ON THE BALANCED DOMINATION OF GRAPHS

Baogen Xu, Nanchang, Wanting Sun, Shuchao Li, Wuhan, Chunhua Li, Nanchang

Received February 11, 2020. Published online October 11, 2021.

Abstract. Let $G=\left(V_{G}, E_{G}\right)$ be a graph and let $N_{G}[v]$ denote the closed neighbourhood of a vertex v in G. A function $f: V_{G} \rightarrow\{-1,0,1\}$ is said to be a balanced dominating function (BDF) of G if $\sum_{u \in N_{G}[v]} f(u)=0$ holds for each vertex $v \in V_{G}$. The balanced domination number of G, denoted by $\gamma_{b}(G)$, is defined as

$$
\gamma_{b}(G)=\max \left\{\sum_{v \in V_{G}} f(v): f \text { is a BDF of } G\right\} .
$$

A graph G is called d-balanced if $\gamma_{b}(G)=0$. The novel concept of balanced domination for graphs is introduced. Some upper bounds on the balanced domination number are established, in which one is the best possible bound and the rest are sharp, all the corresponding extremal graphs are characterized; several classes of d-balanced graphs are determined. Some open problems are proposed.

Keywords: domination number; balanced dominating function; balanced domination number; d-balanced graph

MSC 2020: 05C69, 05C70

1. Introduction

We denote $G=\left(V_{G}, E_{G}\right)$ a finite simple graph with a vertex set V_{G} and edge set E_{G}, without loops and multiple edges (for more background on graph theory and for the notation not defined here we refer the reader to [1]). The order of G is the number $n=\left|V_{G}\right|$ of its vertices and its size is the number $\left|E_{G}\right|$ of its edges.

[^0]Given a graph G, its adjacency matrix $A(G)$ is a $0-1$ square matrix of order n whose (i, j)-entry is 1 if and only if $i j \in E_{G}$. For $v \in V_{G}$, we define the open neighbourhood and the closed neighbourhood of v as

$$
N_{G}(v)=\left\{u: u \in V_{G}, u v \in E_{G}\right\} \quad \text { and } \quad N_{G}[v]=\{v\} \cup N_{G}(v),
$$

respectively. Let $\delta(G)$ be the minimum degree of G, whereas let $\Delta(G)$ be the maximum degree of G. A vertex of degree 1 is called a pendant vertex. Denote by $c(G)$ the cyclomatic number of G, that is $c(G)=\left|E_{G}\right|-\left|V_{G}\right|+\omega(G)$, where $\omega(G)$ is the number of connected components of G.

For a subset $S \subseteq V_{G}$, let $G[S]$ denote the subgraph of G induced by S. For $A, B \subseteq V_{G}$, let $E(A, B)=\left\{u v \in E_{G}: u \in A, v \in B\right\}$.

Given a graph G, a subset $D \subseteq V_{G}$ is said to be a dominating set of G if $N_{G}(u) \cap$ $D \neq \emptyset$ for every vertex $u \in V_{G} \backslash D$. The domination number of G, written as $\gamma(G)$, is the smallest cardinality of a dominating set of G.

In recent years, the study of domination theory has attracted more and more researchers' attention. In 1995, Dunbar et al. in [5] first put forward and studied the signed domination of graphs. Cockayne and Mynhardt in [3] generalized the signed dominating function. Thus, many variations of domination concepts were introduced, such as the minus domination (see [4]), the signed total domination (see [14]) and so on. Some important results of this field were surveyed by Haynes, Hedetniemi and Slater, see [6]. Xu in [9] proposed and studied the signed edge domination in graphs. After that many concepts of the edge domination appeared, which include the signed cycle domination (see [11]), the signed star domination (see [10]) and so on.

In this paper, we propose the concepts of the balanced dominating function and balanced domination number of a graph. Let $f: V_{G} \rightarrow \mathbb{R}$ be a real valued function defined on V_{G}. Then, for a subset $S \subseteq V_{G}$, we put $f(S):=\sum_{v \in S} f(v)$.

Definition 1.1. Let G be a graph. A function $f: V_{G} \rightarrow\{-1,0,1\}$ is said to be a balanced dominating function (BDF) of G if $f\left(N_{G}[v]\right)=0$ holds for each vertex $v \in V_{G}$. The balanced domination number of G, written as $\gamma_{b}(G)$, is defined as

$$
\gamma_{b}(G)=\max \left\{f\left(V_{G}\right): f \text { is a } \mathrm{BDF} \text { of } G\right\} .
$$

By Definition 1.1, we know that the constant function $f=0$ is a BDF for any graph G. Hence, $\gamma_{b}(G) \geqslant 0$ holds for any graph G. Obviously, if the function f is a BDF of G, then $-f$ is also a BDF of G. A balanced dominating function f of G is maximum if $f\left(V_{G}\right)=\gamma_{b}(G)$. A graph G is said to be d-balanced if $\gamma_{b}(G)=0$. Notice that not all graphs are d-balanced. The tree depicted in Figure 1 is a nice example. It is interesting and challenging to determine $\gamma_{b}(G)$ of a graph G.

Figure 1. A tree T with $\gamma_{b}(T)=6$.
Our paper is organized as follows. In Section 2, we give four sharp upper bounds on the balanced domination number and some of the extremal graphs are characterized. In Section 3, we determine some d-balanced graphs. In the last section, some open problems are proposed.

Further on we need the following preliminary results.
Lemma 1.2 ([7]). Let G be a graph with n vertices. If $\delta(G) \geqslant 1$, then $\gamma(G) \leqslant \frac{1}{2} n$.
Let G be a graph. The corona of G, denoted by $G \circ K_{1}$, is the graph obtained from G by attaching exactly one pendant vertex to each vertex of G.

Lemma 1.3 ([12], [13]). Let G be a connected graph of order n. If $\delta(G) \geqslant 1$, then $\gamma(G)=\frac{1}{2} n$ if and only if $G \cong C_{4}$ or G is the corona of some connected graph with $\frac{1}{2} n$ vertices.

Lemma 1.4 ([8]). Let G be a graph. If H is a subgraph of G, then $c(H) \leqslant c(G)$.
In the whole context, for $i \in\{-1,0,1\}$, let

$$
A_{i}=\left\{v \in V_{G}: f(v)=i\right\}
$$

and put $r=\left|A_{0}\right|, s=\left|A_{1}\right|$ and $t=\left|A_{-1}\right|$.

2. Some upper bounds on balanced domination numbers

In this section, we establish some sharp upper bounds on balanced domination numbers of graphs. Some corresponding extremal graphs are identified.

Theorem 2.1. Let G be a graph with n vertices. Then

$$
\gamma_{b}(G) \leqslant n+1-\sqrt{1+4 n} .
$$

The equality holds if and only if G is obtained by attaching exactly t pendant vertices to each vertex in K_{t}.

Proof. Let f be the maximum BDF of G, i.e., $f\left(V_{G}\right)=\gamma_{b}(G)$. Clearly, $n_{1}:=$ $s+t \leqslant n$ and $\gamma_{b}(G)=s-t=2 s-n_{1}$. Since $\gamma_{b}(G) \geqslant 0$, one has $s \geqslant t$.

For every vertex $v \in A_{1}$, by Definition 1.1 we have $f\left(N_{G}[v]\right)=0$. Hence, v is adjacent to at least one vertex in A_{-1}. That is, $\left|E\left(A_{1}, A_{-1}\right)\right| \geqslant s$. Thus, there exists a vertex $u \in A_{-1}$ such that $\left|N_{G}\lceil u] \cap A_{1}\right| \geqslant\left\lceil\frac{s}{t}\right\rceil$. Notice that $f\left(N_{G}[u]\right)=0$. Hence, $\left|N_{G}[u] \cap A_{1}\right|=\left|N_{G}[u] \cap A_{-1}\right|$. Then

$$
t=\left|A_{-1}\right| \geqslant\left|N_{G}[u] \cap A_{-1}\right|=\left|N_{G}[u] \cap A_{1}\right| \geqslant\left\lceil\frac{s}{t}\right\rceil \geqslant \frac{s}{t},
$$

which implies that $\left(n_{1}-s\right)^{2}=t^{2} \geqslant s$. That is, $s \leqslant n_{1}-\frac{1}{2}\left(\sqrt{1+4 n_{1}}-1\right)$. Hence,

$$
\begin{equation*}
\gamma_{b}(G)=2 s-n_{1} \leqslant n_{1}+1-\sqrt{1+4 n_{1}} \leqslant n+1-\sqrt{1+4 n} . \tag{2.1}
\end{equation*}
$$

In what follows, we show the second part of our result.
Necessity. Let G be a graph with n vertices and $\gamma_{b}(G)=n+1-\sqrt{1+4 n}$. In view of the proof of (2.1), we may see that $\gamma_{b}(G)=n+1-\sqrt{1+4 n}$ if and only if $n=n_{1}$ and $s=t^{2}$. That is, $A_{0}=\emptyset$ and $t=\frac{1}{2}(\sqrt{4 n+1}-1)$. Let u be an arbitrary vertex in A_{-1}. Notice that $\left|N_{G}[u] \cap A_{1}\right|=\left|N_{G}[u] \cap A_{-1}\right| \leqslant\left|A_{-1}\right|=t$. Hence,

$$
\left|E\left(A_{1}, A_{-1}\right)\right|=\sum_{u \in A_{-1}}\left|N_{G}[u] \cap A_{1}\right|=\sum_{u \in A_{-1}}\left|N_{G}[u] \cap A_{-1}\right| \leqslant t^{2} .
$$

Together with $\left|E\left(A_{1}, A_{-1}\right)\right| \geqslant\left|A_{1}\right|=s=t^{2}$, we have

$$
\left|E\left(A_{1}, A_{-1}\right)\right|=\left|A_{1}\right|=t^{2} \quad \text { and } \quad\left|N_{G}[u] \cap A_{1}\right|=\left|N_{G}[u] \cap A_{-1}\right|=\left|A_{-1}\right|=t
$$

Hence, each vertex in A_{1} has exactly one neighbour in A_{-1} and any two vertices in A_{-1} have no common neighbours in A_{1}. Furthermore, $G\left[A_{-1}\right]=K_{t}$. That is, G is a graph obtained by attaching exactly t pendant vertices at each vertex of K_{t}.

Sufficiency. Let G be a graph obtained by attaching exactly t pendant vertices at each vertex of K_{t}. Clearly, $n=\left|V_{G}\right|=t+t^{2}$. Define a function f^{\prime} on V_{G} as

$$
f^{\prime}(v)= \begin{cases}-1 & \text { if } v \in K_{t} \\ 1 & \text { otherwise }\end{cases}
$$

It is routine to check that f^{\prime} is a BDF of G. Hence, $\gamma_{b}(G) \geqslant f^{\prime}\left(V_{G}\right)=t^{2}-t=$ $n+1-\sqrt{1+4 n}$. Together with (2.1), we have $\gamma_{b}(G)=n+1-\sqrt{1+4 n}$.

Theorem 2.2. Let G be an n-vertex graph with maximum degree Δ and minimum degree δ. Then,

$$
\begin{equation*}
\gamma_{b}(G) \leqslant \frac{(\Delta-\delta) n}{2(\delta+1)} \tag{2.2}
\end{equation*}
$$

The equality holds if and only if G is Δ-regular.

Proof. Let f be the maximum BDF of G, i.e., $f\left(V_{G}\right)=\gamma_{b}(G)$. Then it is easy to see that $s+t \leqslant n$ and $\gamma_{b}(G)=s-t$. Since $\gamma_{b}(G) \geqslant 0$, one has $s \geqslant t$ and thus $t \leqslant \frac{1}{2} n$. By Definition 1.1, we have $f\left(N_{G}[v]\right)=0$ for each vertex $v \in A_{1}$. Hence,

$$
\begin{aligned}
0 & =\sum_{v \in A_{1}} f\left(N_{G}[v]\right)=\sum_{v \in A_{1}}\left(\left|E\left(\{v\}, A_{1}\right)\right|+1-\left|E\left(\{v\}, A_{-1}\right)\right|\right) \\
& =2\left|E_{G\left[A_{1}\right]}\right|+s-\left|E\left(A_{1}, A_{-1}\right)\right| .
\end{aligned}
$$

That is, $s=\left|E\left(A_{1}, A_{-1}\right)\right|-2\left|E_{G\left[A_{1}\right]}\right| . \quad$ Similarly, we have $t=\left|E\left(A_{1}, A_{-1}\right)\right|-$ $2\left|E_{G\left[A_{-1}\right]}\right|$. Therefore,

$$
\begin{equation*}
\gamma_{b}(G)=s-t=2\left(\left|E_{G\left[A_{-1}\right]}\right|-\left|E_{G\left[A_{1}\right]}\right|\right) . \tag{2.3}
\end{equation*}
$$

Note, also, that

$$
\begin{aligned}
\Delta t & \geqslant \sum_{v \in A_{-1}} d_{G}(v)=\left|E\left(A_{0}, A_{-1}\right)\right|+\left|E\left(A_{1}, A_{-1}\right)\right|+2\left|E_{G\left[A_{-1}\right]}\right| \\
& =\left|E\left(A_{0}, A_{-1}\right)\right|+4\left|E_{G\left[A_{-1}\right]}\right|+t
\end{aligned}
$$

and

$$
\begin{aligned}
\delta s & \leqslant \sum_{v \in A_{1}} d_{G}(v)=\left|E\left(A_{0}, A_{1}\right)\right|+\left|E\left(A_{1}, A_{-1}\right)\right|+2\left|E_{G\left[A_{1}\right]}\right| \\
& =\left|E\left(A_{0}, A_{1}\right)\right|+4\left|E_{G\left[A_{1}\right]}\right|+s .
\end{aligned}
$$

Then

$$
\left|E_{G\left[A_{-1}\right]}\right| \leqslant \frac{(\Delta-1) t-\left|E\left(A_{0}, A_{-1}\right)\right|}{4} \quad \text { and } \quad\left|E_{G\left[A_{1}\right]}\right| \geqslant \frac{(\delta-1) s-\left|E\left(A_{0}, A_{1}\right)\right|}{4} .
$$

Recall that $f\left(N_{G}[v]\right)=0$ for each vertex $v \in A_{0}$. Hence, $\left|E\left(A_{0}, A_{1}\right)\right|=\left|E\left(A_{0}, A_{-1}\right)\right|$. In view of (2.3), we have

$$
\gamma_{b}(G)=s-t=2\left(\left|E_{G\left[A_{-1}\right]}\right|-\left|E_{G\left[A_{1}\right]}\right|\right) \leqslant \frac{(\Delta-1) t-(\delta-1) s}{2} .
$$

That is, $s \leqslant(\Delta+1) t /(\delta+1)$. Together with $t \leqslant \frac{1}{2} n$, one has

$$
\gamma_{b}(G)=s-t \leqslant \frac{(\Delta-\delta) t}{\delta+1} \leqslant \frac{(\Delta-\delta) n}{2(\delta+1)} .
$$

In what follows, we show the second part of our result.

Necessity. Let G be a graph with n vertices and $\gamma_{b}(G)=(\Delta-\delta) n / 2(\delta+1)$. In view of the proof of (2.2), we may derive that $\gamma_{b}(G)=(\Delta-\delta) n / 2(\delta+1)$ if and only if at least one of the following conditions holds:
(a) $\Delta=\delta$,
(b) $s=t=\frac{1}{2} n$, each vertex in A_{1} is of degree δ and each vertex in A_{-1} is of degree Δ.

If (a) holds, then we are done. Now, we assume $\delta \neq \Delta$. Hence, (b) holds and thus $A_{0}=\emptyset$. Let v be an arbitrary vertex of A_{1}. Since each vertex in A_{1} has degree δ, we have $\left|E\left(\{v\}, A_{1}\right)\right|+\left|E\left(\{v\}, A_{-1}\right)\right|=\delta$. Together with $f\left(N_{G}[v]\right)=$ $\left|E\left(\{v\}, A_{1}\right)\right|+1-\left|E\left(\{v\}, A_{-1}\right)\right|=0$, one has $\left|E\left(\{v\}, A_{-1}\right)\right|=\frac{1}{2}(\delta+1)$. By a similar reasoning, we may show that $\left|E\left(\{u\}, A_{1}\right)\right|=\frac{1}{2}(\Delta+1)$ for each vertex $u \in A_{-1}$. Therefore,

$$
\left|E\left(A_{1}, A_{-1}\right)\right|=\sum_{v \in A_{1}}\left|E\left(\{v\}, A_{-1}\right)\right|=s \frac{\delta+1}{2}
$$

and

$$
\left|E\left(A_{-1}, A_{1}\right)\right|=\sum_{u \in A_{-1}}\left|E\left(\{u\}, A_{1}\right)\right|=t \frac{\Delta+1}{2} .
$$

Notice that $s=t$. Then $\delta=\Delta$, a contradiction.
Sufficiency. It suffices to show the following claim.

Claim 2.3. Each k-regular graph G is d-balanced.
Pro of of Claim 2.3. Let f be the maximum BDF of G, that is, $f\left(V_{G}\right)=\gamma_{b}(G)$. Note that $f\left(N_{G}[v]\right)=0$ holds for every vertex $v \in V_{G}$. Therefore,

$$
(k+1) f\left(V_{G}\right)=\sum_{v \in V_{G}} f\left(N_{G}[v]\right)=0 .
$$

Hence, $\gamma_{b}(G)=f\left(V_{G}\right)=0$, i.e., G is d-balanced.
In view of Claim 2.3, the sufficiency is obviously true. Theorem 2.2 is proved.

Theorem 2.4. Let G be an n-vertex graph with the minimum degree $\delta \geqslant 1$. Then

$$
\begin{equation*}
\gamma_{b}(G) \leqslant n-2 \gamma(G) \tag{2.4}
\end{equation*}
$$

and the bound is tight.

Proof. Let f be the maximum BDF of G, i.e., $f\left(V_{G}\right)=\gamma_{b}(G)$. Let $G_{1}=G\left[A_{0}\right]$ and $I=\left\{v \in A_{0}: d_{G_{1}}(v)=0\right\}$. Notice that $\delta \geqslant 1$ and $f\left(N_{G}[v]\right)=0$ for each vertex $v \in V_{G}$. Hence, each vertex in I is adjacent to at least one vertex in A_{-1}. Let $G_{2}=G_{1}-I$. Then $\delta\left(G_{2}\right) \geqslant 1$. By Lemma 1.2, one has $\gamma\left(G_{2}\right) \leqslant \frac{1}{2}\left|V_{G_{2}}\right| \leqslant \frac{1}{2}\left|A_{0}\right|$. Let D_{2} be the minimum dominating set of G_{2}, i.e., $\left|D_{2}\right|=\gamma\left(G_{2}\right) \leqslant \frac{1}{2}\left|A_{0}\right|$.

Recall that $f\left(N_{G}[v]\right)=0$ for each vertex $v \in A_{1}$. Then each vertex in A_{1} is adjacent to at least one vertex in A_{-1}. Hence, $D_{2} \cup A_{-1}$ is a dominating set of G, which implies that $\gamma(G) \leqslant\left|A_{-1}\right|+\left|D_{2}\right| \leqslant\left|A_{-1}\right|+\frac{1}{2}\left|A_{0}\right|$. Therefore,

$$
\gamma_{b}(G)=\left|A_{1}\right|-\left|A_{-1}\right|=n-2\left|A_{-1}\right|-\left|A_{0}\right| \leqslant n-2 \gamma(G) .
$$

In order to show that the upper bound in (2.4) is the best possible, we construct a class of graphs G such that $\gamma_{b}(G)=\left|V_{G}\right|-2 \gamma(G)$.

Let H be a graph and let G be a graph obtained from H by attaching exactly $1+d_{H}(v)$ pendant vertices to each vertex $v \in V_{H}$. Clearly, $\left|V_{G}\right|=2\left|V_{H}\right|+2\left|E_{H}\right|$ and $\gamma(G)=\left|V_{H}\right|$. By (2.4), we have $\gamma_{b}(G) \leqslant\left|V_{G}\right|-2 \gamma(G)=2\left|E_{H}\right|$. On the other hand, we define a function f^{\prime} on V_{G} as

$$
f^{\prime}(v)= \begin{cases}-1 & \text { if } v \in V_{H} \\ 1 & \text { otherwise }\end{cases}
$$

It is routine to check that f^{\prime} is a BDF of G. Hence, $\gamma_{b}(G) \geqslant f^{\prime}\left(V_{G}\right)=\left|V_{G}\right|-2\left|V_{H}\right|=$ $2\left|E_{H}\right|$. Thus, $\gamma_{b}(G)=\left|V_{G}\right|-2 \gamma(G)$.

The following result is an immediate consequence of (2.4) and Lemma 1.3.
Corollary 2.5. Let G be a graph. Then the corona of G is d-balanced.
Theorem 2.6. Let G be a connected graph with $\left|V_{G}\right| \geqslant 2$. Then

$$
\begin{equation*}
\gamma_{b}(G) \leqslant \frac{2\left|E_{G}\right|-\left|V_{G}\right|}{2} \tag{2.5}
\end{equation*}
$$

The equality holds if and only if G is obtained from a connected graph H by attaching exactly $d_{H}(v)+1$ pendant vertices to each vertex v in V_{H}.

Proof. Let f be the maximum BDF of G, i.e., $f\left(V_{G}\right)=\gamma_{b}(G)$, and let $H=G\left[A_{-1}\right]$. Recall that $r=\left|A_{0}\right|$. Obviously, $s+t+r=\left|V_{G}\right|$ and $\gamma_{b}(G)=s-t$. Notice that $f\left(N_{G}[v]\right)=0$ for each vertex $v \in V_{G}$. Hence, every vertex in A_{1} has at least one neighbour in A_{-1}, which implies that $\left|E\left(A_{1}, A_{-1}\right)\right| \geqslant\left|A_{1}\right|$. Moreover,

$$
0=\sum_{v \in A_{-1}} f\left(N_{G}[v]\right)=\left|E\left(A_{1}, A_{-1}\right)\right|-\left|A_{-1}\right|-2\left|E_{H}\right| .
$$

Therefore, $\left|E\left(A_{1}, A_{-1}\right)\right|=\left|A_{-1}\right|+2\left|E_{H}\right|$. By Lemma 1.3, one has $c(H) \leqslant c(G)$. Notice that the cyclomatic number of G is $c(G)=\left|E_{G}\right|-\left|V_{G}\right|+1$. Then

$$
\left|E_{H}\right|=c(H)+\left|V_{H}\right|-\omega(H) \leqslant c(G)+t-\omega(H) \leqslant\left|E_{G}\right|-\left|V_{G}\right|+t
$$

Therefore,

$$
s=\left|A_{1}\right| \leqslant\left|E\left(A_{1}, A_{-1}\right)\right|=\left|A_{-1}\right|+2\left|E_{H}\right| \leqslant 3 t+2\left|E_{G}\right|-2\left|V_{G}\right| .
$$

Together with $s=\left|V_{G}\right|-r-t \leqslant\left|V_{G}\right|-t$, we have

$$
2 s \leqslant 3 t+2\left|E_{G}\right|-2\left|V_{G}\right|+\left|V_{G}\right|-t=2 t-\left|V_{G}\right|+2\left|E_{G}\right| .
$$

Hence, $\gamma_{b}(G)=s-t \leqslant \frac{1}{2}\left(2\left|E_{G}\right|-\left|V_{G}\right|\right)$.
In what follows, we show the second part of our result.
Necessity. Let G be a connected graph with $\left|V_{G}\right| \geqslant 2$ and $\gamma_{b}(G)=\frac{1}{2}\left(2\left|E_{G}\right|-\left|V_{G}\right|\right)$. In view of the proof of (2.5), we know that $\gamma_{b}(G)=\frac{1}{2}\left(2\left|E_{G}\right|-\left|V_{G}\right|\right)$ if and only if all the following conditions hold:
(i) $s=\left|V_{G}\right|-t$,
(ii) $\left|A_{1}\right|=\left|E\left(A_{1}, A_{-1}\right)\right|$,
(iii) $c(H)=c(G)$ and $\omega(H)=1$.

Let u be an arbitrary vertex of A_{1}. By item (ii), we have $\left|N_{G}[u] \cap A_{1}\right|=$ $\left|N_{G}[u] \cap A_{-1}\right|=1$. The item (i) implies that $A_{0}=\emptyset$. Therefore, u is a pendant vertex of G.

Let w be an arbitrary vertex of A_{-1}. Notice that $f\left(N_{G}[w]\right)=0$. Hence, w is adjacent to exactly $d_{H}(w)+1$ vertices in A_{1}. On the other hand, the item (iii) implies that H is connected. Hence, G is the graph obtained from a connected graph H by attaching exactly $d_{H}(w)+1$ pendant vertices to each vertex $w \in V_{H}$.

Sufficiency. Assume that G is the graph obtained from a connected graph H by attaching exactly $d_{H}(w)+1$ pendant vertices to each vertex $w \in V_{H}$. Then, $\left|V_{G}\right|=2\left|V_{H}\right|+2\left|E_{H}\right|$ and $\left|E_{G}\right|=3\left|E_{H}\right|+\left|V_{H}\right|$. According to the proof of the second part of Theorem 2.4, we have $\gamma_{b}(G)=2\left|E_{H}\right|=\frac{1}{2}\left(2\left|E_{G}\right|-\left|V_{G}\right|\right)$.

3. d-balanced graphs

In this section, we determine some classes of d-balanced graphs.
Proposition 3.1. Let G be a graph. Then $\gamma_{b}(G) \equiv 0(\bmod 2)$.

Proof. Let f be the maximum BDF of G, i.e., $f\left(V_{G}\right)=\gamma_{b}(G)$. Let

$$
G_{1}=G\left[A_{1} \cup A_{-1}\right] .
$$

For every vertex $v \in V_{G_{1}}$, by Definition 1.1 we have $f\left(N_{G}[v]\right)=0$. It is routine to check that

$$
0=\sum_{v \in V_{G_{1}}} f\left(N_{G}[v]\right)=\sum_{v \in V_{G_{1}}} f(v)+\sum_{u v \in E_{G_{1}}}(f(u)+f(v)) .
$$

Notice that 0 is even and $f(u)+f(v)$ is even for each edge $u v \in E_{G_{1}}$. Thus, $\gamma_{b}(G)=\sum_{v \in V_{G_{1}}} f(v)$ is even. This completes the proof.

Proposition 3.2. Let G be a graph. If $\Delta(G) \leqslant 2$ or $\Delta(G)=\left|V_{G}\right|-1$, then G is d-balanced.

Proof. Notice that a graph is d-balanced if and only if all of its components are d-balanced. Hence, we assume that G is connected. Let f be the maximum BDF of G, i.e., $f\left(V_{G}\right)=\gamma_{b}(G)$.

If $\Delta(G)=0$, then $G \cong K_{1}$. If $\Delta(G)=1$, then $G \cong K_{2}$. It is straightforward to check that $\gamma_{b}\left(K_{1}\right)=\gamma_{b}\left(K_{2}\right)=0$, as desired.

If $\Delta(G)=2$ and $\delta(G)=1$, then $G \cong P_{n}$ with $n \geqslant 3$. Notice that $f\left(N_{G}[v]\right)=0$ for each vertex $v \in V_{G}$. Therefore, each vertex in $A_{1}\left(\right.$ or A_{-1}) is adjacent to exactly one vertex in A_{-1} (or A_{1}, respectively). Hence, $\left|A_{1}\right|=\left|A_{-1}\right|$, which implies that $\gamma_{b}(G)=$ $\left|A_{1}\right|-\left|A_{-1}\right|=0$, i.e., G is d-balanced. If $\Delta(G)=\delta(G)=2$, then $G \cong C_{n}$ and G is 2-regular. By Claim 2.3 (in the proof of Theorem 2.2), we have that G is d-balanced.

If $\Delta(G)=\left|V_{G}\right|-1$, then assume without loss of generality that w is such a maximum degree vertex of G. Thus, $\gamma_{b}(G)=f\left(V_{G}\right)=f\left(N_{G}[w]\right)=0$, i.e., G is d-balanced.

A tree T is said to be a double star if T can be obtained from the disjoint union $K_{1, p} \cup K_{1, q}$ by adding one edge to join the maximum degree vertices of $K_{1, p}$ and $K_{1, q}$. We denote T by $S(p, q)$.

Proposition 3.3. Let $S(p, q)$ be a double star. Then $S(p, q)$ is d-balanced if and only if $(p, q) \neq(2,2)$. In addition, $\gamma_{b}(S(2,2))=2$.

Proof. Let $G=S(p, q)$. Assume, without loss of generality, that $p \geqslant q$ and u_{1} (or u_{2}) is the center of $K_{1, p}$ (or $K_{1, q}$, respectively). If $q=0$ or $(p, q)=(1,1)$, then by Proposition 3.2, we obtain that G is d-balanced. So, in what follows, we assume that $q \geqslant 1$ and $p \geqslant 2$.

Let f be the maximum BDF of G, i.e., $f\left(V_{G}\right)=\gamma_{b}(G)$. Notice that $f\left(N_{G}[v]\right)=0$ for every vertex $v \in V_{G}$. By Definition 1.1, we have $f(v)=-f\left(u_{1}\right)$ for each vertex $v \in V_{K_{1, p}} \backslash\left\{u_{1}\right\}$ and $f(v)=-f\left(u_{2}\right)$ for each vertex $v \in V_{K_{1, q}} \backslash\left\{u_{2}\right\}$. Hence,

$$
\begin{equation*}
f\left(N_{G}\left[u_{1}\right]\right)=(1-p) f\left(u_{1}\right)+f\left(u_{2}\right)=0, \quad f\left(N_{G}\left[u_{2}\right]\right)=(1-q) f\left(u_{2}\right)+f\left(u_{1}\right)=0 . \tag{3.1}
\end{equation*}
$$

If $f\left(u_{1}\right)=0$, then by (3.1) one has $f\left(u_{2}\right)=0$. Therefore, $f=0$ and so $\gamma_{b}(G)=$ $f\left(V_{G}\right)=0$. If $f\left(u_{1}\right) \neq 0$, then it follows from (3.1) that $p=q=2$ and $f\left(u_{1}\right)=f\left(u_{2}\right)$ (based on the fact that $f\left(u_{i}\right) \in\{-1,0,1\}$ for $i=1,2$). Thus, $S(p, q)$ is d-balanced unless $(p, q)=(2,2)$.

Note that

$$
f\left(V_{S(2,2)}\right)=f\left(u_{1}\right)-2 f\left(u_{1}\right)+f\left(u_{2}\right)-2 f\left(u_{2}\right)=-f\left(u_{1}\right)-f\left(u_{2}\right) \leqslant 2 .
$$

We define a function f^{\prime} on $V_{S(2,2)}$ satisfying that $f^{\prime}\left(u_{1}\right)=f^{\prime}\left(u_{2}\right)=-1$ and $f^{\prime}(v)=1$ for $v \in V_{S(2,2)} \backslash\left\{u_{1}, u_{2}\right\}$. It is routine to check that f^{\prime} is a BDF of $S(2,2)$ and $f^{\prime}\left(V_{V_{S(2,2)}}\right)=2$. Hence, $\gamma_{b}(S(2,2))=2$.

This completes the proof.
For any two disjoint graphs G and H, the join of G and H, denoted by $G \vee H$, is obtained from the disjoint union $G \cup H$ by adding all edges between G and H. The complete multipartite graph, denoted by $K_{n_{1}, n_{2}, \ldots, n_{r}}$, is defined to be the join $n_{1} K_{1} \vee n_{2} K_{1} \vee \ldots \vee n_{r} K_{1}$.

Proposition 3.4. If G is a complete multipartite graph, then G is d-balanced.
Proof. Let $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$ be a complete r-partite graph and let $V_{1} \cup V_{2} \cup \ldots \cup V_{r}$ be a partition of V_{G} with $\left|V_{i}\right|=n_{i}$ for $1 \leqslant i \leqslant r$. Let f be the maximum BDF of G, i.e., $f\left(V_{G}\right)=\gamma_{b}(G)$. Notice that $A_{-1} \cup A_{0} \neq \emptyset$. Then choose $w \in A_{-1} \cup A_{0}$, that is, $f(w) \leqslant 0$. Without loss of generality, we may assume that $w \in V_{1}$. If $\left|V_{1}\right|=1$, then $d_{G}(w)=\left|V_{G}\right|-1$. By Proposition 3.2, G is d-balanced. Now, we assume that $\left|V_{1}\right| \geqslant 2$. Let u be an arbitrary vertex in V_{1} and $u \neq w$. Notice that $f\left(N_{G}[u]\right)=f\left(N_{G}[w]\right)=0$. Thus,

$$
f(u)=f\left(N_{G}[u]\right)-\left(f\left(N_{G}[w]\right)-f(w)\right)=f(w) \leqslant 0
$$

Hence,

$$
\gamma_{b}(G)=f\left(V_{G}\right)=f\left(N_{G}[w]\right)+f\left(V_{1} \backslash\{w\}\right)=f\left(V_{1} \backslash\{w\}\right) \leqslant 0
$$

On the other hand, $\gamma_{b}(G) \geqslant 0$. Therefore, $\gamma_{b}(G)=0$, i.e., G is d-balanced.

For any two disjoint graphs G and H, the Cartesian product of G and H, denoted by $G \times H$, is the graph defined as follows:
$\triangleright V_{G \times H}=\left\{(u, v): u \in V_{G}, v \in V_{H}\right\}$,
$\triangleright(u, v)$ and $\left(u^{\prime}, v^{\prime}\right)$ are adjacent if and only if $u=u^{\prime}$ and $v v^{\prime} \in E_{H}$ or $v=v^{\prime}$ and $u u^{\prime} \in E_{G}$.
Let $P_{n} \times P_{2}$ be the Cartesian product of P_{n} and P_{2} with the vertex set $\left\{u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right\}$ and edge set $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leqslant i \leqslant n-1\right\} \cup\left\{u_{i} v_{i}\right.$: $1 \leqslant i \leqslant n\}$. A graph G is said to be a generalized ladder graph if G can be obtained from $P_{n} \times P_{2}$ by deleting arbitrary edges in $\left\{u_{i} v_{i}: 2 \leqslant i \leqslant n-1\right\}$, see [2].

Proposition 3.5. If G is a generalized ladder graph with $2 n$ vertices, then G is d-balanced.

Proof. Let f be the maximum BDF of G, i.e., $f\left(V_{G}\right)=\gamma_{b}(G)$. Obviously, $\gamma_{b}(G)=s-t$. If $f\left(u_{i}\right)+f\left(v_{i}\right)=0$ for $1 \leqslant i \leqslant n$, then $f\left(V_{G}\right)=0$ and therefore $\gamma_{b}(G)=0$, as desired. So, in what follows, we may assume that there exists at least one $j(1 \leqslant j \leqslant n)$ such that $f\left(u_{j}\right)+f\left(v_{j}\right) \neq 0$. Hence, $f \neq 0$. In order to show that G is d-balanced, it suffices to show $s=t$. We begin with the following claim.

Claim 3.6. $\left|N_{G}(v) \cap A_{-1}\right|=1$ for each vertex $v \in A_{1}$.
Pro of of Claim 3.6. Let v be an arbitrary vertex in A_{1}. Notice that $f\left(N_{G}[v]\right)=0$ and $d_{G}(v)=2$ or 3 . If $d_{G}(v)=2$, then $\left|N_{G}(v) \cap A_{-1}\right|=1$ and $\left|N_{G}(v) \cap A_{0}\right|=1$, as desired. If $d_{G}(v)=3$, then either $\left|N_{G}(v) \cap A_{-1}\right|=2$ and $\left|N_{G}(v) \cap A_{1}\right|=1$, or $\left|N_{G}(v) \cap A_{-1}\right|=1$ and $\left|N_{G}(v) \cap A_{0}\right|=2$.

Suppose to the contrary that there exists a vertex of degree 3 , say $u_{l}(2 \leqslant l \leqslant$ $n-1$), in A_{1} such that $\left|N_{G}\left(u_{l}\right) \cap A_{-1}\right|=2$ and $\left|N_{G}\left(u_{l}\right) \cap A_{1}\right|=1$. Up to isomorphism, we have $\left(f\left(u_{l-1}\right), f\left(u_{l+1}\right), f\left(v_{l}\right)\right) \in\{(-1,-1,1),(-1,1,-1)\}$. If $\left(f\left(u_{l-1}\right), f\left(u_{l+1}\right), f\left(v_{l}\right)\right)=(-1,-1,1)$, then $f\left(v_{l-1}\right)=f\left(v_{l+1}\right)=-1$. That is, $f\left(u_{i}\right)=f\left(v_{i}\right)$ for $i \in\{l-1, l, l+1\}$. By the symmetry of u_{i} and v_{i}, it is routine to check that $f\left(u_{i}\right)=f\left(v_{i}\right)$ for $1 \leqslant i \leqslant n$. In particular, $f\left(u_{1}\right)=f\left(v_{1}\right)$ and $f\left(u_{2}\right)=f\left(v_{2}\right)$. Hence, $f\left(N_{G}\left[u_{1}\right]\right)=2 f\left(u_{1}\right)+f\left(u_{2}\right)=0$. Notice that $f(v) \in\{-1,0,1\}$ for each vertex $v \in V_{G}$. Therefore, $f\left(u_{1}\right)=f\left(u_{2}\right)=0$. According to the structure of the generalized ladder graph G, we have $f=0$, a contradiction.

If $\left(f\left(u_{l-1}\right), f\left(u_{l+1}\right), f\left(v_{l}\right)\right)=(-1,1,-1)$, then $f\left(v_{l-1}\right)=-f\left(v_{l+1}\right)=1$ and $u_{l+1} v_{l+1} \in E_{G}$. Notice that $f\left(N_{G}[v]\right)=0$ for each vertex $v \in V_{G}$. Then,

$$
\left\{\begin{array}{l}
0=f\left(N_{G}\left[u_{l-1}\right]\right)=f\left(u_{l-1}\right)+f\left(u_{l}\right)+f\left(u_{l-2}\right)+g\left(u_{l-1} v_{l-1}\right) f\left(v_{l-1}\right), \\
0=f\left(N_{G}\left[v_{l-1}\right]\right)=f\left(v_{l-1}\right)+f\left(v_{l}\right)+f\left(v_{l-2}\right)+g\left(u_{l-1} v_{l-1}\right) f\left(u_{l-1}\right),
\end{array}\right.
$$

where $g\left(u_{l-1} v_{l-1}\right)=1$ if $u_{l-1} v_{l-1} \in E_{G}$ and 0 otherwise. According to the above two equations, we get $f\left(u_{l-2}\right)+f\left(v_{l-2}\right)=0$. Similarly, we obtain that $f\left(u_{i}\right)+f\left(v_{i}\right)=0$ for each $i=1,2, \ldots, n$, a contradiction. Hence, $\left|N_{G}(v) \cap A_{-1}\right|=1$ for each vertex $v \in A_{1}$. This completes the proof of Claim 3.6.

By a similar reasoning like in the proof of Claim 3.6, we derive that $\left|N_{G}(v) \cap A_{1}\right|=1$ for each vertex $v \in A_{-1}$. Thus, $s=t$ and so $\gamma_{b}(G)=0$, i.e., G is d-balanced.

Proposition 3.7. The join graphs $P_{m} \vee P_{n}, P_{m} \vee C_{n}$ and $C_{m} \vee C_{n}$ are d-balanced, respectively.

Proof. If $\min \{m, n\} \leqslant 3$, then $\Delta(G)=m+n-1$ for $G \in\left\{P_{m} \vee P_{n}, P_{m} \vee C_{n}\right.$, $\left.C_{m} \vee C_{n}\right\}$. By Proposition 3.2, our desired results hold. So, in what follows, we assume that $\min \{m, n\} \geqslant 4$. Let f be the maximum BDF of G, i.e., $f\left(V_{G}\right)=\gamma_{b}(G)$.

We consider firstly that $G \cong P_{m} \vee P_{n}$. Assume that $V_{P_{m}}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, $V_{P_{n}}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, f\left(V_{P_{m}}\right)=k$ and $f\left(V_{P_{n}}\right)=l$. Obviously, $\gamma_{b}(G)=k+l$. Notice that $f\left(N_{G}[v]\right)=0$ for each vertex $v \in V_{G}$. Hence, $f\left(N_{G}[v] \cap V_{P_{m}}\right)=-l$ for each vertex $v \in V_{P_{m}}$ and $f\left(N_{G}[v] \cap V_{P_{n}}\right)=-k$ for each vertex $v \in V_{P_{n}}$. That is,

$$
\begin{equation*}
\left(A\left(P_{m}\right)+I_{m}\right) \mathbf{x}_{1}=-l \mathbf{1}_{m} \quad \text { and } \quad\left(A\left(P_{n}\right)+I_{n}\right) \mathbf{x}_{2}=-k \mathbf{1}_{n} \tag{3.2}
\end{equation*}
$$

where $\mathbf{x}_{1}=\left(f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{m}\right)\right)^{\mathrm{T}}, \mathbf{x}_{2}=\left(f\left(u_{1}\right), f\left(u_{2}\right), \ldots, f\left(u_{n}\right)\right)^{\mathrm{T}} ; I_{m}$ and $\mathbf{1}_{m}$ denote the identity matrix and the all-ones column vector of order m, respectively. By solving (3.2), we have:
(a) $f\left(v_{3 p-q}\right)=k_{q}$ for $1 \leqslant p \leqslant\left\lceil\frac{m}{3}\right\rceil$ and $q \in\{0,1,2\}(1 \leqslant 3 p-q \leqslant m)$, where $k_{1}+k_{2}=-l$ and $k_{0}=0$,
(b) $f\left(u_{3 p-q}\right)=l_{q}$ for $1 \leqslant p \leqslant\left\lceil\frac{n}{3}\right\rceil$ and $q \in\{0,1,2\}(1 \leqslant 3 p-q \leqslant n)$, where $l_{1}+l_{2}=-k$ and $l_{0}=0$,
(c) $f\left(v_{m-2}\right)=0$ and $f\left(u_{n-2}\right)=0$.

It is routine to check that $f\left(V_{P_{m}}\right)=-l\left\lceil\frac{m}{3}\right\rceil=k$ and $f\left(V_{P_{n}}\right)=-k\left\lceil\frac{n}{3}\right\rceil=l$. Therefore, $l\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil=l$. Note that $\min \{m, n\} \geqslant 4$. Hence, $l=0$ and $k=0$. Thus, $\gamma_{b}(G)=0$. That is, $P_{m} \vee P_{n}$ is d-balanced.

Note that $3 f\left(V_{C_{n}}\right)=-n f\left(V_{P_{m}}\right)$ if $G \cong P_{m} \vee C_{n}$, and $3 f\left(V_{C_{n}}\right)=-n f\left(V_{C_{m}}\right)$ if $G \cong C_{m} \vee C_{n}$. Then by a similar reasoning, we may show that $P_{m} \vee C_{n}$ and $C_{m} \vee C_{n}$ are also d-balanced, which claims are omitted here.

This completes the proof.
Remark 3.8. Note that not all join graphs are d-balanced. For example, consider the two disjoint graphs G and H as shown in Figure 2.

Let f be the given labelling in Figure 2. Clearly, $f\left(V_{G}\right)=5$ and $f\left(V_{H}\right)=-3$. For every vertex $v \in V_{G}, f\left(N_{G}[v]\right)=3$, and for every vertex $v \in V_{H}, f\left(N_{H}[v]\right)=-5$.

Figure 2. Graphs G and H.
Hence, f is the BDF of $G \vee H$. Therefore, $\gamma_{b}(G \vee H) \geqslant f\left(V_{G \vee H}\right)=f\left(V_{G}\right)+f\left(V_{H}\right)=$ $2>0$. That is, $G \vee H$ is not d-balanced.

4. Some open problems

In this paper, we proposed a novel invariant "balanced domination" of graphs. We determine some types of d-balanced graphs.

In fact, it is difficult to characterize all of the d-balanced graphs. In view of Corollary 2.5 , the corona of any tree is d-balanced. Clearly, Theorem 2.6 implies that all trees with at most 5 vertices are d-balanced. However, Proposition 3.3 implies that not all trees are d-balanced. It is well known that a caterpillar is either a K_{2} or a tree on at least 3 vertices such that deleting its leaves we obtain a path of order at least 1 . It is natural to pose the following problem:

Problem 4.1. How to characterize all d-balanced caterpillar graphs? Furthermore, how to characterize all d-balanced trees?

In view of Proposition 3.5, we know that $P_{m} \times P_{2}$ is d-balanced. Another attractive question is posed as follows:

Problem 4.2. How to determine the exact value of $\gamma_{b}\left(P_{m} \times P_{n}\right)$ for $n>2$? Is it true that $P_{m} \times P_{n}$ is d-balanced?

Problem 4.3. What about NP-completeness proof for determining whether a given graph has a balanced dominating set or not?

We will study the above problems in the near future.
Acknowledgement. We take this opportunity to thank the anonymous reviewers for their critical reading of the manuscript and suggestions which have immensely helped us in getting the article to its present form. The authors would like to thank one of the anonymous reviewers for the constructive suggestions for Remark 3.8 and inputs for the proofs of Propositions 3.1, 3.3 and 3.7.

References

[1] J. A. Bondy, U. S. R. Murty: Graph Theory with Applications. Elsevier, New York, 1976.
[2] R. Caha, V. Koubek: Optimal embeddings of generalized ladders into hypercubes. Discrete Math. 233 (2001), 65-83.
[3] E. J. Cockayne, C. M. Mynhardt: On a generalisation of signed dominating functions of a graphs. Ars Comb. 43 (1996), 235-245.
zbl MR
[4] J. Dunbar, S. Hedetniemi, M. A. Henning, A. McRae: Minus domination in graphs. Discrete Math. 199 (1999), 35-47.
zbl MR doi
[5] J. Dunbar, S. Hedetniemi, M. A. Henning, P. J. Slater: Signed domination in graphs. Graph Theory, Combinatorics, Algorithms and Applications. Vol. 1. Wiley, New York, 1995, pp. 311-321.
[6] T. W. Haynes, S. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs. Pure and Applied Mathematics, Marcel Dekker 208. Marcel Dekker, New York, 1998.
zbl MR doi
[7] O. Ore: Theory of Graphs. American Mathematical Society Colloquium Publications 38. AMS, Providence, 1962.
zbl MR doi
[8] D. Wong, X. Ma, F. Tian: Relation between the skew-rank of an oriented graph and the rank of its underlying graph. Eur. J. Comb. 54 (2016), 76-86. Zbl MR doi
[9] B. Xu: On signed edge domination numbers of graphs. Discrete Math. 239 (2001), 179-189.
zbl MR doi
[10] B. Xu: Two classes of edge domination in graphs. Discrete Appl. Math. 154 (2006), 1541-1546.
[11] B. Xu: On signed cycle domination in graphs. Discrete. Math. 309 (2009), 1007-1012.
[12] B. Xu, E. J. Cockayne, T. W. Haynes, S. T. Hedetniemi, S. Zhou: Extremal graphs for inequalities involving domination parameters. Discrete Math. 216 (2000), 1-10.
zbl MR doi
[13] B. Xu, S. Zhou: Characterization of connected graphs with maximum domination number. J. Math. Res. Expo. 20 (2000), 523-528.
[14] Y. Zhao, E. Shan, H. A. Ahangar: Signed total domination on Kronecker products of two complete graphs. Australas. J. Comb. 56 (2013), 95-102.

Authors' addresses: Baogen Xu, Chunhua Li, School of Sciences, East China Jiaotong University, Huadong Road, Qingshanhu District, Nanchang, Jiangxi 330013, P.R.China, e-mail: baogenxu@163.com, chunhuali66@163.com; Wanting Sun, Shuchao Li (corresponding author), Faculty of Mathematics and Statistics, Central China Normal University, Road, Wuhan 430079, P.R. China, e-mail: wtsun2018@sina.com, lscmath@mail.ccnu.edu.cn.

[^0]: The first and the third author acknowledge the financial support from the National Natural Science Foundation of China: B. Xu Grant Nos. 11961026, 11861032, S. Li Grant Nos. 12171190, 11671164. C. Li acknowledges the financial support from the Natural Science Foundation of Jiangxi Province, Grant No. 20181BAB201002.

