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Abstract. We consider an asymptotic analysis for series related to the work of Hardy and
Littlewood (1923) on Diophantine approximation, as well as Davenport. In particular, we
expand on ideas from some previous work on arithmetic series and the RH. To accomplish
this, Mellin inversion is applied to certain infinite series over arithmetic functions to apply
Cauchy’s residue theorem, and then the remainder of terms is estimated according to the
assumption of the RH. In the last section, we use simple properties of the fractional part
function and its Fourier series to state some identities involving different arithmetic func-
tions. We then discuss some of their individual properties, such as convergence, as well as
implications related to known work.
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1. Introduction

In 1923 paper by Hardy and Littlewood (see [4]), we find a mention of the series

∑

n>1

Bm(nx)

ns

with σ := ℜ(s) > 1, in the setting of analysis on problems of Diophantine approx-

imation. Here Bm(x) :=
m
∑

j>0

(

m
j

)

Bm−j{x}j, where Bj is the jth Bernoulli number,

and {x} = x− [x], [x] being the floor function. Not long after, Davenport’s famous

work (see [2]) was published showing interesting properties on arithmetic series of

the form

(1.1)
∑

n>1

anB1(nx)

n
,
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where an is taken to be a multiplicative arithmetic function a : N → C. Here and

throughout the paper we will take the set of natural numbers N to exclude 0, and

write N0 to mean non-negative integers. Recall that the Möbius function is denoted

by µ(n). Series (1.1) has been explored to a great extent, see [1], [6], [9]. One of our

main results is given in the following, and is reminiscent of criteria for the Riemann

hypothesis given in [3].

Theorem 1.1. Let k > 1 be a natural number and let Υk(x) be a polynomial of

degree k plus a term of the form ḣ log(x)xk , where ḣ is a computable constant. Put

Ck = k! (2πi)−k(1 + (−1)k)ζ′(k)/ζ(k), when k > 1, and C1 = 0. We have that the

Riemann hypothesis is equivalent to

(1.2)
∑

n>1

µ(n) log(n)

nk
Bk(nx) = Ck +Υk−1(x) +O(xk−1/2)

as x → 0+.

P r o o f. First, we note from [5], equation (4.16) that for m > 1,

(1.3) Bm(x) = −m!
∑

n6=0

(2πin)−me2πinx.

Now, it is well-known (see [1], equation (5.12)) that for 0 < c < 1,

(1.4)
1

2πi

∫

(c)

es(iπ/2−log(2π)−log(nx))Γ(s) ds = e2πinx.

This integral is also noted in [8], pages 91 and 406. We will follow similar lines as [1]

in constructing our integral. Combining (1.3) with (1.4), we may sum the desired

series, by conditional convergence, to get

(1.5) −m!

2πi

∫

(c)

(es(iπ/2) + (−1)me−s(iπ/2))e−s(log(2π)+log(x))ζ(s+m)Γ(s) ds

= (2πi)mBm(x).

Here the gamma factor Γ(s) is estimated by Stirling’s formula, see [5], page 151,

equation (5.113)

Γ(σ + it) =
√
2πtσ−1/2e(−π/2)|t|+(iπ/2)(σ−1/2)

( |t|
e

)it(

1 +O
( 1

|t|
))

when s = σ + it, t 6= 0, and ζ(s + m) is also bounded on the line s = σ + it when

m > 1, since [10], page 95

ζ(s) = O(|t|k)
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for any fixed σ0 > 0 and ℜ(s) > σ0. Note that the m even case corresponds to the

Mellin transform of cos(t) and the m odd case of this integral corresponds to the

Mellin transform of sin(t), both of which are valid when 0 < ℜ(s) < 1.

Now using the formula −
∑

n>1

µ(n) log(n)/ns = ζ′(s)/ζ2(s), ℜ(s) > 1, we may again

invert to get

(1.6)
m!

2πi

∫

(c)

(es(iπ/2) + (−1)me−s(iπ/2))e−s(log(2π)+log(x)) ζ
′(s+m)

ζ(s+m)
Γ(s) ds

= (2πi)m
∑

n>1

µ(n) log(n)Bm(nx)

nm
.

Define K(s) := (es(iπ/2) + (−1)me−s(iπ/2)) and note that |K(s)| ≪ e|t|π/2. In partic-

ular, we see that

∣

∣

∣

∣

∫ c−iT

c−i(T+1/ log2(T ))

K(s)e−s(log(2π)+log(x)) ζ
′(s+m)

ζ(s+m)
Γ(s) ds

∣

∣

∣

∣

= em(log(2π)+log(x))

∣

∣

∣

∣

∫ c+m−iT

c+m−i(T+1/ log2(T ))

K(s−m)e−s(log(2π)+log(x)) ζ
′(s)

ζ(s)
Γ(s−m) ds

∣

∣

∣

∣

≫ em(log(2π)+log(x))

∫ −T

−(T+1/ log2(T ))

∣

∣

∣

∣

K(s−m)e−s(log(2π)+log(x)) ζ
′(s)

ζ(s)
Γ(s−m)

∣

∣

∣

∣

dt

≫ e(m−σ)(log(2π)+log(x))
( log(2)

cosh(σ log(2))
+

ζ′(σ)

ζ(σ)

)

T σ−1/2−m

∫ −T

−(T+1/ log2(T ))

dt

= e(m−σ)(log(2π)+log(x))
( log(2)

cosh(σ log(2))
+

ζ′(σ)

ζ(σ)

)T σ−1/2−m

log2(T )
.

Here we have made the change of variable s → s − m and estimated |ζ′(s)/ζ(s)|
using arguments from [10], Theorem 11.5 (A). Hence, we require σ − 1

2 −m < 0 for

convergence. Since we know 0 < σ < 1, our condition m > 1 is sufficient. (For

similar examples and arguments related to algebraic decay, see [8], page 127.) We

integrate over the positively oriented rectangle with corners (c, iT ), (−M − 1
2 , iT ),

(−M − 1
2 ,−iT ) and (c,−iT ), and sufficiently large M > 0. It follows from analytic

continuation that our integral is valid when m > 1. We move the line of integration

of (1.6) to the left and compute the residues of the poles at the non-trivial zeros

s = −m + ̺, the residue at the pole s = 0, and poles at the negative integers.

We compute the residues when s = −l, for l < m, giving the polynomial of degree

m− 1 plus the term ḣ log(x)xm−1 arising from the double pole at s = −m+ 1 (the

polynomial Υm−1(x)). This term is included since log(x)xm−1 6 xm−1/2 implies
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log(x) 6 x1/2, which is valid when x ∈ (0,∞). We find

(2πi)m
∑

n>1

µ(n) log(n)Bm(nx)

nm

= Cm +Υm−1(x) +m!
∑

̺

K(̺−m)e−(̺−m)(log(2π)+log(x))Γ(̺−m)

+
m!

2πi

∫

(d)

K(s)e−s(log(2π)+log(x)) ζ
′(s+m)

ζ(s+m)
Γ(s) ds

with Cm = m!(1+(−1)m)ζ′(m)/ζ(m) whenm > 1, C1 = 0, where−m < d < −m+ 1
2 .

Next we consider l > m. Computing the residues at the double poles s = −m− 2l,

l ∈ N0, gives rise to a series over l of the form
∑

l>0

(pl + rl log(x))x
m+2l. The poles at

s = −m − 2l − 1 give rise to a series of the form
∑

l>0

qlx
m+2l+1. (Here pl, rl and ql

are computable constants.) Combining these observations we find that

(2πi)m
∑

n>1

µ(n) log(n)Bm(nx)

nm

= Cm +m!
∑

̺

K(̺−m)e−(̺−m)(log(2π)+log(x))Γ(̺−m) + Υm−1(x)

+
∑

l>0

((pl + rl log(x))x
m+2l + qlx

m+2l+1).

If we let x become increasingly small, we find the desired result upon inspecting

the term e−(̺−m) log(x) in the sum over ̺ and then replacing m with k. That is, the

equivalence of the Riemann hypothesis follows from the condition that the non-trivial

zeros must have ℜ(̺) = 1
2 , and hence we estimate the sum by O(e−(1/2−m) log(x))

and negate terms from the last series we computed. �

In [10], page 198, equation (8.9.10), we find the arithmetic function br(n), r ∈ N,

and its Dirichlet generating function

(1.7)
1

ζr(s)
=

∑

n>1

br(n)

ns

for ℜ(s) > 1. We offer an analogue of Theorem 1.1 for br(n).

Theorem 1.2. Let k > 1 be a natural number, r > 1, and let Υk(x) be a polyno-

mial of degree k. Put Ck = k! (2πi)−k(1 + (−1)k)1/ζr−1(k) when k > 1, and C1 = 0.

We have that the Riemann hypothesis is equivalent to

(1.8)
∑

n>1

br(n)

nk
Bk(nx) = Ck +Υk−1(x) +O(xk−1/2) as x → 0+.
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P r o o f. The proof is identical to Theorem 1.1, but we estimate our integral with

|ζ(s)| 6 ζ(σ) for σ > 1, which implies (since ℜ(s) > 1 is a zero free region for ζ(s))

1

ζr−1(σ)
6

1

|ζr−1(s)| .

The computation involving the sum over ̺ includes computing the residues

R̺,m,r(x) := lim
s→̺−m

1

(r − 2)!

dr−2

dsr−2

(

(s− ̺+m)r−1K(s)(2πx)−s 1

ζr−1(s+m)
Γ(s)

)

,

and further, if ℜ(̺) = 1
2 ,

∑

̺

R̺,k,r(x) = O(xk−1/2),

since the terms involving log(x)r−2xk−1/2 decay faster as x → 0+. The polyno-

mial Υk(x) is defined as in the theorem, since this time the pole at s = −m + 1 is

simple. The remaining details are left to the interested reader. �

2. Some further observations

We mention some corollaries that are related to the k = 2 series from (1.5). It can

be obtained from (1.3) and the property {−x} = 1− {x} that

B1(x)
2 − 1

12
=

1

2π
2

∑

n>1

e2πixn

n2
,(2.1)

∑

n>1

(B1(nx)

n

)2

− π
2

72
=

1

2π
2

∑

n>1

d(n)
e2πixn

n2
,(2.2)

where d(n) is the number of positive divisors of n. Furthermore, we have

∑

n>1

µ(n)

n2
B1(nx)

2 =
1

2π
2
(e2πix + 1),(2.3)

∑

n>1

(µ(n)

n
B1(nx)

)2

=
1

12

ζ2(2)

ζ(4)
+

1

2π
2

∑

n>1

2v(n)

n2
e2πixn,(2.4)

∑

n>1

λ(n)

n2
B1(nx)

2 =
1

12

ζ(4)

ζ(2)
+

1

2π
2

∑

n>1

1

n4
e2πixn2

,(2.5)
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where v(n) is the number of distinct prime factors of n (see [10], page 5, equa-

tion (1.2.8), and λ(n) is equal to (−1)k if n has k prime factors, counted with

multiplicity, see [10], page 6, equation (1.2.11). The series considered in [2], [9] may

be obtained from (2.1) (or (2.3)) by differentiating and then taking the real part.

The series on the right-hand side of (2.5) is related to a function of Riemann in

considering a function which is non-differentiable, see [7]. Equivalent results could

be obtained as (2.5) regarding twice differentiability. Recall that a periodic function

with a continuous first order derivative has a uniformly convergent Fourier series.

In [4], page 216, several relevant results are given concerning convergence, one of

which is that the series
∑

n>1

1

n
e2πin2x

is not convergent for all irrational x. We close with a short proof concerning conver-

gence of some of our arithmetic sums.

Corollary 2.1. The function defined by

f(z) =
∑

n>1

(µ(n)

n
B1(nz)

)2

,

is 1-periodic, converges locally uniformly on H := {z ∈ C : ℜ(z) > 0}, and conse-
quently is analytic there. Furthermore, the same can be said about (2.3).

P r o o f. Since the Dirichlet series
∑

n>1

an/n
s with an = 2v(n)/n2 converges abso-

lutely for ℜ(s) > −1, we have an = O(n−1). The result now clearly follows when

comparing with the right side of (2.4). The series (2.3) follows from the comparison

test. �
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