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Abstract. We present sufficient conditions for the existence of pth powers of a quasiho-
mogeneous Toeplitz operator T

e
isθψ, where ψ is a radial polynomial function and p, s are

natural numbers. A large class of examples is provided to illustrate our results. To our
best knowledge those examples are not covered by the current literature. The main tools
in the proof of our results are the Mellin transform and some classical theorems of complex
analysis.
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1. Introduction

Let dA(reiθ) = r dr dθ/π be the normalized Lebesgue area measure in the open

unit disk D of the complex plane C. The Bergman space L2
a(D) is the closed subspace

of L2(D, dA) consisting of all holomorphic functions on D and it has the set {zn}n∈N

as an orthogonal basis.

Let P denote the Bergman projection which is the orthogonal projection from

L2(D, dA) onto L2
a(D). For f ∈ L2(D, dA), the Toeplitz operator Tf , with symbol f ,

acting on L2
a(D) is defined by

Tfg = P (fg)

for all g in L2
a(D) such that the product fg is in L

2(D, dA). It is easy to see that any

bounded holomorphic function is in the domain of Tf . Therefore, Tf is a densely de-

fined operator on L2
a(D). Moreover, if the symbol f is bounded, then Tf is a bounded

operator and ‖Tf‖ 6 ‖f‖∞.
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A Toeplitz operator Tf is called quasihomogeneous Toeplitz operator of degree an

integer p if its symbol f can be written as f(reiθ) = eipθφ(r), where φ is a radial

function in L2([0, 1], r dr). Such class of Toeplitz operators has been extensively

studied. The reader can refer to [3], [5], [6], [7], [8], [9].

In [5], Louhichi has introduced the notion of the pth root (or power) of a quasi-

homogeneous Toeplitz operator which turns out to be very useful in investigating

the question of commutativity of Toeplitz operators. In fact, Louhichi proved the

existence of pth roots for the case φ(r) = rn, n ∈ N and for any p ∈ N. Later with

Rao in [6], they extended this result to a more general class of φ(r).

The aim of this work is to study the powers of quasihomogeneous Toeplitz opera-

tors when the radial part of the symbol is a linear combination of rα and rβ logγ(r),

where α, β, γ are nonnegative integers. Under certain conditions, we show the

existence of pth powers for any p ∈ N.

2. Preliminaries

For a function φ ∈ L1([0, 1], r dr) we define the Mellin transform of φ, denoted φ̂ by

φ̂(z) =

∫ 1

0

φ(r)rz−1 dr.

It is clear that for φ ∈ L1([0, 1], r dr), φ̂ is a bounded holomorphic function on

the half-plane Π = {z : ℜz > 2}. Moreover, the Mellin transform φ̂ is uniquely

determined by its values on any arithmetic sequence of integers. In fact, we have the

following classical theorem, see [10], page 102.

Theorem 2.1. Suppose f is a bounded holomorphic function on {z : ℜz > 0}

that vanishes at the pairwise distinct points z1, z2, . . . , where

(1) inf{|zn|} > 0,

(2)
∑
n>1

ℜ(1/zn) = ∞.

Then f vanishes identically on {z : ℜz > 0}.

The inversion formula of the Mellin transform is given by

(2.1) φ(r) =
1

2πi

∫ c+i∞

c−i∞

φ̂(z)r−z dr,

where the integration is along a vertical line through ℜ(z) = c in Π.

For the sake of completeness we choose to state the following classical lemma of

complex analysis (see [2], Lemma 2.2, page 29), which we will use later to prove our

results.

1050



Lemma 2.2. Let f(s) be a holomorphic function in the right half-plane ℜs > γ.

If |f(reiθ)| < Cr−ν with −π 6 θ 6 π and r > R0 for some constants R0, C and ν

(> 0), then for all t > 0 we have

lim
r→∞

∫

Γ1

estf(s) ds = 0 and lim
r→∞

∫

Γ2

estf(s) ds = 0,

where Γ1 and Γ2 are, respectively, the arcs BCD and DEA of Γ as shown in Figure 1.

O

E

C

D

A

B

Γ1

Γ2

Γ=Γ1 ∪ Γ2

Figure 1. The standard Bromwich contour

We will also need the following easy lemma.

Lemma 2.3. Let f be a linear combination of rα and rβ logγ(r), where α, β,

and γ are in Z. If α > −1 and β, γ ∈ N, then f ∈ L2([0, 1], r dr).

The following lemma determines the values of powers of a bounded quasihomoge-

neous Toeplitz operator evaluated at any element of the orthogonal basis of L2
a(D).

In fact, quasihomogeneous Toeplitz operator and its powers map the space of poly-

nomials in z into itself.

Lemma 2.4. Let p, s ∈ N and let ψ be a radial function in L1([0, 1], r dr). Then

for all n ∈ N we have

(Teisθψ)
p(ξn)(z) =

[p−1∏

j=0

2(n+ js+ s+ 1)ψ̂(2n+ 2js+ s+ 2)

]
zn+ps

=

∏p−1
j=0 ψ̂(2n+ 2js+ s+ 2)

∏p−1
j=0 b̂(2n+ 2js+ 2s+ 2)

zn+ps,

where b denotes the constant function with value one.
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3. Main results

With respect to the definition of the pth root in [5], we analogously say that

a quasihomogeneous Toeplitz operator Teisθψ has a pth power if and only if there

exists a radial function φ such that

(Teisθψ)
p = Teipsθφ.

In particular, (Teipθψ)
0 = I, where I is the identity operator in L2

a(D).

We are now ready to state our main result which can be seen as an extension of [5],

Corollary 18, page 1474.

Theorem 3.1. Let ψ(r) =
m∑
i=1

air
ki be a nonzero radial polynomial function and

let Pψ̂ = {−ki : i = 1, . . . ,m} and Zψ̂ be the sets of poles and zeros of its Mellin

transform ψ̂, respectively. Assume that:

(1) For i = 1, . . . ,m, at least one ki is an odd number. We denote by ki0 the biggest

odd number.

(2) There exists a set of integers {αi}
i=m
i=1,i6=i0

such that:

(i) {αi}
i=m
i=1,i6=i0

⊆ Zψ̂, and

(ii) for all i ∈ {1, . . . ,m} \ {i0} we have −ki < αi 6 ki + 1 and ki and αi have

the same parity.

Then (Teiθψ)
p is always a Toeplitz operator for all p ∈ N.

P r o o f. Since ψ(r) =
m∑
i=1

air
ki , we have

ψ̂(z) =

∫ 1

0

ψ(r)rz−1 dr =

∫ 1

0

m∑

i=1

air
kirz−1 dr =

m∑

i=1

ai
z + ki

,

and hence Pψ̂ = {−ki : i = 1, . . . ,m}. Clearly (see [4], pages 105–106) the function ψ̂

can be extended to a meromorphic function in C. This implies, together with the

hypothesis of the theorem, that ψ̂ can be written as

ψ̂(z) =

∏m
i=1,i6=i0

(z − αi)∏m
i=1(z + ki)

f(z),

where f is holomorphic and nonzero in a neighborhood of each pole −ki, with i =

1, . . . ,m. Next, for any integer p > 1 we show the existence of φ in L2([0, 1], r dr)

so that (Teiθψ)
p = Teipθφ. Indeed, Lemma 2.4 implies that for all integers n > 0 we

have
p−1∏

j=0

(2n+ 2j + 4)ψ̂(2n+ 2j + 3) = (2n+ 2p+ 2)φ̂(2n+ p+ 2).
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Using Theorem 2.1, it is easy to see that if p = 1, then φ ≡ ψ. So we let p > 2, we

complexify the previous equality by letting z = 2n+ p+ 2, and we obtain

φ̂(z) =

p−2∏

j=0

(z − p+ 2j + 2)

p−1∏

j=0

ψ̂(z − p+ 2j + 1)

=

∏p−2
l=0 (z − p+ 2l + 2)

∏(m,p−1)
(i,s)=(1,0),i6=i0

(z − αi − p+ 2s+ 1)
∏(m,p−1)

(d,j)=(1,0)(z + kd − p+ 2j + 1)
h(z),

where h(z) =
p−1∏
j=0

f(z − p + 2j + 1). Thus, φ̂ is a meromorphic function in C and

has simple poles at the integers −kd + p− 2j − 1, with (d, j) = (1, 0), . . . , (m, p− 1).

Moreover, the line of integration in the inversion formula (2.1) is shifted to the left

while taking residues into the Bromwich contour (see Figure 1). Using Lemma 2.2

and the residue theorem, we conclude that φ is determined by the sum of the residues

at all poles to the left of ℜz = c and we have

(3.1) φ(r) =

(m,p−1)∑

(d,j)=(1,0)

Res φ̂(z)
∣∣
z=−kd+p−2j−1

rkd−p+2j+1.

Claim 3.2. φ belongs to L2([0, 1], r dr).

P r o o f. To prove this, it is sufficient, using Lemma 2.3, to show that Pφ̂ ⊆ Z−.

Without loss of generality, we may assume that k1 < k2 < . . . < km. Then we have

the following cases:

Case 1 : p 6 k1. We have

p 6 k1 < k2 < . . . < km

and so

kd − p > 0 ∀ d ∈ {1, . . . ,m}.

Therefore

kd − p+ 2j + 1 > 1 ∀ d ∈ {1, . . . ,m} ∀ j ∈ {0, . . . , p− 1}.

Case 2 : kn < p 6 kn+1 for n ∈ {1, . . . ,m− 1}. Here we consider two subcases.

Subcase 2.1 : n ∈ {1, . . . ,m− 1} \ {i0}. From Case 1 we know that

kd − p+ 2j + 1 > 1 ∀ d ∈ {n+ 1, . . . ,m} ∀ j ∈ {0, . . . , p− 1}.

Now for d ∈ {1, . . . , n} we have

kd − p+ 2j + 1 < 0, i.e., j <
−kd + p− 1

2
.
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If we let j0 = ⌊ 1
2 (−kd + p− 1)⌋ to be the greatest integer function of 1

2 (−kd+p− 1),

then for all d ∈ {1, . . . , n} and all j ∈ {0, . . . , j0} we have

(3.2) kd − p+ 2j + 1 < 0.

Next, we shall prove that the poles of φ̂ in (3.2) are canceled by zeros of φ̂. In

other words,

∀ (j, d) ∈ {(0, 1), . . . , (j0, n)}, ∃ (i, s) ∈ {(1, 0), . . . , (m, p− 1)}, and i 6= i0

such that

−αi + 2s = kd + 2j.

To do so, we take i = d and we let s = 1
2 (kd + αd + 2j). Then by hypothesis (2) (ii),

s ∈ N. Moreover,

2s = kd + αd + 2j 6 kd + αd + 2j0 6 αd + p− 1 < 2p,

which implies s 6 p− 1.

Subcase 2.2 : n = i0. Then for all j ∈ {0, . . . , j0 = ⌊ 1
2 (−ki0 + p− 1)⌋} we have

(3.3) ki0 − p+ 2j + 1 < 0.

Similarly to the previous subcase, those poles of φ̂ are canceled by zeros of φ̂. In

fact, by taking l = 1
2 (ki0 + 2j − 1), it is easy to see that l ∈ {0, . . . , p− 2} and also

that 2l+ 2 = ki0 + 2j + 1 for all j ∈ {0, . . . , j0}.

Case 3 : p > km. We follow the same argument as in Case 2. �

This completes the proof of Theorem 3.1. �

Remark 3.3. If φ̂ has poles of multiplicity greater than 1, the expression (3.1)

becomes

φ(r) =

(m,p−1)∑

(d,j)=(1,0)

αd,j(log r)
nrkd−p+2j+1,

where n ∈ N is the multiplicity of the pole z = −kd + p − 2j − 1; and the same

argument in the proof remains true.

Example 3.4. Let ψ(r) = 3r − 12r2 + 10r3. Then

ψ̂(z) =
3

z + 1
−

12

z + 2
+

10

z + 3
=

(z − 1)(z − 2)

(z + 1)(z + 2)(z + 3)
.
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Using Lemma 2.4, we obtain for all n > 0

(Teiθψ)
p(ξn)(z) =

[p−1∏

j=0

2(n+ j + 2)ψ̂(2n+ 2j + 3)

]
zn+p

=

∏p−1
j=0(2n+ 2j + 4)(2n+ 2j + 2)(2n+ 2j + 1)

∏p−1
j=0(2n+ 2j + 4)(2n+ 2j + 5)(2n+ 2j + 6)

zn+p

=

∏p−1
j=0(2n+ 2j + 2)(2n+ 2j + 1)

∏p+1
j=2(2n+ 2j + 1)(2n+ 2j + 2)

zn+p

=
(2n+ 2)(2n+ 1)(2n+ 4)(2n+ 3)

(2n+ 2p+ 2)(2n+ 2p+ 1)(2n+ 2p+ 4)(2n+ 2p+ 3)
zn+p.

Now we want to find a radial function φ such that

(Teiθψ)
p(ξn)(z) = Teipθφ(ξ

n)(z)

for every integer p > 1. This is equivalent to finding φ for which

Teipθφ(ξ
n)(z) = (2n+ 2p+ 2)φ̂(2n+ p+ 2)zn+p

=
(2n+ 2)(2n+ 1)(2n+ 4)(2n+ 3)

(2n+ 2p+ 2)(2n+ 2p+ 1)(2n+ 2p+ 4)(2n+ 2p+ 3)
zn+p,

and so for all n > 0, we must have

φ̂(2n+ p+ 2) =
(2n+ 2)(2n+ 1)(2n+ 4)(2n+ 3)

(2n+ 2p+ 2)2(2n+ 2p+ 1)(2n+ 2p+ 4)(2n+ 2p+ 3)
.

Using Theorem 2.1 and letting z = 2n+ p+ 2, we obtain

φ̂(z) =
(z − p)(z − p− 1)(z − p+ 2)(z − p+ 1)

(z + p)2(z + p− 1)(z + p+ 2)(z + p+ 1)
.

Clearly φ̂ is holomorphic on {z : ℜz > 0} and has simple poles at 1 − p, −p − 2,

−p− 1 and a double pole at −p. Finally, to find the function φ, we use the inverse

Mellin transform and the residue theorem and we obtain

φ(r) = Res φ̂(z)
∣∣
z=1−p

rp−1 +Res φ̂(z)
∣∣
z=−p−1

rp+1

+Res φ̂(z)
∣∣
z=−p−2

rp+2 +Res φ̂(z)r−z
∣∣
z=−p

= a1r
p−1 + a2r

p+1 + a3r
p+2 + (a4 + a5 log r)r

p,

where a1, a2, a3, a4 and a5 are real constants. It is worth mentioning here that for

all p > 1, the function φ is “nearly bounded” (see [1], page 204) and hence Teipθφ is

a bounded Toeplitz operator.
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In the following proposition, we prove the existence of nonpolynomial radial func-

tions ψ for which (Teiθψ)
p is always a Toeplitz operator for all p ∈ N.

Proposition 3.5. There exist nonpolynomial functions ψ such that the power

(Teiθψ)
p is always a Toeplitz operator for all integers p > 1.

P r o o f. Let ψ(r) = r + 4r2 log r. Then

ψ̂(z) =
−4

(z + 2)2
+

1

z + 1
=

z2

(z + 1)(z + 2)2
.

Using Lemma 2.4, we obtain that for all n > 0 and all p > 1

(Teiθψ)
p(ξn)(z) =

[p−1∏

j=0

2(n+ j + 2)ψ̂(2n+ 2j + 3)

]
zn+p

=

∏p−1
j=0(2n+ 2j + 4)(2n+ 2j + 3)2

∏p−1
j=0(2n+ 2j + 4)(2n+ 2j + 5)2

zn+p =

∏p−1
j=0(2n+ 2j + 3)2

∏p−1
j=0(2n+ 2j + 5)2

zn+p

=

∏p−1
j=0(2n+ 2j + 3)2∏p
j=1(2n+ 2j + 3)2

zn+p =
(2n+ 3)2

(2n+ 2p+ 3)2
zn+p.

We want to find a radial function φ such that

(Teiθψ)
p(ξn)(z) = Teipθφ(ξ

n)(z)

for every integer p > 1 and all n > 0. This is equivalent to finding φ for which

Teipθφ(ξ
n)(z) = (2n+ 2p+ 2)φ̂(2n+ p+ 2)zn+p =

(2n+ 3)2

(2n+ 2p+ 3)2
zn+p.

So for all n > 0 we must have

φ̂(2n+ p+ 2) =
(2n+ 3)2

(2n+ 2p+ 2)(2n+ 2p+ 3)2
.

Using Theorem 2.1 and letting z = 2n+ p+ 2, we obtain

φ̂(z) =
(z − p+ 1)2

(z + p)(z + p+ 1)2
.

Clearly φ̂ is holomorphic on {z : ℜz > 0} and has a simple pole at −p and a double

pole at −p−1. Finally, to recover the function φ, we use the inverse Mellin transform

and the residue theorem and we obtain

φ(r) = Res φ̂(z)
∣∣
z=−p

rp+Res φ̂(z)
∣∣
z=−p−1

rp+1 = (1−2p)2rp+4prp+1((1−p)+p log r).

Since for all p > 1, the function φ is nearly bounded, Teipθφ is a genuine Toeplitz

operator. �
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Remark 3.6. Note that in Example 3.4 (or Proposition 3.5), instead of using the

inverse Mellin transform and the residue theorem to obtain the function φ, one can

recover φ from its Mellin transform by writing the partial fraction decomposition

of φ̂(z) and then by using the identities r̂m(z) = 1/(z +m) and ̂rm logn(r)(z) =

(−1)nn!/(z +m)n+1 for all nonnegative integers m and n.

Using similar arguments and notation as in the proof of Theorem 3.1, we obtain

the following corollary. The proof is omitted.

Corollary 3.7. Let ψ(r) =
m∑
i=1

air
ki be a nonzero polynomial function and s ∈ N∗.

Assume that:

(1) For i = 1, . . . ,m there exists at least one ki such that ki − s is a nonnegative

integer and is divisible by 2s. Let ki0 be the biggest of such numbers.

(2) There exists a set of integers {αi}
i=m
i=1,i6=i0

such that:

(i) {αi}
i=m
i=1,i6=i0

⊆ Zψ̂;

(ii) for all i ∈ {1, . . . ,m} \ {i0} we have −ki < αi 6 ki + s and αi + ki is

divisible by 2s.

Then (Teisθψ)
p is always a Toeplitz operator for all p ∈ N.

Example 3.8. Let m, n be in N.

(1) There exist α, β ∈ R and s ∈ N such that Teisθ(αrn+βrm) has always a pth power

for all p > 1. For example, (Te3iθ(−6r2/7+13r9/7))
p is always a Toeplitz operator.

(2) For all p, s ∈ N, the product (Teisθrm)p is a Toeplitz operator if and only if

m > s and m− s is divisible by 2s.

Remark 3.9.

(i) In [5] Theorem 13, page 1472, Louhichi showed that if Teiθψ has pth powers and

if Tf is a bounded Toeplitz operator such that TfTeiθψ = TeiθψTf , then Tf must

be the sum of powers of Teiθψ . In the same spirit and under the hypothesis of

Theorem 3.1 (or Corollary 3.7), if Tf commutes with Teiθψ (or Teisθψ), then Tf

is the sum of powers of Teiθψ (or Teisθψ) as well.

(ii) Let ψ be a nonzero polynomial function and let s be a natural number. If Teisθψ
has pth powers for all p ∈ N, then by Theorem 3.1 and Corollary 3.7 it is easy

to see that, there exists a positive integer n such that (Teinθψ)
p is a Toeplitz

operator for all p.

(iii) We recall that T ∗
f = Tf , where f is the complex conjugate of f . So by taking the

adjoint, Te−iθψ has a pth power if and only if Teiθψ has it as well. Therefore, the

previous results remain true for quasihomogeneous Toeplitz operator of negative

degrees.
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In what follows, we discuss the case of radial Toeplitz operators.

Theorem 3.10. Let ψ(r) =
m∑
i=1

air
ki be a nonzero polynomial symbol. Then for

all p ∈ N there exists a radial symbol φ ∈ L2([0, 1], r dr), such that

(Tψ)
p = Tφ.

Moreover, when p > 2, we have

φ(r) =
∑

i,j

αi,jr
βi(log r)γj , where βi, γj ∈ N and αi,j ∈ R.

P r o o f. As shown at the beginning of the proof of Theorem 3.1, ψ̂ can be writ-

ten as

ψ̂(z) =
1∏m

i=1(z + ki)
f(z),

where f is holomorphic and nonzero in a neighborhood of every pole −ki, i =

1, . . . ,m. Now, we prove the existence of φ in L2([0, 1], r dr) for which (Teiθψ)
p =

Teipθφ for any integer p > 1. If such φ exists, Lemma 2.4 implies that we must have

(2n+ 2)p−1[ψ̂(2n+ 2)]p = φ̂(2n+ 2) ∀n > 0.

Note that p is a positive integer and that our discussion is trivial for p = 1 since in

this case φ ≡ ψ. So we assume p > 2. By setting z = 2n+ 2, we obtain

φ̂(z) = zp−1[ψ̂(z)]p =
zp−1

∏m
i=1(z + ki)p

h(z),

where h(z) = (f(z))p. In a similar way as in the proof of Theorem 3.1 and using

Leibniz formula, we have that

φ(r) =

m∑

i=1

Res φ̂(z) · r−z
∣∣
z=−ki

=
m∑

i=1

( 1

(p− 1)!
lim

z→−ki

∂p−1

∂zp−1

zp−1

∏m
l=1,l 6=i(z + kl)p

h(z) · r−z
)

=
m∑

i=1

(
1

(p− 1)!
lim

z→−ki

p−1∑

j=0

(p− 1)!

j!(p− 1− j)!
g(j)(z) · (r−z)(p−1−j)

)

=

m∑

i=1

(p−1∑

j=0

1

j!(p− 1− j)!
g(j)(−ki) · (−1)p−1−j(log r)p−1−j(rki)

)
,

where g(j) is the jth derivative of the function

g(z) =
zp−1

∏m
l=1,l 6=i(z + kl)p

h(z).
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Finally, by letting

αi,j =
(−1)p−1−j

j! (p− 1− j)!
g(j)(−ki), βi = ki > 0 and γi = p− 1− j > 0,

we obtain the desired result. �

Remark 3.11. Theorem 3.9 remains true in the case where ψ is a linear combi-

nation of functions of the form rβ logγ(r), where β, γ are nonnegative integers.

Example 3.12. Let ψ(r) = rm with m ∈ N. Then ψ̂(z) = 1/(z +m). Again,

Lemma 2.4 implies that for all p > 1 and all n > 0 we have

(Tψ)
p(ξn)(z) =

[p−1∏

j=0

(2n+ 2)ψ̂(2n+ 2)

]
zn =

(2n+ 2)p

(2n+ 2 +m)p
zn.

We want to find a radial symbol φ such that

(Tψ)
p(ξn)(z) = Tφ(ξ

n)(z)

for all n > 0. This is equivalent to finding φ such that

φ̂(2n+ 2) =
(2n+ 2)p−1

(2n+ 2 +m)p
.

Using Theorem 2.1 and letting z = 2n+ 2, we obtain

φ̂(z) =
zp−1

(z +m)p
.

Clearly φ̂ has a pole of order p at z = −m. In order to obtain φ, we choose to

proceed as follows (but one can also use the partial fraction decomposition of φ̂(z)

as mentioned in Remark 3.6):

φ(r) = Res φ̂(z) · r−z
∣∣
z=−m

=
1

(p− 1)!
lim

z→−m

∂p−1

∂zp−1
[zp−1r−z ]

=
1

(p− 1)!
lim

z→−m

p−1∑

j=0

[ (p− 1)!

j! (p− 1− j)!
(zp−1)(p−1−j)(r−z)(j)

]

=
1

(p− 1)!
lim

z→−m

p−1∑

j=0

[ (p− 1)!

j! (p− 1− j)!
(p− 1)(p− 2) . . . (j + 1)zj(−1)j(log r)jr−z

]

= rm
p−1∑

j=0

[ (p− 1)(p− 2) . . . (j + 1)mj

j! (p− 1− j)!
(log r)j

]
= rm

p−1∑

j=0

αj,m(log r)j ,

where αj,m = (p− 1)(p− 2) . . . (j + 1)mj/j! (p− 1− j)!. Finally, it is easy to see

that φ is a nearly bounded function and therefore Tφ is a genuine Toeplitz operator.
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We conclude by a simple but interesting consequence of our main results.

Corollary 3.13. Let s ∈ N∗ and let ψ(r) =
m∑
i=1

air
ki be nonzero polynomial

function. Then there exists an integer N ∈ N∗ such that Teisθψ has pth powers for

all integers 1 6 p 6 N .

P r o o f. Since ψ(r) =
m∑
i=1

air
ki , we can write

ψ̂(z) =
f(z)∏m

i=1(z + ki)
,

where the numerator f is a polynomial function of degree less or equal to m − 1.

Obviously, if ψ satisfies the conditions of Corollary 3.7, then N can be any integer

in N. Now, assume the hypotheses of Corollary 3.7 do not hold. We want to find

N ∈ N such that for any random integer p between 1 and N there exists a radial

function ϕ satisfying (Teisθψ)
p = Teipsθϕ. If this is the case, then by using Lemma 2.4

and by letting z = 2n+ ps+ 2, we must have that for all integers n > 0

(Teisθψ)
p(ξn)(z) =

[p−1∏

j=0

2(n+ js+ s+ 1)ψ̂(2n+ 2js+ s+ 2)

]
zn+ps

=

∏p−1
j=0 (z − ps+ 2js+ 2s)f(z − ps+ 2js+ s)

∏(m,p−1)
(i,j)=(1,0)(z − ps+ ki + 2js+ s)

zn+ps

= (z + ps)ϕ̂(z).

Similarly and as in the proof of Theorem 3.1, we deduce that ϕ must be of the from

(3.4) ϕ(r) =

(m,p−1)∑

(i,j)=(1,0)

αi,jr
ki−ps+2js+s,

where αi,j are constants. Furthermore, since k1 − ps+ s 6 ki − ps+ 2js+ s for all

(i, j) = (1, 0) . . . (m, p− 1), the function ϕ will be in L2([0, 1], r dr) if k1− ps+ s > 0.

Otherwise Teipsθϕ will not be bounded and hence not a genuine Toeplitz operator.

Therefore it is sufficient to take N = ⌊ s+k1s ⌋. �
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