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Abstract. Let Dm be an elliptic curve over Q of the form y2 = x3 −m2x+m2, where m
is an integer. In this paper we prove that the two points P−1 = (−m,m) and P0 = (0, m)
on Dm can be extended to a basis for Dm(Q) under certain conditions described explicitly.
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1. Introduction

The family Em,n : y
2 = x3 − m2x + n2 of elliptic curves has been extensively

studied by several mathematicians, see [1], [2], [4], [9], [10], [17], [18]. Many papers

have been devoted on this family to study its different properties. In [2], Brown and

Myers constructed an infinite family of elliptic curves E1,n : y
2 = x3 − x + n2 and

showed that the rank of the Mordell-Weil group E1,n(Q) > 2. Antoniewicz in [1]

produced another family of elliptic curves Em,1 : y
2 = x3 − m2x + 1 and proved

that the rank of the Mordell-Weil group Em,1(Q) > 3. Eikenberg in [4] studied the

curves E1,n and Em,1 over function fields. In particular, Eikenberg used the theory

of Mordell-Weil lattices (see [12]) to find the basis for E1,n(Q(n)) and Em,1(Q(m)),

where Q(n) and Q(m) are function fields. Later in [8], Fujita and Nara, exploiting

the estimates of canonical heights, proved that the explicit points in the families of

elliptic curves E1,n and Em,1 can always be in system generators of the Mordell-Weil

group. There are several references describing explicitly the basis for the Mordell-

Weil groups of parametric families of elliptic curves E over Q under the assumption

that E has rank two or three, see, e.g. [5], [6], [7], [8], [9].
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In this paper we attempt to study an infinite family of elliptic curves of the form

(1) Dm : y2 = x3 −m2x+m2,

where m is an integer. We put

P±1 = (±m,m) and P0 = (0,m).

It is easy to see that the points P±1, P0 are in Dm(Q).

The classification of rational elliptic surfaces (see [11]) implies the following result.

Theorem 1.1. The Mordell-Weil group Dm(Q̄(m)) has rank 2 with the trivial

torsion subgroup, generated by the points P−1 and P0.

Since both of the generators of this group are rational, the entire group must be

defined over Q(m), therefore, we have the following corollary.

Corollary 1.2. Dm(Q(m)) has rank 2 generated by the points P−1 and P0.

Let C be a curve defined over a field k, let S be an elliptic surface over C, and

let K = k(C). Then one can view S as an elliptic curve E over the field K. For any

t ∈ C(k), we denote by E(t) the specialization of E at t. Now we state the Silverman

Specialization Theorem.

Theorem 1.3 ([15], Theorem 11.4, page 271). The specialization map σt :

E(K) → E(t)(k) is injective for all but finitely many t ∈ C(k).

Since the rank ofDm(Q(m)) is equal to 2, by the Silverman Specialization Theorem

we obtain the rank of Dm(Q) > 2 for all but finitely many values of m and hence

the points P−1 and P0 are independent for all but finitely many m. Therefore the

immediate question one can ask is “can the set {P−1, P0} be extended to a basis
of Dm(Q)?” In this paper, we answer this question affirmatively. The main result of

the paper is the following.

Theorem 1.4. Letm be a square-free integer,m≡ 1 (mod 4). Let P−1=(−m,m)

and P0 = (0,m) be integral points of Dm(Q). Assume that m > 4 and the p primary

part of 27− 4m2 is square-free for any p > 3. Then for all but finitely many m the

set of points {P0, P−1} can be extended to a basis for Dm(Q).

The family of elliptic curves Dm has a unique property (double lift) in comparison

to the curves E1,n and Em,1 considered in [8]. Brown and Myers in [2] proved

that E1,n(Q(n)) has rank 2 generated by P = (0, n) and Q = (1, n). Further, they
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proved that there are infinitely many values of n such that E1,n(Q) has rank at

least 3 by constructing some infinite families of curves with rank at least 3. For

example, suppose n(t) = 54t2−165t−90. Then the subfamily E1,n(t)(Q(t)) contains

an additional point R(t) = (36t+17, 54t2+267t+114) and it is independent from the

points P and Q, see [2]. This can be viewed as a lift of the point (17, 114) ∈ E1,90(Q),

since this is obtained when specializing to t = 0. This particular lift increases the rank

of E1,n by 1. But, there exists a quadratic polynomial m(t) such that Dm(t)(Q(t))

contains four independent points. Two of these points can be chosen as lifts of the

point (−7, 35) ∈ D14(Q), see [4]. This results in a double lift of the point (−7, 35)

and hence increases the rank by 2. For more general criteria for lifting the points

of E1,n and Em,1 one may refer to [4].

The organization of this paper is as follows. In Section 2 we review basic notions

from the field of elliptic curves. In Section 3 we study the local properties of the

curve Dm and also compute the bounds of the canonical heights for P−1, P0. At the

end we complete the proof of Theorem 1.4. Our proofs closely follow the arguments

from [8].

2. Preliminaries

In this section we develop necessary background material needed for a better

exposition and clarity of presentation of this paper.

Let E be an elliptic curve over a number field K. It is known by the Mordell-

Weil Theorem that the set of K-rational points E(K) is a finitely generated abelian

group. If the absolute value of the discriminant of E is large, then it is very difficult

to compute E(K) even if K = Q. The main difficulties arise from the free part of

the group. The Weierstrass equation for the elliptic curve E over a number field K is

(2) E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ K. By completing the square of the left hand side of (2),

we have

(3) (2y + a1x+ a3)
2 = 4x3 + b2x

2 + 2b4x+ b6,

where

b2 = a21 + 4a2, b4 = 2a4 + a1a3, b6 = a23 + 4a6,(4)

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.

We also have

c4 = b22 − 24b4, c6 = −b22b8 + 36b2b4 − 216b6.
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The discriminant of the elliptic curve E is defined as

(5) ∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

Denote by x(P ) the x-coordinate of a point P on E. For P = (x, y) ∈ E(Q), we

have the duplication formula

(6) x(2P ) =
x4 − b4x

2 − 2b6x− b8
4x3 + b2x2 + 2b4x+ b6

.

Next we define the canonical height. Let P = (x, y) ∈ E(Q). If x = b/a and

gcd(a, b) = 1, then the naive height h : E(Q) → R is defined by

h(P ) = max{log |a|, log |b|}

and the canonical height ĥ : E(Q) → R is defined by

ĥ(P ) = lim
n→∞

1

4n
h(2nP ).

We compute the canonical height using the local height. One can refer to [14],

page 341 for the existence of the local height function. The canonical height can

be decomposed as the sum of local heights. In this paper the definition of the local

height function follows, see [15], Chapter VI. We denote the local height function

on E for a place p by λp. For K = Q, we have the decomposition

(7) ĥ(P ) =
∑

p : prime

λp(P ) + λ∞(P ) for P ∈ E(Q) \ {O}.

In addition, the canonical height gives a bilinear pairing on E(Q) called the canonical

height pairing (or Néron-Tate height pairing):

(8) 〈P,Q〉 = 1

2
(ĥ(P +Q)− ĥ(P )− ĥ(Q)).

Finally, for a prime number p denote by vp the valuation onQ, i.e., vp(·)=− log |·|p.
Now we prove few lemmas which we use in the proof of our main theorem.

Lemma 2.1. Let A = (x′, y′) and B = (x, y) be points in Dm(Q) such that

A = 2B and x′ ∈ Z. Then

(1) x ∈ Z,

(2) x ≡ m (mod 2).

1136



P r o o f. Equating the x-coordinates of A and 2B, where the x-coordinate of 2B

is calculated using the formula given in (6), and then substituting x = u/s with

gcd(u, s) = 1, we get, after simplifying,

(9) (m4 − 4m2x′)s4 + (4m2x′ − 8m2)us3 + 2m2u2s2 − 4x′u3s+ u4 = 0.

From (9), it is clear that s | u4. Since gcd(u, s) = 1, we have s = ±1 and hence x ∈ Z.

Further, rewriting (9) as

(x2 +m2)2 = 4(x′(x3 −m2x+m2) + 2xm2),

we have 2 | (x2 +m2), i.e., x ≡ m (mod 2). �

Lemma 2.2. Let m be a positive integer with m ≡ 1 (mod 4). Then the point

Am = (0,m) is an element of Dm(Q) \ 2Dm(Q).

P r o o f. Suppose Am = 2G for some G = (x, y) ∈ Dm(Q). Then from (6), we

calculate x(2G) and equating the x-coordinates of 2G and Am, we have

x4 + 2m2x2 +m4 − 8xm2

4(x3 −m2x+m2)
= 0,

that is,

(10) (x2 +m2)2 = 8xm2.

From (10) we observe that x = 2k2 for some k ∈ Z. Substituting x into (10), we get

(11) 16k8 + 8m2k4 +m4 = 16k2m2.

It follows that for any integer k, taken modulo 4, the equation (11) has no solution.

Consequently the equation (11) has no rational solution. Therefore, Am /∈ 2Dm(Q).

�

Lemma 2.3. Let m be a positive integer with m ≡ 1 (mod 4). Then the point

Bm = (m,m) is an element of Dm(Q) \ 2Dm(Q).

P r o o f. Suppose Bm = (m,m) = 2G for some G = (x, y) ∈ Dm(Q). Using (6)

again we get

(12)
x4 + 2m2x2 +m4 − 8xm2

4(x3 −m2x+m2)
= m.
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A further simplification of (12) yields

x4 − 4mx3 + 2m2x2 + (4m3 − 8m2)x+m4 − 4m3 = 0,

which can be rewritten as

(13) (x−m)4 − 4(x−m)2m2 − 8(x−m)m2 − 12m3 + 4m4 = 0.

By Lemma 2.1, we substitute x−m = 2s, which results in the simplification of (13) as

(2s2 −m2)2 = (4s+ 3m)m2.

The above equation holds only if (4s + 3m) = w2 for some w ∈ Z. Since m ≡ 1

(mod 4), 4s + 3m ≡ 3 (mod 4) leads to a contradiction that it is a perfect square.

This completes the proof. �

Lemma 2.4. The point Am +Bm = (−m,m) is an element of Dm(Q) \ 2Dm(Q)

for any positive integer m with m ≡ 1 (mod 4).

P r o o f. The proof is similar to that of Lemma 2.3. �

3. Local study of the curve Dm : y2 = x3 −m2x+m2

Lemma 3.1. If m is 3rd power-free and m 6≡ 0 (mod 4), then the Weierstrass

equation

(14) y2 = x3 −m2x+m2

for Dm is global minimal.

P r o o f. Taking into consideration (see [16], Chapter VII, Remark 1.1), it is

enough to show that at least one of the relations vp(c4) < 4, vp(c6) < 6 and

vp(∆) < 12 holds for every prime p. Now we have

c4 = 24 · 3m2, c6 = −25 · 33m2, ∆ = −24m4(−22m2 + 27).

If p > 3 then either vp(c4) < 4 or vp(c6) < 6 always holds. If p ∈ {2, 3} then
vp(∆) < 12 always holds. �

Lemma 3.2. If m 6≡ 0 (mod 2), m is square-free and the p primary part of

27− 4m2 is square-free, then the reduction type of Dm at prime p is as follows:

(1) IV if p = 2 or (p > 3 and vp(m) = 1).

(2) I0 if p = 3 and p ∤ m.

(3) Ik if p | (27− 4m2), where k = vp(∆).
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P r o o f. First we find the reduction type of Dm at p = 2. We have seen from

Lemma 3.1 thatDm is minimal. By [16], Chapter VII, Proposition 1.3, every minimal

Weierstrass equation is unique up to a change of coordinates by some [1, r, s, t], where

[1, r, s, t] means the transformation

x 7→ u2x+ r, y 7→ u3y + su2x+ t.

Thus, by transforming Dm by [1, 1, 1, 1], we get

y2 + 2xy + 2y = x3 + 2x2 + (1−m2)x

with b8 = −m4+6m2+3, b6 = 4. Since m ≡ 1 (mod 2), we have b8 ≡ 0 (mod 8) and

b6 ≡ 4 (mod 8) which indicates the type IV by Tate’s algorithm, see [15], page 366.

Next we check the reduction type at p = 3. Suppose m 6≡ 0 (mod 3). Then clearly

3 ∤ (4m2 + 27). Thus, ∆ = −16m4(−4m2 + 27) is not divisible by 3 and hence

we have reduction type I0, see [15], Exercise 4.48. Next assume m ≡ 0 (mod 3).

As m is square free, we have v3(∆) = 6. Now there exists a minimal Weierstrass

equation y2 = x3+a2x
2+a4x+a6 for Em such that a2, a4, a6 and ∆ are as described

in the table of Exercise 4.48 in [15]. Since Em is also minimal, we can transform

y2 = x3 + a2x
2 + a4x+ a6 into y

2 = x3 −m2x+m2 by some [1, r, s, t]. Transforming

y2 = x3 −m2x+m2 by [1, 3, 0, 0], we have the equation

y2 = x3 + 9x2 + (27−m2)x+ 27− 2m2.

So, vp(a2) = vp(a4) = vp(a6) = 2. Therefore the possible reduction type is IV ,

see [15], Exercise 4.48.

Now onwards we assume p > 5 to find the reduction type of Em at p. Now there

exists a minimal Weierstrass equation y2 = x3 + a4x + a6 for Em such that a4, a6
and ∆ are as described in the table of Exercise 4.47 in [15]. Since the curve Em

is minimal, we can transform y2 = x3 + a4x + a6 to y
2 = x3 − m2x + m2 by the

transformation [1, 0, 0, 0]. If p divides ∆ then p divides m or p divides 27 − 4m2.

In the former case, as m is square-free, we have vp(∆) = 4, vp(a4) = vp(−m2) = 2

and vp(a6) = vp(m
2) = 2. Therefore the possible reduction type is IV , see [15],

Exercise 4.47. If p divides 27 − 4m2 then using the Legendre symbol, one can see

that p ≡ ±1 (mod 12). Since p primary part of 27 − 4m2 is square-free, we have

vp(a4) = 0 = vp(a6). Hence the possible reduction type is Ik, see [15], Exercise 4.47.

�

The non-Archimedean part of canonical height can be computed using Silverman’s

algorithm (see [14], Theorem 5.2) and we use modified Tate’s series for the compu-

tation of the Archimedean part.

1139



Lemma 3.3 ([8], Lemma 5.2). Let E/R be an elliptic curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Assume that x(Q) > 0 for any Q in the connected component of O in E(R). Then

for any P ∈ E(R) \E[2], the following convergent series gives the Archimedean part

of the local height function:

(15) λ∞(P ) =
1

8
log |u(P )|+ 1

8

∞
∑

k=1

4−k log |Z(2kP )|+ 1

12
v∞(∆),

where

(16) u(Q) = x4(Q)− b4x
2(Q)− 2b6x(Q)− b8,

Z(Q) = u(Q)/x4(Q).

Lemma 3.4 ([8], Lemma 5.3). Let E be an elliptic curve defined by a simple form

y2 = x3 + a2x
2 + a4x+ a6

and let

k = 3x2 + 2a2x+ 4a4 − a22,

l = 9x3 + 9a2x
2 + (21a4 − 4a22)x+ 27a6 − 2a2a4

be functions on E. Then the identity

(17) 16k · ψ3 − 4l · ψ2
2 = ∆

holds, where ψ2 and ψ3 are the division polynomials.

Proposition 3.5. Assume that m is a square-free integer with m > 10 and that

the p-primary part of (−4m2+27) is square-free for any p > 3. Then for any rational

non-torsion point P ∈ Dm(Q) we have

ĥ(P ) >
1

6
logm− 1

3
log 2.
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P r o o f. Since m > 10, we have 27− 4m2 < 0 and hence the discriminant of Dm

is positive. Thus the number of real roots of the cubic polynomial x3 −m2x+m2 is

three. Then for any Q in the connected component of O in Dm(R) we have x(Q) > 0

by [8], Lemma 3.7.

By Lemma 3.3 for P ∈ Dm(Q) \Dm[2] we have

(18) λ∞(P ) =
1

8
log |u(P )|+ 1

8

∞
∑

k=1

4−k log |Z(2kP )|+ 1

12
v∞(∆),

where

u(P ) = x4 − b4x
2 − 2b6x− b8.

Note that in the above expression of u(P ), we have x = x(P ). Using (4), we have

b2 = 0, b4 = −2m2, b6 = 4m2, b8 =
b2b6 − b24

4
= −m4.

Thus, from (16),

(19) u(P ) = (x2 +m2)2 − 8m2x,

Z(P ) =
u(P )

x4(P )
=

(x2 +m2)2 − 8m2x

x4
.

As (x2+m2)2−8m2x− [(x2 +m2)2+16x2−2(x2+m2)4x] implies 8x2(x−2) > 0

for x > 2, we infer that

m4 < (x2 +m2 − 4x)2 < u(P )

for x > 2. Also,

(20) x4 < (x2 +m2 − 4x)2 < u(P )

implies

(21) 1 <
(

1 +
m2 − 4x

x2

)2

< Z(P ).

Hence

λ∞(P ) =
1

8
log |u(P )|+ 1

8

∞
∑

k=1

4−k log |Z(2kP )|+ 1

12
v∞(∆)

>
1

8
logm4 +

1

8

∞
∑

k=1

4−k log 1 +
1

12
v∞(∆) >

1

2
logm+

1

12
v∞(∆).
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Next we compute the local height for non-Archimedean places. Let

ψ2 = 2y, ψ3 = 3x4 − 6m2x2 + 12m2x−m4

be the division polynomials of Dm. Set x = x(P ), y = y(P ). If P reduces to

a nonsingular point modulo 2 then

λ2(P ) =
1

2
logmax{1, |x(P )|2}+

1

12
v2(∆) >

1

12
v2(∆).

Next assume that P reduces to a singular point modulo 2. Since m ≡ 1 (mod 2) we

have v2(x) = 0. Further, since v2(3x
2−m2) > 0, so v2(y

2) = v2(x
3−m2x+m2) = 0

implies v2(y) = 0. Thus,

λ2(P ) =
1

3
log |ψ2(P )|2 +

1

12
v2(∆) =

1

3
log |2y|2 +

1

12
v2(∆) = −1

3
log 2 +

1

12
v2(∆).

If p = 3 and p ∤ m, then the reduction type is I0. So

λ3(P ) =
1

2
logmax{1, |x(P )|3}+

1

12
v3(∆) >

1

12
v3(∆).

Now for p > 3 and p | (27 − 4m2) the reduction type is Ik with k = vp(∆) by

Lemma 3.2. For this case,

λp(P ) =
1

2
logmax{1, |x(P )|p}+

1

12
vp(∆) >

1

12
vp(∆).

Assume p > 3 and p | m. In this case the reduction type is IV and hence

λp(P ) =
1

3
log |ψ2(P )|p +

1

12
vp(∆).

Since vp(3x
2 −m2) > 0 we have vp(x) > 0. Again, vp(y

2) = vp(x
3 −m2x+m2) > 0

implies vp(y) > 0. From (17), we have the identity

(22) 16(3x2 − 4m2)ψ3(P )− 4(9x3 − 21m2x+ 27m2)ψ2(P )
2 = ∆.

Note that

(23)























ordp(∆) = 4,

ordp(3x
2 − 4m2) = 2,

ordp(9x
3 − 21m2x+ 27m2) = 2,

ordp(ψ3(P )) = 3.
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Thus from (22) and (23), we deduce that ordp(ψ
2
2(P )) 6 2 which implies

ordp(ψ2(P )) 6 1.

Hence,

λp(P ) =
1

3
log |ψ2(P )|p +

1

12
vp(∆) > −1

3
log p+

1

12
vp(∆) > −1

3
logm+

1

12
vp(∆).

Finally, we have

(24) ĥ(P ) =
∑

p : prime

λp(P ) + λ∞(P ) > −1

3
log 2− 1

3
logm+

1

2
logm

=
1

6
logm− 1

3
log 2.

This completes the proof of Proposition 3.5. �

Proposition 3.6. Let P0 = (0,m), P−1 = (−m,m) and P1 = (m,m) be integral

points on

Dm : y2 = x3 −m2x+m2.

Assume m > 10. Then

ĥ(P0) <
1

6
logm+ 0.46409, ĥ(P−1) <

1

6
logm+ 0.23304.

P r o o f. First we have the explicit expression for P0 + P1 = (−m,m). In the

proof of Proposition 3.5, we saw that

u(Q) = (x(Q)2 +m2)2 − 8mx(Q)2

for Q ∈ Dm(Q) \Dm[2]. Thus we have

u(P0) = m4, u(P1) = 4m4 − 8m3, u(P0 + P1) = 4m3 + 8m3.

Hence for P ∈ {P0, P1, P0 + P1},

u(P ) 6 4m4 + 8m3 = 4m4
(

1 +
2

m

)

6 4m4
(

1 +
2

10

)

=
24m4

5
.

Further, from (19), one can deduce the inequality

Z(2kP ) <
(

1 +
m2

(m− 1)2

)2

6

(

1 +
102

92

)2

=
(181

81

)2
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for any P . So for P ∈ {P0, P1, P0 + P1} we have

λ∞(P ) =
1

8
log |u(P )|+ 1

8

∞
∑

k=1

4−k log |Z(2kP )|+ 1

12
v∞(∆)

<
1

8
log

(

4m4 × 6

5

)

+
1

8

∞
∑

k=1

4−k log
(181

81

)2

+
1

12
v∞(∆)

=
1

8
log 4 +

1

2
logm+

1

8
log

6

5
+

1

3
log

(181

81

)

+
1

12
v∞(∆).

For p = 2, since v2(x(P0)) > 0 and v2(x(P1)) = 0, therefore P0 and P−1 reduce to

a nonsingular point and a singular point, respectively. If singular, then the reduction

type is IV by Lemma 3.2. Hence,

λ2(P0) =
1

2
logmax{1, |x(P0)|2}+

1

12
v2(∆) =

1

12
v2(∆),

λ2(P−1) 6 −1

3
log 2 +

1

12
v2(∆).

For p > 3 and p | m, we have the bound

λp(P ) = −1

3
log p+

1

12
v2(∆)

for any integral point P ∈ {P0, P−1, P0 + P−1} and this implies
∑

p : prime

λp(P ) = −1

3
logm+

1

12
v2(∆).

Similarly, when p > 3 and p ∤ m, we have λp(P ) =
1
12v2(∆) for any integral point.

Thus,

ĥ(P0) <
1

2
logm+

1

8
log 4 +

1

8
log

6

5
+

1

3
log

181

81
− 1

3
logm

<
1

6
logm+ 0.46409 . . .

and

ĥ(P−1) <
1

2
logm+

1

8
log 4 +

1

8
log

6

5
+

1

3
log

181

81
− 1

3
log 2− 1

3
logm

<
1

6
logm+ 0.23304 . . .

�

Now we are ready to prove Theorem 1.4.
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P r o o f of Theorem 1.4. Let m be a square-free integer with m ≡ 1 (mod 4).

Assume that m > 10. We know that the points P−1 and P0 are independent for

all but finitely many m. Since the rank of Dm(Q) is at least 2 for all but finitely

many m, by the elementary divisor theory, there exist generators G1 and G2 of the

free part of Dm(Q) such that P0, P−1 ∈ ZG1 + ZG2. Let ν be the index of the

subgroup ZP0 + ZP−1 in ZG1 + ZG2. It is sufficient to show ν = 1. By Siksek’s

theorem (see [13], Theorem 3.1) we have

ν 6
2√
3

√

R(P0, P−1)

λ
,

where R(P0, P−1) is the regulator of P0 and P−1, explicitly

R(P0, P−1) = ĥ(P0)ĥ(P−1)− 〈P0, P−1〉2

= ĥ(P0)ĥ(P−1)−
1

4
(ĥ(P0 + P−1)− ĥ(P0)− ĥ(P−1))

2,

and λ is any positive lower bound of ĥ for non-torsion points in Dm(Q). Note that 〈·〉
is the Néron-Tate height pairing defined in (8). Hence by Propositions 3.5 and 3.6,

we have

(25) ν 6
2√
3

√

ĥ(P0)ĥ(P−1)

λ
6 f(m),

where

f(m) :=
2√
3

√

(16 logm+ 0.46409)(12 logm+ 0.23304)

(16 logm− 0.230)
.

One can see that f(m) is a decreasing function. By calculation we find that f(m) is

less than 3 for m > 34. From the proof of Lemmas 2.2, 2.3 and 2.4, one can conclude

that P0, P−1, P0 + P−1 6∈ 2Dm(Q) and hence 2 ∤ ν for m > 10. Thus, ν is 1 for

m > 34. Finally for m 6 33, using Magma function “Generators” (see [3]), we check

that {P0, P−1} can be extended to a basis. In principle, if we consider that R is
the regulator of the given basis and that R′ is the regulator of a set which consists

of P0, P−1 and an appropriate point of the given basis then we check the ratio R
′/R

which is less than 4 and nonzero. This completes the proof of Theorem 1.4. �
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4. Concluding remark

Consider the elliptic curve Em,n : y
2 = x3 −m2x + n2. In [8], Fujita and Nara

proved two results. First they took the curve E1,n and proved that for n > 2 the

points (0, n), (−1, n) can be extended to a basis for E1,n(Q). Second, they proved

that for the curve Em,1 the points (0, 1), (−m, 1), (−1,m) can be extended to a basis

for Em,1(Q). Being inspired with their work, we studied similar properties for the

curve Dm(Q). Precisely we proved that the points (−m,m), (0,m) can be extended

to a basis for Dm(Q) under some conditions on m, which are stated in Theorem 1.4.

Now if we consider the more general case Em,n : y
2 = x3−m2+n2, where m and n

are not necessarily coprime and m 6= n, we can easily see that the points P0 = (0, n)

and P±1 = (±m,n) are integral points on Em,n. For the curve Em,n we cannot

determine the rank of Em,n(Q(m,n)) like we did for the curve y2 = x3 −m2x+m2

in Theorem 1.1. Further, ifm ≡ n ≡ 0 (mod 2) then various reduction types of Em,n

are possible. But if m ≡ n ≡ 0 (mod 3), then again it is not possible to decide the

reduction type of Em,n which essential to estimate the canonical local height. Thus,

it seems a new technique is required to study the Mordell-Weil basis for this general

case.
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