AN EXAMPLE OF A REFLEXIVE LORENTZ GAMMA SPACE WITH TRIVIAL BOYD AND ZIPPIN INDICES

Alexei Karlovich, Lisboa, Eugene Shargorodsky, London

Received August 14, 2020. Published online June 25, 2021.

Abstract

We show that for every $p \in(1, \infty)$ there exists a weight w such that the Lorentz Gamma space $\Gamma_{p, w}$ is reflexive, its lower Boyd and Zippin indices are equal to zero and its upper Boyd and Zippin indices are equal to one. As a consequence, the Hardy-Littlewood maximal operator is unbounded on the constructed reflexive space $\Gamma_{p, w}$ and on its associate space $\Gamma_{p, w}^{\prime}$.

Keywords: Lorentz Gamma space; reflexivity; Boyd indices; Zippin indices
MSC 2020: 46E30, 42B25

1. Introduction

Let m denote the standard Lebesgue measure on \mathbb{R}^{n}. The Hardy-Littlewood maximal operator M is one of the most important operators in harmonic analysis. For a function $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}, m\right)$ it is defined by

$$
(M f)(x):=\sup _{Q \ni x} \frac{1}{m(Q)} \int_{Q}|f(y)| \mathrm{d} y, \quad x \in \mathbb{R}^{n},
$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^{n}$ with sides parallel to the axes. We are interested in the following question: Given a class \mathfrak{S} of Banach function spaces (see [1], [9]), is it true that the Hardy-Littlewood maximal operator M is bounded on each reflexive space $X\left(\mathbb{R}^{n}, m\right) \in \mathfrak{S}$ or on its associate space $X^{\prime}\left(\mathbb{R}^{n}, m\right)$? It is well known that the answer is "yes" for the class of all Lebesgue spaces. We show

This work was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UIDB/MAT/00297/ 2020 (Centro de Matemática e Aplicações).
that the answer is "no" for the class of Lorentz Gamma spaces $\Gamma_{p, w}\left(\mathbb{R}^{n}, m\right)$ (being a proper subclass of the class of all rearrangement-invariant Banach function spaces).

A measurable function $w:(0, \infty) \rightarrow[0, \infty)$ is called a weight function. Following [6], page 289, we say that a weight function belongs to the class $\mathcal{D}_{p}, 1 \leqslant p<\infty$, whenever for all $x \in(0, \infty)$,

$$
0<W(x):=\int_{0}^{x} w(t) \mathrm{d} t<\infty, \quad W_{p}(x):=x^{p} \int_{x}^{\infty} t^{-p} w(t) \mathrm{d} t<\infty .
$$

Let (\mathcal{R}, μ) be a totally σ-finite nonatomic measure space such that $\mu(\mathcal{R})=\infty$. The Lorentz Gamma space $\Gamma_{p, w}(\mathcal{R}, \mu)$ is the set of all μ-measurable functions $f: \mathcal{R} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{\Gamma_{p, w}}:=\left(\int_{0}^{\infty}\left(f^{* *}(t)\right)^{p} w(t) \mathrm{d} t\right)^{1 / p}<\infty
$$

where

$$
f^{* *}(t):=\frac{1}{t} \int_{0}^{t} f^{*}(x) \mathrm{d} x
$$

and f^{*} is the decreasing rearrangement of f (see e.g. [1], Chapter 2, Section 1 or [7], Chapter II, $\$ 2$ for its definition and properties). The Lorentz Gamma spaces were introduced by Sawyer (see [10]), but they can be traced to earlier works of Calderón, Hunt, O'Neil and others. These spaces have been studied by many authors (see e.g. [3], [4], [5], [6] and [9], Chapter 10 and also the references in the above monograph). The Lorentz Gamma spaces are examples of rearrangement-invariant (or symmetric) Banach function spaces (see [1], Chapter 2 and [7], Chapter II for the theory of rearrangement-invariant Banach function spaces). We should also note that one can study quasi-Banach Lorentz Gamma spaces $\Gamma_{p, w}$ if one admits that $0<p<\infty$, see e.g. [6].

It is well known that Boyd and Zippin indices play important role in many questions related to interpolation properties of rearrangement-invariant spaces and boundedness behavior of classical operators of harmonic analysis (like the HardyLittlewood maximal operator or the Hilbert transform) on rearrangement-invariant spaces. The Boyd indices

$$
0 \leqslant \alpha(X) \leqslant \beta(X) \leqslant 1
$$

and Zippin indices

$$
0 \leqslant p(X) \leqslant q(X) \leqslant 1
$$

of a rearrangment-invariant space $X(\mathcal{R}, \mu)$ were introduced in [2] and [11], respectively. We refer to [1], Chapter 3, [7], Chapter 2, and [8] for their definitions, properties, and applications in interpolation theory and harmonic analysis. Boyd indices of Lorentz Gamma spaces $\Gamma_{p, w}$ were studied in [4], [6].

In this paper we construct an example of a reflexive Lorentz Gamma space $\Gamma_{p, w}(\mathcal{R}, \mu)$, whose Boyd and Zippin indices behave "badly", (one says that the indices are trivial in this case) by rather elementary techniques:

$$
\alpha\left(\Gamma_{p, w}\right)=p\left(\Gamma_{p, w}\right)=0, \quad \beta\left(\Gamma_{p, w}\right)=q\left(\Gamma_{p, w}\right)=1
$$

It may well be that examples of reflexive rearrangement-invariant spaces $X(\mathcal{R}, \mu)$ with both Boyd indices being trivial are known to experts or can be obtained from known results, but we were unable to find a published example of such space. Moreover, we believe that an example of a reflexive Lorentz Gamma space $\Gamma_{p, w}(\mathcal{R}, \mu)$ with trivial Boyd and Zippin indices is of interest because it leads to the negative answer to the question posed above not only for the whole class of rearrangement-invariant Banach function spaces, but to its narrower subclass of Lorentz Gamma spaces.

For a precise definition of what we mean by a "rearrangement-invariant Banach function space" and by its "associate space", see [1], Chapter 1, Definitions 1.1 and 2.1; Chapter 2, Definition 4.1 and Section 2 below. Definitions of Boyd and Zippin indices are also given in Section 2.

Theorem 1.1 (Main result). Let (\mathcal{R}, μ) be a totally σ-finite nonatomic measure space such that $\mu(\mathcal{R})=\infty$. If $p \in(1, \infty)$ and

$$
w(x):= \begin{cases}\frac{1}{x(1-\log x)^{2}}, & 0<x<1 \tag{1.1}\\ \frac{x^{p-1}}{(1+\log x)^{2}}, & x \geqslant 1\end{cases}
$$

then the Lorentz Gamma space $\Gamma_{p, w}(\mathcal{R}, \mu)$ is a reflexive rearrangement-invariant Banach function space and its Boyd and Zippin indices are trivial, that is,

$$
\alpha\left(\Gamma_{p, w}\right)=p\left(\Gamma_{p, w}\right)=0, \quad \beta\left(\Gamma_{p, w}\right)=q\left(\Gamma_{p, w}\right)=1
$$

Combining Theorem 1.1 with the Lorentz-Shimogaki theorem (see e.g. [1], Chapter 3 , Theorem 5.17), we arrive at the following corollary.

Corollary 1.2. Let $p \in(1, \infty)$ and a weight w be given by (1.1). Then the Lorentz Gamma space $\Gamma_{p, w}\left(\mathbb{R}^{n}, m\right)$ is a reflexive rearrangement-invariant Banach function space and the Hardy-Littlewood maximal operator M is unbounded on the space $\Gamma_{p, w}\left(\mathbb{R}^{n}, m\right)$ and on its associate space $\Gamma_{p, w}^{\prime}\left(\mathbb{R}^{n}, m\right)$.

The paper is organized as follows. In Section 2, we recall the notions of a rearrangement-invariant Banach function space $X(\mathcal{R}, \mu)$ and its associate space $X^{\prime}(\mathcal{R}, \mu)$, and give the definitions of its Boyd indices $\alpha(X), \beta(X)$ and Zippin indices $p(X), q(X)$. In Section 3, we show that the Lorentz Gamma spaces $\Gamma_{p, q}(\mathcal{R}, \mu)$ fall into the class of rearrangement-invariant Banach function spaces if $1 \leqslant p<\infty$ and $w \in \mathcal{D}_{p}$. Further, we formulate necessary and sufficient conditions for the reflexivity of $\Gamma_{p, w}(\mathcal{R}, \mu)$. In Section 4, we prove Theorem 1.1 and Corollary 1.2.

2. Rearrangement-invariant Banach function spaces and their indices

2.1. Banach function spaces. Let (\mathcal{R}, μ) be a totally σ-finite nonatomic measure space such that $\mu(\mathcal{R})=\infty$. The set of all μ-measurable complex-valued functions on \mathcal{R} is denoted by $\mathfrak{M}(\mathcal{R}, \mu)$. Let $\mathfrak{M}^{+}(\mathcal{R}, \mu)$ be the subset of functions in $\mathfrak{M}(\mathcal{R}, \mu)$ whose values lie in $[0, \infty]$. The characteristic function of a μ-measurable set $E \subset \mathcal{R}$ is denoted by χ_{E}. Following [1], Chapter 1, Definition 1.1, a mapping

$$
\varrho: \mathfrak{M}^{+}(\mathcal{R}, \mu) \rightarrow[0, \infty]
$$

is called a Banach function norm if, for all functions $f, g, f_{n}(n \in \mathbb{N})$ in $\mathfrak{M}^{+}(\mathcal{R}, \mu)$, for all constants $a \geqslant 0$, and for all μ-measurable subsets E of \mathcal{R}, the following axioms hold:
(A1) $\varrho(f)=0 \Leftrightarrow f=0$ a.e., $\varrho(a f)=a \varrho(f), \varrho(f+g) \leqslant \varrho(f)+\varrho(g)$,
(A2) $0 \leqslant g \leqslant f$ a.e. $\Rightarrow \varrho(g) \leqslant \varrho(f)$ (the lattice property),
(A3) $0 \leqslant f_{n} \uparrow f$ a.e. $\Rightarrow \varrho\left(f_{n}\right) \uparrow \varrho(f)$ (the Fatou property),
(A4) $\mu(E)<\infty \Rightarrow \varrho\left(\chi_{E}\right)<\infty$,
(A5) $\mu(E)<\infty \Rightarrow \int_{E} f(x) \mathrm{d} \mu(x) \leqslant C_{E} \varrho(f)$
with $C_{E} \in(0, \infty)$, which may depend on E and ϱ but is independent of f. When functions differing only on a set of μ-measure zero are identified, the set $X(\mathcal{R}, \mu)$ of all functions $f \in \mathfrak{M}(\mathcal{R}, \mu)$ for which $\varrho(|f|)<\infty$ is called a Banach function space. For each $f \in X(\mathcal{R}, \mu)$, the norm of f is defined by

$$
\|f\|_{X}:=\varrho(|f|)
$$

Under the natural linear space operations and under this norm, the set $X(\mathcal{R}, \mu)$ becomes a Banach space (see [1], Chapter 1, Theorems 1.4 and 1.6). If ϱ is a Banach function norm, its associate norm ϱ^{\prime} is defined on $\mathfrak{M}^{+}(\mathcal{R}, \mu)$ by

$$
\varrho^{\prime}(g):=\sup \left\{\int_{\mathcal{R}} f(x) g(x) \mathrm{d} \mu(x): f \in \mathfrak{M}^{+}(\mathcal{R}, \mu), \varrho(f) \leqslant 1\right\}, \quad g \in \mathfrak{M}^{+}(\mathcal{R}, \mu)
$$

It is a Banach function norm itself, see [1], Chapter 1, Theorem 2.2. The Banach function space $X^{\prime}(\mathcal{R}, \mu)$ determined by the Banach function norm ϱ^{\prime} is called the associate space (Köthe dual) of $X(\mathcal{R}, \mu)$. The associate space $X^{\prime}(\mathcal{R}, \mu)$ is naturally identified with a subspace of the (Banach) dual space $[X(\mathcal{R}, \mu)]^{*}$.
2.2. Rearrangement-invariant Banach function spaces. Let $\mathfrak{M}_{0}(\mathcal{R}, \mu)$ and $\mathfrak{M}_{0}^{+}(\mathcal{R}, \mu)$ be the classes of a.e. finite functions in $\mathfrak{M}(\mathcal{R}, \mu)$ and $\mathfrak{M}^{+}(\mathcal{R}, \mu)$, respectively. The distribution function μ_{f} of $f \in \mathfrak{M}_{0}(\mathcal{R}, \mu)$ is given by

$$
\mu_{f}(\lambda):=\mu\{x \in \mathcal{R}:|f(x)|>\lambda\}, \quad \lambda \geqslant 0
$$

Two functions $f, g \in \mathfrak{M}_{0}(\mathcal{R}, \mu)$ are said to be equimeasurable if $\mu_{f}(\lambda)=\mu_{g}(\lambda)$ for all $\lambda \geqslant 0$. The decreasing rearrangement of $f \in \mathfrak{M}_{0}(\mathcal{R}, \mu)$ is the function defined by

$$
f^{*}(t):=\inf \left\{\lambda: \mu_{f}(\lambda) \leqslant t\right\}, \quad t \geqslant 0 .
$$

We use here the standard convention that $\inf \emptyset=\infty$.
A Banach function norm $\varrho: \mathfrak{M}^{+}(\mathcal{R}, \mu) \rightarrow[0, \infty]$ is called rearrangement-invariant if for every pair of equimeasurable functions $f, g \in \mathfrak{M}_{0}^{+}(\mathcal{R}, \mu)$, the equality $\varrho(f)=\varrho(g)$ holds. In that case, the Banach function space $X(\mathcal{R}, \mu)$ generated by ϱ is said to be a rearrangement-invariant Banach function space (or simply a rearrangementinvariant space). Lebesgue spaces $L^{p}(\mathcal{R}, \mu), 1 \leqslant p \leqslant \infty$, Orlicz spaces $L^{\Phi}(\mathcal{R}, \mu)$, and Lorentz spaces $L^{p, q}(\mathcal{R}, \mu)$ are classical examples of rearrangement-invariant Banach function spaces (see e.g. [1] and the references therein). By [1], Chapter 2, Proposition 4.2, if a Banach function space $X(\mathcal{R}, \mu)$ is rearrangement-invariant, then its associate space $X^{\prime}(\mathcal{R}, \mu)$ is also rearrangement-invariant.
2.3. Boyd and Zippin indices. A measurable function $\varrho:(0, \infty) \rightarrow(0, \infty)$ is said to be submultiplicative if

$$
\varrho\left(x_{1} x_{2}\right) \leqslant \varrho\left(x_{1}\right) \varrho\left(x_{2}\right) \quad \forall x_{1}, x_{2} \in(0, \infty) .
$$

The behavior of a measurable submultiplicative function ϱ in neighborhoods of zero and infinity is described by the quantities

$$
\begin{align*}
& \alpha(\varrho):=\sup _{x \in(0,1)} \frac{\log \varrho(x)}{\log x}=\lim _{x \rightarrow 0} \frac{\log \varrho(x)}{\log x} \tag{2.1}\\
& \beta(\varrho):=\inf _{x \in(1, \infty)} \frac{\log \varrho(x)}{\log x}=\lim _{x \rightarrow \infty} \frac{\log \varrho(x)}{\log x},
\end{align*}
$$

where

$$
\begin{equation*}
-\infty<\alpha(\varrho) \leqslant \beta(\varrho)<\infty \tag{2.2}
\end{equation*}
$$

see [7], Chapter 2, Theorem 1.3. The numbers $\alpha(\varrho)$ and $\beta(\varrho)$ are called the lower and upper indices of the measurable submultiplicative function ϱ.

Let (\mathcal{R}, μ) be a totally σ-finite nonatomic measure space such that $\mu(\mathcal{R})=\infty$. Suppose $X(\mathcal{R}, \mu)$ is a rearrangement-invariant Banach function space generated by a rearrangement-invariant Banach function norm ϱ. In this case, the Luxemburg representation theorem (see [1], Chapter 2, Theorem 4.10) provides a unique rearrangement-invariant Banach function norm ϱ over the half-line $\mathbb{R}_{+}=(0, \infty)$ equipped with the Lebesgue measure m, defined by

$$
\bar{\varrho}(h):=\sup \left\{\int_{0}^{\infty} g^{*}(t) h^{*}(t) \mathrm{d} t: \varrho^{\prime}(g) \leqslant 1\right\},
$$

and such that $\varrho(f)=\bar{\varrho}\left(f^{*}\right)$ for all $f \in \mathfrak{M}_{0}^{+}(\mathcal{R}, \mu)$. The rearrangement-invariant Banach function space generated by $\bar{\varrho}$ is denoted by $\bar{X}\left(\mathbb{R}_{+}, m\right)$.

For each $t>0$ let E_{t} denote the dilation operator defined on $\mathfrak{M}\left(\mathbb{R}_{+}, m\right)$ by

$$
\left(E_{t} f\right)(s)=f(s t), \quad 0<s<\infty
$$

With $X(\mathcal{R}, \mu)$ and $\bar{X}\left(\mathbb{R}_{+}, m\right)$ as above, let $h(t, X)$ denote the norm of $E_{1 / t}$ as an operator on $\bar{X}\left(\mathbb{R}_{+}, m\right)$. By [1], Chapter 3, Proposition 5.11, for each $t>0$, the operator E_{t} is bounded on $\bar{X}\left(\mathbb{R}_{+}, m\right)$ and the function $h(\cdot, X)$ is increasing (and hence, measurable) and submultiplicative on $(0, \infty)$. The indices of $h(\cdot, X)$ are called the Boyd indices of the rearrangement-invariant Banach function space $X(\mathcal{R}, \mu)$ and are denoted by

$$
\alpha(X):=\alpha(h(\cdot, X)), \quad \beta(X):=\beta(h(\cdot, X)) .
$$

Following [1], Chapter 2, Definition 5.1, for each finite value t let $E \subset \mathcal{R}$ be such that $\mu(E)=t$ and let

$$
\varphi_{X}(t):=\left\|\chi_{E}\right\|_{X}
$$

The function φ_{X} so defined is called the fundamental function of the rearrangementinvariant Banach function space $X(\mathcal{R}, \mu)$. Following [11], page 271 (see also [8], page 28), for a given rearrangement-invariant Banach function space $X(\mathcal{R}, \mu)$ with the fundamental function φ_{X}, let us consider the function

$$
M(t, X):=\sup _{0<x<\infty} \frac{\varphi_{X}(t x)}{\varphi_{X}(x)}, \quad t \in(0, \infty) .
$$

It is easy to check that this function is increasing (and hence, measurable) and submultiplicative on $(0, \infty)$. The indices of $M(\cdot, X)$ are called the Zippin (or fundamental) indices of the rearrangement-invariant Banach function space $X(\mathcal{R}, \mu)$ and are denoted by

$$
p(X):=\alpha(M(\cdot, X)), \quad q(X):=\beta(M(\cdot, X)) .
$$

It is easy to see that $M(t, X) \leqslant h(t, X)$ for $t \in(0, \infty)$. Combining this inequality with [1], Chapter 3, Proposition 5.13, we conclude that

$$
\begin{equation*}
M(t, X) \leqslant h(t, X) \leqslant \max \{1, t\}, \quad t \in(0, \infty) \tag{2.3}
\end{equation*}
$$

It follows from (2.1)-(2.3) that

$$
0 \leqslant \alpha(X) \leqslant p(X) \leqslant q(X) \leqslant \beta(X) \leqslant 1
$$

The lower Boyd (or Zippin) index is said to be trivial if $\alpha(X)=0$ (or $p(X)=0$). Analogously, the upper Boyd (or Zippin) index is said to be trivial if $\beta(X)=1$ (or $q(X)=1$).

Note that for the Lebesgue spaces $L^{p}(\mathcal{R}, \mu), 1 \leqslant p \leqslant \infty$, all these indices are equal to $1 / p$. Hence the Lebesgue space $L^{p}(\mathcal{R}, \mu)$ is reflexive if and only if its Boyd and Zippin indices are nontrivial. In contrast, Theorem 1.1 asserts that an analogous result fails for more general Lorentz Gamma spaces $\Gamma_{p, w}(\mathcal{R}, \mu)$.

3. Lorentz Gamma spaces

3.1. Lorentz Gamma spaces are rearrangement-invariant Banach func-

tion spaces. The following lemma contains well known information on Lorentz Gamma spaces (see e.g. [4], Section 2 and [6], Section 0). We give its proof here for completeness.

Lemma 3.1. Let (\mathcal{R}, μ) be a totally σ-finite nonatomic measure space such that $\mu(\mathcal{R})=\infty$. If $1 \leqslant p<\infty$ and $w \in \mathcal{D}_{p}$, then the Lorentz Gamma space $\Gamma_{p, w}(\mathcal{R}, \mu)$ is a rearrangement-invariant Banach function space. The fundamental function of $\Gamma_{p, w}(\mathcal{R}, \mu)$ is given by

$$
\begin{equation*}
\varphi_{\Gamma_{p, w}}(t)=\left(W(t)+W_{p}(t)\right)^{1 / p}, \quad t \in(0, \infty) \tag{3.1}
\end{equation*}
$$

Proof. Axioms (A1)-(A3) in the definition of a Banach function space are satisfied in view of [1], Chapter 2, Proposition 3.2 and Theorem 3.4.

If $\mu(E)=0$, then $\chi_{E}^{* *}(x)=0$ for $x \in(0, \infty)$ and $\left\|\chi_{E}\right\|_{\Gamma_{p, w}}=0$. Let $E \subset \mathcal{R}$ be a set of measure $t>0$. Then $\chi_{E}^{*}=\chi_{[0, t]}$ and $\chi_{E}^{* *}(x)=\max \{1, t / x\}$. Hence

$$
\varphi_{\Gamma_{p, w}}(t)=\left\|\chi_{E}\right\|_{\Gamma_{p, w}}=\left(\int_{0}^{t} w(x) \mathrm{d} x+\int_{t}^{\infty}(t / x)^{p} w(x) \mathrm{d} x\right)^{1 / p}=\left(W(t)+W_{p}(t)\right)^{1 / p} .
$$

If $w \in \mathcal{D}_{p}$, then the right-hand side of the above inequality is finite. Therefore $\mu(E)<\infty \Rightarrow\left\|\chi_{E}\right\|_{\Gamma_{p, w}}<\infty$. Thus, Axiom (A4) is satisfied and the fundamental function of the space $\Gamma_{p, w}$ is given by (3.1).

Since $w \in \mathcal{D}_{p}$, we have $0<W(t)<\infty$ for all $t>0$. Let $E \subset \mathcal{R}$ be a set of positive measure t and $f \in \Gamma_{p, w}(\mathcal{R}, \mu)$. By the Hardy-Littlewood inequality (see [1], Chapter 2, inequality (3.1) and Theorem 2.2),

$$
\begin{equation*}
\int_{E}|f(y)| \mathrm{d} \mu(y) \leqslant \int_{0}^{t} f^{*}(x) \mathrm{d} x=t f^{* *}(t) . \tag{3.2}
\end{equation*}
$$

Taking into account that $f^{* *}$ is decreasing (see [1], Chapter 2, Proposition 3.2), we have

$$
\begin{align*}
t f^{* *}(t) & =\frac{t}{(W(t))^{1 / p}} f^{* *}(t)\left(\int_{0}^{t} w(x) \mathrm{d} x\right)^{1 / p} \tag{3.3}\\
& \leqslant \frac{t}{(W(t))^{1 / p}}\left(\int_{0}^{t}\left(f^{* *}(x)\right)^{p} w(x) \mathrm{d} x\right)^{1 / p} \leqslant \frac{t}{(W(t))^{1 / p}}\|f\|_{\Gamma_{p, w}} .
\end{align*}
$$

It follows from (3.2)-(3.3) that

$$
\mu(E)<\infty \Rightarrow \int_{E}|f(y)| \mathrm{d} \mu(y) \leqslant C_{E}\|f\|_{\Gamma_{p, w}}
$$

where $C_{E}=\mu(E) /(W(\mu(E)))^{1 / p}$. Thus, Axiom (A5) is satisfied.
3.2. Reflexivity of Lorentz Gamma spaces. Now we recall necessary and sufficient conditions for the reflexivity of Lorentz Gamma spaces.

Lemma 3.2. Let (\mathcal{R}, μ) be a totally σ-finite nonatomic measure space such that $\mu(\mathcal{R})=\infty$. Suppose that $w \in \mathcal{D}_{p}$ is a weight such that

$$
\begin{equation*}
\int_{0}^{x} w(t) t^{-p} \mathrm{~d} t=\infty \quad \forall x \in(0, \infty) \tag{3.4}
\end{equation*}
$$

Then the Lorentz Gamma space $\Gamma_{p, w}(\mathcal{R}, \mu)$ is reflexive if and only if

$$
W(\infty)=\int_{0}^{\infty} w(t) \mathrm{d} t=\infty \quad \text { and } \quad V(\infty)=\int_{0}^{\infty} v(t) \mathrm{d} t=\infty
$$

where $1 / p+1 / p^{\prime}=1$ and

$$
v(t)=\frac{t^{p^{\prime}-1} W(t) W_{p}(t)}{\left(W(t)+W_{p}(t)\right)^{p^{\prime}+1}}, \quad t \in(0, \infty)
$$

The above lemma is proved in [3], Lemma 6.4 in the case of $(\mathcal{R}, \mu)=\left(\mathbb{R}_{+}, m\right)$. Its proof is a combination of three ingredients. Two of these ingredients, namely, see [1], Chapter 1.1, Corollary 4.4 and [4], Theorem A, are proved for the measure spaces (\mathcal{R}, μ) under consideration. It remains to observe that, although the last ingredient (see [6], Proposition $1.1(1)$) is proved for $\left(\mathbb{R}_{+}, m\right)$, an inspection of its proof shows that it is also valid for (\mathcal{R}, μ).

4. Proof of the main results

4.1. Proof of Theorem 1.1. Taking into account (1.1), a straightforward calculation gives that

$$
\begin{array}{cc}
W(x)=\frac{1}{1-\log x} \quad \text { for } x \in(0,1] \\
W_{p}(x)=\frac{x^{p}}{1+\log x} \quad \text { for } x \in[1, \infty) . \tag{4.2}
\end{array}
$$

Thus $w \in \mathcal{D}_{p}$. By Lemma 3.1, the Lorentz Gamma space $\Gamma_{p, w}(\mathcal{R}, \mu)$ is a rearrange-ment-invariant Banach function space.

Let us show that the space $\Gamma_{p, w}(\mathcal{R}, \mu)$ is reflexive. Using L'Hôpital's rule, one can easily derive from (1.1) that

$$
\begin{align*}
& \lim _{x \rightarrow \infty} \frac{W(x)}{x^{p}(1+\log x)^{-2}}=\frac{1}{p} \tag{4.3}\\
& \lim _{x \rightarrow 0} \frac{W_{p}(x)}{(1-\log x)^{-2}}=\lim _{x \rightarrow 0} \frac{\int_{x}^{\infty} t^{-p} w(t) \mathrm{d} t}{x^{-p}(1-\log x)^{-2}}=\frac{1}{p} \tag{4.4}
\end{align*}
$$

It follows from (4.2) and (4.3) that

$$
\begin{equation*}
W(\infty)=\lim _{x \rightarrow \infty} W(x)=\infty \tag{4.5}
\end{equation*}
$$

and

$$
\begin{align*}
v(x) & =\frac{x^{p^{\prime}-1} W(x) W_{p}(x)}{\left(W(x)+W_{p}(x)\right)^{p^{\prime}+1}} \tag{4.6}\\
& =x^{p^{\prime}-1+2 p-p\left(p^{\prime}+1\right)} \frac{1+o(1)}{p(1+\log x)^{3}}\left(\frac{1+o(1)}{p(1+\log x)^{2}}+\frac{1}{(1+\log x)}\right)^{-\left(p^{\prime}+1\right)} \\
& =\frac{1}{p x}(1+\log x)^{p^{\prime}-2}(1+o(1))\left(\frac{1+o(1)}{p(1+\log x)}+1\right)^{-\left(p^{\prime}+1\right)} \\
& =\frac{1}{p x}(1+\log x)^{p^{\prime}-2}(1+o(1)) \quad \text { as } x \rightarrow \infty .
\end{align*}
$$

Since $p^{\prime}>1$, i.e., $2-p^{\prime}<1$, it follows from (4.6) that

$$
\begin{equation*}
V(\infty)=\int_{0}^{\infty} v(x) \mathrm{d} x \geqslant \text { const } \int_{1}^{\infty} \frac{1}{x(1+\log x)^{2-p^{\prime}}} \mathrm{d} x=\infty . \tag{4.7}
\end{equation*}
$$

It is easy to see that (3.4) holds for w defined by (1.1). Then it follows from (4.5) and (4.7) that the conditions of Lemma 3.2 are satisfied and hence the space $\Gamma_{p, w}(\mathcal{R}, \mu)$ is reflexive.

Let us calculate the Boyd and Zippin indices of the space $\Gamma_{p, w}(\mathcal{R}, \mu)$. By Lemma 3.1, the fundamental function of $\Gamma_{p, w}(\mathcal{R}, \mu)$ is given by the formula

$$
\begin{equation*}
\varphi_{\Gamma_{p, w}}(x)=\left(W(x)+W_{p}(x)\right)^{1 / p}, \quad x \in(0, \infty) . \tag{4.8}
\end{equation*}
$$

If $t \in[1, \infty)$, then it follows from (4.2) and (4.3) that

$$
\begin{align*}
\sup _{0<x<\infty} & \frac{W(t x)+W_{p}(t x)}{W(x)+W_{p}(x)} \geqslant \lim _{x \rightarrow \infty} \frac{W(t x)+W_{p}(t x)}{W(x)+W_{p}(x)} \tag{4.9}\\
& =t^{p} \lim _{x \rightarrow \infty}\left(\frac{1+\log x}{1+\log (t x)}\right)^{2} \lim _{x \rightarrow \infty} \frac{1+o(1)+p(1+\log (t x))}{1+o(1)+p(1+\log x)}=t^{p} .
\end{align*}
$$

If $t \in(0,1)$, then it follows from (4.1) and (4.4) that

$$
\begin{align*}
\sup _{0<x<\infty} & \frac{W(t x)+W_{p}(t x)}{W(x)+W_{p}(x)} \geqslant \lim _{x \rightarrow 0} \frac{W(t x)+W_{p}(t x)}{W(x)+W_{p}(x)} \tag{4.10}\\
& =\lim _{x \rightarrow 0}\left(\frac{1-\log x}{1-\log (t x)}\right)^{2} \lim _{x \rightarrow 0} \frac{p(1-\log (t x))+1+o(1)}{p(1-\log x)+1+o(1)}=1 .
\end{align*}
$$

Combining (4.8)-(4.10), we conclude that for $t \in(0, \infty)$,

$$
\begin{align*}
M\left(t, \Gamma_{p, w}\right) & =\sup _{0<x<\infty} \frac{\varphi_{\Gamma_{p, w}}(t x)}{\varphi_{\Gamma_{p, w}}(x)}=\sup _{0<x<\infty}\left(\frac{W(t x)+W_{p}(t x)}{W(x)+W_{p}(x)}\right)^{1 / p} \tag{4.11}\\
& \geqslant \max \{1, t\} .
\end{align*}
$$

Then it follows from (2.3) and (4.11) that

$$
M\left(t, \Gamma_{p, w}\right)=h\left(t, \Gamma_{p, w}\right)=\max \{1, t\}, \quad t \in(0, \infty) .
$$

Applying (2.1) to the submultiplicative functions $M\left(\cdot, \Gamma_{p, w}\right)$ and $h\left(\cdot, \Gamma_{p, w}\right)$, we get

$$
\begin{aligned}
& \alpha\left(\Gamma_{p, w}\right)=p\left(\Gamma_{p, w}\right)=\lim _{t \rightarrow 0} \frac{\log \max \{1, t\}}{\log t}=0 \\
& \beta\left(\Gamma_{p, w}\right)=q\left(\Gamma_{p, w}\right)=\lim _{t \rightarrow \infty} \frac{\log \max \{1, t\}}{\log t}=1
\end{aligned}
$$

which completes the proof.
4.2. Proof of Corollary 1.2. In view of Theorem 1.1, the Lorentz Gamma space $\Gamma_{p, w}\left(\mathbb{R}^{n}, m\right)$ is a reflexive rearrangement-invariant Banach function space such that its Boyd indices are trivial, that is, $\alpha\left(\Gamma_{p, w}\right)=0$ and $\beta\left(\Gamma_{p, w}\right)=1$. Since $\beta\left(\Gamma_{p, w}\right)=1$, the Hardy-Littlewood maximal operator M is unbounded on the space $\Gamma_{p, w}\left(\mathbb{R}^{n}, m\right)$ in view of the Lorentz-Shimogaki theorem (see e.g. [1], Chapter 3, Theorem 5.17). By [1], Chapter 3, Proposition 5.13, $\beta\left(\Gamma_{p, w}^{\prime}\right)=1-\alpha\left(\Gamma_{p, w}\right)=1$. Now, applying [1], Chapter 3, Theorem 5.17 to the associate space $\Gamma_{p, w}^{\prime}\left(\mathbb{R}^{n}, m\right)$, we conclude that the operator M is unbounded on the space $\Gamma_{p, w}^{\prime}\left(\mathbb{R}^{n}, m\right)$.

Acknowledgment. We would like to thank the anonymous referee for useful remarks, which helped us to improve the presentation.

References

[1] C. Bennett, R. Sharpley: Interpolation of Operators. Pure and Applied Mathematics 129. Academic Press, Boston, 1988.
[2] D. W. Boyd: The Hilbert transform on rearrangement-invariant spaces. Can. J. Math. 19 (1967), 599-616.
zbl MR doi
zbl MR doi
[3] M. Ciesielski: Relationships between K-monotonicity and rotundity properties with application. J. Math. Anal. Appl. 465 (2018), 235-258.
zbl MR doi
[4] A. Gogatishvili, R. Kerman: The rearrangement-invariant space $\Gamma_{p, \varphi}$. Positivity 18 (2014), 319-345.
zbl MR doi
[5] A. Gogatishvili, L. Pick: Discretization and anti-discretization of rearrangement-invariant norms. Publ. Mat., Barc. $4^{7} 7$ (2003), 311-358.
[6] A. Kamińska, L. Maligranda: On Lorentz spaces $\Gamma_{p, w}$. Isr. J. Math. 140 (2004), 285-318.
[7] S. G. Krejn, Yu. I. Petunin, E. M. Semenov: Interpolation of Linear Operators. Translations of Mathematical Monographs 54. American Mathematical Society, Providence, 1982.
[8] L. Maligranda: Indices and interpolation. Diss. Math. 234 (1985), 1-49.
[9] L. Pick, A. Kufner, O. John, S. Fuč̌̌k: Function Spaces. Volume 1. De Gruyter Series in Nonlinear Analysis and Applications 14. Walter de Gruyter, Berlin, 2013.
zbl MR doi
zbl MR doi

10] E. Sawyer: Boundedness of classical operators on classical Lorentz spaces. Stud. Math. 96 (1990), 145-158.
zbl MR doi
zbl MR
zbl MR doi

1] M. Zippin: Interpolation of operators of weak type between rearrangement invariant function spaces. J. Funct. Anal. 7 (1971), 267-284.

Authors' addresses: Alexei Karlovich (corresponding author), Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal, e-mail: oyk@fct.unl.pt; Eugene Shargorodsky, Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom; Technische Universität Dresden, Fakultät Mathematik, 01062 Dresden, Germany, e-mail: eugene.shargorodsky@kcl.ac.uk.

