)
2) + 5p2Ep−3 (mod p3).

Next, we evaluate S2 modulo p
3. For 1

2 (p+ 1) 6 k 6 p− 1 we have

(

2k

k

)2

≡ 0 (mod p2),

(

p− 1

k

)

≡ (−1)k (mod p),

and so

(3.10) S2 ≡

p−1
∑

k=(p+1)/2

(

2k

k

)2

16p−1−k ≡

p−1
∑

k=(p+1)/2

1

16k

(

2k

k

)2

≡ −2p2Ep−3 (mod p3),

where we have used Fermat’s little theorem in the second step and (2.8) in the last

step. Then the proof of (1.1) follows from (3.9) and (3.10). �

P r o o f of Theorem 1.2. Using (2.1) and exchanging the summation order, we

directly deduce that

(3.11)

p−1
∑

k=0

Gk

16k
=

p−1
∑

j=0

1

(−16)j

(

2j

j

)2(
p

j + 1

)

=

p−2
∑

j=0

1

(−16)j

(

2j

j

)2(
p

j + 1

)

+
1

16p−1

(

2p− 2

p− 1

)2

≡ p

(p−1)/2
∑

j=0

1

(−16)j(j + 1)

(

2j

j

)2(
p− 1

j

)

+
1

16p−1

(

2p− 2

p− 1

)2

(mod p3),
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where we have used the fact that
(

2j
j

)2
/(j+1) ≡ 0 (mod p2) for 1

2 (p−1) < j 6 p−2

in the last step.

On one hand, by Fermat’s little theorem and Wolstenholme’s theorem (see [32]),

we have

(3.12)
1

16p−1

(

2p− 2

p− 1

)2

=
p2

16p−1(2p− 1)2

(

2p− 1

p− 1

)2

≡ p2 (mod p3).

On the other hand, by using (3.4), we have

(3.13)

(p−1)/2
∑

j=0

1

(−16)j(j + 1)

(

2j

j

)2(
p− 1

j

)

≡

(p−1)/2
∑

j=0

1

16j(j + 1)

(

2j

j

)2

(1 − pHj) (mod p2).

In view of (3.6), we obtain

(3.14)

(p−1)/2
∑

j=0

1

16j(j + 1)

(

2j

j

)2

≡

(p−1)/2
∑

j=0

(−1)j

j + 1

( 1
2 (p− 1)

j

)(1
2 (p− 1) + j

j

)

= 0 (mod p2),

where we have used the case r = 1 of identity (2.2) in the last step.

Furthermore, letting n = 1
2 (p− 1) in (2.4) and using (3.6), we obtain

(3.15)

(p−1)/2
∑

k=0

1

16k(k + 1)

(

2k

k

)2

Hk ≡ 4(1− (−1)(p−1)/2) (mod p).

Finally, combining (3.11)–(3.15), we reach the desired result (1.2). �
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