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Abstract. We consider a variety of Euler’s sum of powers conjecture, i.e., whether the
Diophantine system

{

n = a1 + a2 + . . .+ as−1,

a1a2 . . . as−1(a1 + a2 + . . .+ as−1) = bs

has positive integer or rational solutions n, b, ai, i = 1, 2, . . . , s− 1, s > 3. Using the theory
of elliptic curves, we prove that it has no positive integer solution for s = 3, but there are
infinitely many positive integers n such that it has a positive integer solution for s > 4.
As a corollary, for s > 4 and any positive integer n, the above Diophantine system has
a positive rational solution. Meanwhile, we give conditions such that it has infinitely many
positive rational solutions for s > 4 and a fixed positive integer n.

Keywords: Euler’s sum of powers conjecture; elliptic curve; positive integer solution;
positive rational solution

MSC 2020 : 11D72, 11D41, 11G05

1. Introduction

In 1769, Euler (see [5], page 209) conjectured that the Diophantine equation

(1.1) as1 + as2 + . . .+ ass−1 = ass
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has no positive integer solution (a1, a2, . . . , as) for s > 3. It is called Euler’s sum of

powers conjecture.

For s = 3, equation (1.1) corresponds to the case n = 3 of Fermat’s Last Theorem:

xn + yn = zn, n > 3.

For s = 4, in 1988, Elkies in [4] disproved Euler’s sum of powers conjecture by

showing that a41 + a42 + a43 = a44 has infinitely many positive integer solutions. In

particular, he gave the solution

26824404 + 153656394 + 187967604 = 206156734.

Shortly after, Frye (see [5], page 210) got the smallest counterexample

958004 + 2175194 + 4145604 = 4224814.

For s = 5, in 1966, Lander and Parkin in [6] found the first counterexample

275 + 845 + 1105 + 1335 = 1445.

In 2004, Frye (see [9]) obtained the only other known primitive solution for s = 5:

555 + 31835 + 289695 + 852825 = 853595.

For s > 6, there are no known solutions. More information about Euler’s sum

of powers conjecture can be found in [5], pages 209–218: D1 Sums of like powers.

Euler’s conjecture.

In 2013, Cai and Chen in [1] investigated the question to express a positive inte-

ger n as a sum of s positive integers whose product is a kth power, i.e.,

n = a1 + a2 + . . .+ as

such that

a1a2 . . . as = bk

for positive integers n, ai, b, k and k > 2. This can be considered a new variant of

the Hilbert-Waring problem

n = ak1 + ak2 + . . .+ aks .

In 2015, Cai, Chen and Zhang in [2] studied the Diophantine system

A+B = C, ABC = Dn,
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where A, B, C, D, n are positive integers and n > 3, which is a new generalization

of Fermat’s Last Theorem.

Now we expand this idea to Euler’s sum of powers conjecture and consider whether

the Diophantine system

(1.2)

{

n = a1 + a2 + . . .+ as−1,

a1a2 . . . as−1(a1 + a2 + . . .+ as−1) = bs

has positive integer or rational solutions n, ai, i = 1, 2, . . . , s− 1, b, and s > 3.

Obviously, the solutions of (1.1) are a subset of the solutions of (1.2). If ai,

i = 1, 2, . . . , s− 1, and a1+a2+ . . .+as−1 are relatively prime in pairs, (1.2) reduces

to Euler’s sum of powers conjecture. The motivation for studying (1.2) is that we try

to find a counterexample to Euler’s sum of powers conjecture for s = 6. Although we

cannot obtain any counterexamples, we find some interesting results by the theory

of elliptic curves.

For positive integer solutions of (1.2), we have:

Theorem 1.1. For s = 3 and any positive integer n, (1.2) has no positive integer

solution (a1, a2, b).

This is a special case studied in [1], Theorem 2, but we give a proof in a different

way.

Theorem 1.2.

(1) For s = 4, there are infinitely many positive integers n such that (1.2) has

a positive integer solution (a1, a2, a3, b).

(2) For s > 5, there are infinitely many positive integers n such that (1.2) has

a positive integer solution (a1, a2, . . . , as−1, b), which depends on s− 3 positive

rational parameters.

For positive rational solutions, let us note that if (1.2) has a positive rational

solution for some positive integer n, then it has a positive rational solution for each

positive integer N , by the following transformation















N =
a1N

n
+

a2N

n
+ . . .+

as−1N

n
,

a1N

n
·
a2N

n
· . . . ·

as−1N

n
·
(a1N

n
+

a2N

n
+ . . .+

as−1N

n

)

=
(bN

n

)s

.

Therefore, from Theorem 1.2, we obtain:

Corollary 1.1. For s > 4 and any positive integer n, (1.2) has a positive rational

solution.
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Furthermore, we can ask the question: for which positive integer n does (1.2) have

infinitely many positive rational solutions? We give a partial answer to it under some

conditions in the following theorem.

Theorem 1.3. For s > 4 and a fixed positive integer n, if (1.2) has a positive

rational solution (a′1, a
′

2, . . . , a
′

s−1, b
′) and the elliptic curve

E3 : Y 2 = X3 − 27u′3v′(u′v′3 − 24)X + 54u′4(u′2v′6 − 36u′v′3 + 216)

has positive rank, then (1.2) has infinitely many positive rational solutions.

2. Proofs of the theorems

P r o o f of Theorem 1.1. For s = 3, (1.2) reduces to







n

b
= b1 + b2,

b1b2(b1 + b2) = 1,

where

bi =
ai

b
∈ Q

+, i = 1, 2.

Let us consider the cubic curve

b1b2(b1 + b2) = 1,

which equals
(b1

b2

)2

+
b1

b2
=

1

b32
.

Let

u =
b1

b2
, v =

1

b2
,

we have

u2 + u = v3.

Taking y = 16u+ 8, x = 4v, we get the elliptic curve

y2 = x3 + 64.

Using the Magma package (see [7]), the rank of it is 0, and the only rational points

are

(x,±y) = (8, 24), (0, 8), (−4, 0).

Tracing back, there is no positive integer solution of (1.2). �
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P r o o f of Theorem 1.2. (1) For s = 4, (1.2) leads to







n

b
= b1 + b2 + b3,

b1b2b3(b1 + b2 + b3) = 1,

where

bi =
ai

b
∈ Q

+, i = 1, 2, 3.

It’s easy to see that (a1, a2, a3) = (1, 2, 24) satisfies (1.2), then

(b1, b2, b3) =
(1

6
,
1

3
, 4
)

.

Let us consider the positive rational solutions of the Diophantine system















b1b2b3 =
2

9
,

b1 + b2 + b3 =
9

2
.

Eliminating b3, we get

18b21b2 + 18b1b
2
2 − 81b1b2 + 4 = 0,

then

18
b2

b1
+ 18

(b2

b1

)2

− 81
b2

b1

1

b1
+ 4

( 1

b1

)3

= 0.

Taking

u =
b2

b1
, v =

1

b1
,

we have the curve

C1 : 18u2 + 18u− 81uv + 4v3 = 0.

By the map ϕ1 : C1 7→ E1,

y = 384u− 864v + 192, x = −32v + 243

and we obtain the elliptic curve

E1 : y2 = x3 − 166779x+ 26215254.

Using the Magma package (see [7]), the rank of E1 is 1 and then there are infinitely

many rational points on it.
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From the above transformations, we have































b1 =
32

243− x
,

b2 =
y − 27x+ 6369

12(243− x)
,

b3 =
−y − 27x+ 6369

12(243− x)
.

Then






























a1 =
32

243− x
b,

a2 =
y − 27x+ 6369

12(243− x)
b,

a3 =
−y − 27x+ 6369

12(243− x)
b

is the solution of (1.2).

In view of bi > 0, we get the condition

x <
2123

9
, |y| < −27x+ 6369.

It is easy to see that the point P = (235, 8) satisfies this condition. By the theorem

of Poincaré and Hurwitz (see [10], Chapter V, page 78, Satz 11) about the density

of rational points, then there are infinitely many rational points on E1 satisfying

x <
2123

9
, |y| < −27x+ 6369.

Therefore, we can find infinitely many positive rational solutions bi, i = 1, 2, 3,

which leads to infinitely many positive integers ai, i = 1, 2, 3, by multiplying the

least common denominator of bi. This proves that for s = 4 there exist infinitely

many positive integers n such that (1.2) has a positive integer solution.

(2) For s > 5, (1.2) reduces to







n

b
= b1 + b2 + . . .+ bs−1,

b1b2 . . . bs−1(b1 + b2 + . . .+ bs−1) = 1,

where

bi =
ai

b
∈ Q

+, i = 1, . . . , s− 1.

Take

x = b1, y = b2, z = b3, u = b4 . . . bs−1, v = b4 + . . .+ bs−1,
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then






n

b
= x+ y + z + v,

xyzu(x+ y + z + v) = 1.

We need to study the rational points on the cubic curve

xyzu(x+ y + z + v) = 1.

Let z = ut2y, then we get

(2.1) t2u2y2x2 + t2u2y2(t2uy + v + y)x− 1 = 0.

Consider the above equation as a quadratic equation in x. If it has rational solutions,

then the discriminant

∆(y) = u2t2y2(u2t2(ut2 + 1)2y4 + 2vu2t2(ut2 + 1)y3 + u2v2t2y2 + 4)

should be a perfect square. It follows from the study of the rational parametric

solutions in Q(t) on the quartic curve

C2 : w2 = u2t2(ut2 + 1)2y4 + 2vu2t2(ut2 + 1)y3 + u2v2t2y2 + 4.

The discriminant of C2 is

∆(t) = 256u6t6(ut2 + 1)4(64u2t4 + u(uv4 + 128)t2 + 64)

and is nonzero as an element of Q(t) since u, v ∈ Q+. Then C2 is smooth.

By the method described in [8], page 77 (or [3], page 476, Proposition 7.2.1), we

can transform C2 into the family of elliptic curves

E2 : Y 2 = X(X2 + u2v2t2X − 16u2(ut2 + 1)2t2)

by the inverse birational map ϕ2 : C2 7→ E2 with

y =
Y − uvtX

ut(ut2 + 1)X
, w =

Y 2 − u2v2t2X2 − 2X3

4ut(ut2 + 1)X2

and

X = 2ut(ut2 + 1)(t3u2y2 + tuvy + tuy2 − w),

Y = 2u2t2(ut2 + 1)(2t2uy + v + 2y)(t3u2y2 + tuvy + tuy2 − w).

In view of u, v ∈ Q+, we can take

u =
p

q
, v =

c

d
,
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where p, q, c, d are positive integers. Let

U = q4d2X, V = q6d3Y,

then E2 reduces to

E ′

2 : V 2 = U(U2 + c2p2q2t2U − 16d4p2q4t2(pt2 + q)2).

Note that the point

P = (4pd2q2(pt2 + q)t, 4cd2p2q3(pt2 + q)t2)

lies on E ′

2. Using the group law on the elliptic curve, we obtain the point

2P =
(16q2d4(pt2 + q)2

c2
,−

64q3d6(pt2 + q)3

c3

)

.

Next, we determine the positive integer solutions of (1.2). From the birational

map ϕ2 and the point −2P , i.e., the reflected point of 2P , we get

x =
uv3t

2(4ut2 − uv2t+ 4)
, y =

4ut2 − uv2t+ 4

2uvt(ut2 + 1)
, z =

(4ut2 − uv2t+ 4)t

2v(ut2 + 1)
.

To get x > 0, y > 0, z > 0 from u > 0, v > 0, we need

4ut2 − uv2t+ 4 > 0,

the discriminant of it is δ = u(uv4 − 64). If δ < 0, then for any t ∈ Q, we have

4ut2 − uv2t+ 4 > 0.

If δ > 0, then for any

t ∈

(

0,
uv2 −

√

u(uv4 − 64)

8u

)

∪

(

uv2 +
√

u(uv4 − 64)

8u
,∞

)

,

we have

4ut2 − uv2t+ 4 > 0.

Hence, by the density of rational numbers, for any u > 0, v > 0, there are infinitely

many positive rational numbers t such that x > 0, y > 0, z > 0. Then for any given

positive rational numbers b4, . . . , bs−1, there are infinitely many positive rational

numbers t such that bi > 0, i = 1, 2, 3. Multiplying the least common multiple of the

denominators of t, bi, i = 1, . . . , s− 1, we can get ai ∈ Z+, i = 1, . . . , s− 1.

Therefore, for s > 5 there are infinitely many positive integers n such that (1.2)

has a positive integer solution (a1, a2, . . . , as−1, b), which depends on s − 3 positive

rational parameters t, bi, i = 4, . . . , s− 1. �
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Example 2.1.

(1) For s = 4, the points

(x, y) = (235, 8),
(60266587

257049
,
3852230624

130323843

)

on E1 lead to

(a1, a2, a3) = (1, 2, 24), (781943058, 138991832, 18609625).

Then
{

27 = 1 + 2 + 24,

1 · 2 · 24 · (1 + 2 + 24) = 64

and










939544515 = 781943058+ 138991832+ 18609625,

781943058 · 138991832 · 18609625

×(781943058+ 138991832+ 18609625) = 2087876704.

(2) For s = 5, we have

x =
uv3t

2(4ut2 − uv2t+ 4)
, y =

4ut2 − uv2t+ 4

2uvt(ut2 + 1)
, z =

(4ut2 − uv2t+ 4)t

2v(ut2 + 1)
, u = v = b4.

Take

b = 2uvt(ut2 + 1)(4ut2 − uv2t+ 4),

then

a1 =t2u6(ut2 + 1), a2 = (4ut2 − tu3 + 4)2,

a3 =ut2(4ut2 − tu3 + 4)2, a4 = 2tu3(ut2 + 1)(4ut2 − tu3 + 4).

If t = 1, u = 1, we have
{

128 = 2 + 49 + 49 + 28,

2 · 49 · 49 · 28 · (2 + 49 + 49 + 28) = 285.

When t = 2, u = 1, we obtain
{

2000 = 20 + 324 + 1296 + 360,

20 · 324 · 1296 · 360 · (20 + 324 + 1296 + 360) = 3605,

which reduces to
{

500 = 5 + 81 + 324 + 90,

5 · 81 · 324 · 90 · (5 + 81 + 324 + 90) = 905.
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P r o o f of Theorem 1.3. For s > 4, (1.2) is equivalent to







n

b
= b1 + b2 + . . .+ bs−1,

b1b2 . . . bs−1(b1 + b2 + . . .+ bs−1) = 1,

where

bi =
ai

b
∈ Q

+, i = 1, . . . , s− 1.

Put

x = b1, y = b2, u = b3 . . . bs−1, v = b3 + . . .+ bs−1,

then






n

b
= x+ y + v,

xyu(x+ y + v) = 1.

For s > 4 and a fixed positive integer n, if (1.2) has a positive rational solution

(a′1, a
′

2, . . . , a
′

s−1, b
′), then we have

u′ = b′3 . . . b
′

s−1, v′ = b′3 + . . .+ b′s−1,

where

b′i =
a′
i

b′
∈ Q

+, i = 3, . . . , s− 1.

Now we need to study the rational points on the cubic curve

C3 : xyu′(x+ y + v′) = 1,

which can be transformed into the elliptic curve

E3 : Y 2 = X3 − 27u′3v′(u′v′3 − 24)X + 54u′4(u′2v′6 − 36u′v′3 + 216).

The map ϕ3 : C3 7→ E3 is given by

X =
3u′(u′v′2x+ 12)

x
, Y = −

108u′2(x + 2y + v′)

x

and its inverse map ϕ−1

3 is

x =
36u′

X − 3u′2v′2
, y = −

Y + 3u′(v′X − 3u′2v′3 + 36u′)

6u′(X − 3u′2v′2)
.

To get positive rational solutions x and y from the inverse map ϕ−1
3 , we have the

condition

X > 3u′2v′2, Y + 3u′(v′X − 3u′2v′3 + 36u′) < 0.
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From the first assumption of Theorem 1.3, C3 has a rational point

Q = (x, y) =
(a′1
b′
,
a′2
b′

)

,

so the rational point

R = (X,Y ) = ϕ3(Q) =
(3u′(a′1u

′v′2 + 12b′)

a′1
,−

108u′2(b′v′ + a′1 + 2a′2)

a′1

)

on E3 satisfies the above condition. If E3 has positive rank, by the theorem of Poincaré

and Hurwitz (see [10], Chapter V, page 78, Satz 11) about the density of rational

points, E3 has infinitely many rational points satisfying

X > 3u′2v′2, Y + 3u′(v′X − 3u′2v′3 + 36u′) < 0.

Therefore, there are infinitely many positive rational solutions (x, y) satisfying







n

b′
= x+ y + v′,

xyu′(x+ y + v′) = 1,

i.e.,
{

n = xb′ + yb′ + a′3 + . . .+ a′s−1,

(xb′)(yb′)(a′3) . . . (a
′

s−1)(xb
′ + yb′ + a′3 + . . .+ a′

s−1) = b′s.

Then for s > 4 and a fixed positive integer n, (1.2) has infinitely many positive

rational solutions (a1, a2, a3, . . . , as−1, b) = (xb′, yb′, a′3, . . . , a
′

s−1, b
′). �

Example 2.2. For s = 4 and n = 27, (1.2) has a positive integer solution

{

27 = 1 + 2 + 24,

1 · 2 · 24 · (1 + 2 + 24) = 64.

Then

u′ = v′ = 4

and E3 reduces to

E3(4, 4): Y 2 = X3 − 1603584X + 781553664.

Using the Magma package (see [7]), the rank of E3(4, 4) is 1, then there are infinitely

many rational points on it. From the positive rational solution

(x, y) =
(1

6
,
1

3

)
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on C3(4, 4): 4xy(x+ y + 4) = 1, we can get the point

(X,Y ) = (1632,−50112)

on E3(4, 4), which satisfies the condition

X > 768, Y < −48X + 35136.

By the theorem of Poincaré and Hurwitz, there are infinitely many rational points

satisfying this condition. Thus, for s = 4 and n = 27, (1.2) has infinitely many

positive rational solutions (a1, a2, a3, b) = (6x, 6y, 24, 6). From the points

(X,Y ) = (26752,−4370752),
(1595044704

616225
,−

57181013356608

483736625

)

,

(1119732063118503868848

216521728021016209
,−

36437253415550579162358351801216

100751663784490024367909177

)

on E3(4, 4), we obtain the positive rational solutions

(x, y) =
( 9

1624
,
841

168

)

,
( 616225

7790166
,
2550409

3829230

)

,

( 216521728021016209

6621134555544190419
,
4217686043540528329

3000378379947935118

)

.

Remark 2.1. For s = 4 and n = 1, from the smallest counterexample of Euler’s

sum of powers conjecture found by Frye, see [5], page 210:

958004 + 2175194 + 4145604 = 4224814,

we see that (1.2) has a positive rational solution

(a1, a2, a3, b) =
( 958004

4224814
,
2175194

4224814
,
4145604

4224814
,
95800 · 217519 · 414560

4224813

)

,

i.e.,














1 =
958004

4224814
+

2175194

4224814
+

4145604

4224814
,

958004

4224814
·
2175194

4224814
·
4145604

4224814
· 1 =

(95800 · 217519 · 414560

4224813

)4

.

Then

u′ = v′ =
4145603

95800 · 217519 · 422481
.
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By the same method, we can show that for s = 4 and n = 1, (1.2) has infinitely

many positive rational solutions

(a1, a2, a3, b) =
(95800 · 217519 · 414560

4224813
x,

95800 · 217519 · 414560

4224813
y,

958004

4224814
,
95800 · 217519 · 414560

4224813

)

.

Because the solutions are huge, we just list an example:

(x, y) =
( 6388801718463172692616726574041101080486537011865759800000

16386283355822543519946496843630803411504474368317131012609
,

350016124522332823673623853541028266838547099813138623879281

9409075428286934037926649233826637879987515730518054325184000

)

.

3. Some related questions

From

n = a1 + a2 + . . .+ as−1, ai ∈ Z
+,

we can see that (1.2) has finitely many or no positive integer solutions for s > 4 and

a fixed positive integer n. So we can ask the following question.

Question 3.1. For s > 4, which is the least positive integer n such that (1.2) has

positive integer solutions (a1, . . . , as−1, b)?

When s = 4, 5, 6, it is easy to get the least positive integers n = 18, 27, 8, where

{

18 = 1 + 8 + 9,

1 · 8 · 9 · (1 + 8 + 9) = 64,

{

27 = 1 + 2 + 12 + 12,

1 · 2 · 12 · 12 · (1 + 2 + 12 + 12) = 65,

and
{

8 = 1 + 1 + 2 + 2 + 2,

1 · 1 · 2 · 2 · 2 · (1 + 1 + 2 + 2 + 2) = 26.

For s > 4, let N(n, s) denote the number of the positive integer solutions of (1.2),

we raise the following question.

Question 3.2. For s > 4 and a fixed positive integer n > 1, can we give the

formula for N(n, s)?

In Theorem 1.3, we give conditions such that (1.2) has infinitely many positive

rational solutions for s > 4 and a fixed positive integer n. However, the conditions

are not easy to check. Meanwhile, we have the following question.
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Question 3.3. For positive rational numbers u and v, are there infinitely many

positive rational solutions b3, . . . , bs−1 of the Diophantine system

{

u = b3 . . . bs−1,

v = b3 + . . .+ bs−1

for s > 5?

When s = 5, we have
{

u = b3b4,

v = b3 + b4.

It is easy to get the condition, which is

u =
v2 − w2

4
, v > w,

then

b3 =
v + w

2
, b4 =

v − w

2
.

In 2014, Ulas in [11] proved that for each k > 4 and rational numbers A, B with

AB 6= 0, the Diophantine system

{

A = x1 + x2 + . . .+ xk,

B = x1x2 . . . xk

has infinitely many solutions depending on k − 3 free parameters. In his proof,

x3 = −4Bt2x1, so if B > 0, then x1 and x3 cannot be positive simultaneously.

Therefore, we cannot get a positive answer to Question 3.3 by Ulas’ result.
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