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Abstract. We give some characterizations for radial Minkowski additive operators and
prove a new characterization of balls. Finally, we show the property of radial Minkowski
homomorphism.

Keywords: characterization; radial Minkowski additive operator; radial Minkowski ho-
momorphism

MSC 2020 : 52A40, 52A20

1. Introduction

The classical Brunn-Minkowski theory originated from Brunn’s doctoral thesis

in 1887 and Minkowski’s work in 1901; the real valued valuations are at the center of

Brunn-Minkowski theory. In the 1930s, Blaschke started a systematic investigation,

and then Hadwiger obtained the famous Hadwiger’s characterization theorem. The

Hadwiger’s characterization theorem provides the connection between rigid motion

invariant set functions and symmetric polynomials (see [4]) for further results and

generalizations, see [1], [2], [3], [5], [20], [29]. The following Minkowski endomorphism

was introduced by Schneider in [21].

Definition 1.1 ([21]). The map Φ: Kn → Kn is called a Minkowski endomor-

phism if it satisfies the following conditions:

(i) Φ is continuous with respect to Hausdorff metric;

(ii) Φ is Minkowski additive,

Φ(K + L) = Φ(K) + Φ(L) for all K,L ∈ Kn;
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(iii) Φ is SO(n) equivariant:

Φ(TK) = TΦ(K) for all T ∈ SO(n) and for all K ∈ Kn,

where Kn is the the family of convex bodies (nonempty, compact, convex sets

in R
n). A convex body K is uniquely determined by its support function hK(u) =

max{〈x, u〉 : x ∈ K} (see [22]), here 〈x, u〉 is the inner product of x and u.

The author in [21] established a complete classification of Minkowski endomor-

phism in the case when n = 2. Subsequently, Kiderlen in [14] proved the im-

portant convolution representation (see Theorem 1.1) with respect to Minkowski

endomorphism. For more results regarding Minkowski endomorphism, see [6], [7],

[11], [21], [31].

Theorem 1.1 ([14]). Let Φ be a Minkowski endomorphism. Then there exists

a unique zonal distribution µ ∈ C−∞

o (Sn−1) of order at most 2, such that

hΦ(K) = hK ∗ µ,

where C−∞

o (Sn−1) is the space of distributions vanishing on the restriction of linear

functions to the sphere and hK ∗ µ denotes the spherical convolution of the support

function with the distribution µ. Moreover, Φ is uniformly continuous if and only

if µ is a signed Borel measure.

In 1975, Lutwak in [18] introduced the dual Brunn-Minkowski theory, which played

a very important role in the solution of the Busemann-Petty problem, see [8], [9],

[10], [30]. In the dual theory, convex bodies are replaced by star bodies, support

functions are replaced by radial functions, and the addition of star bodies is the

radial sum defined by K+̃L = {x+̃y : x ∈ K, y ∈ L}, where x+̃y is defined to be

the usual vector sum of the points x and y, if both of them are contained in a line

through origin, and 0 otherwise. Valuations on convex bodies had been extended to

star bodies; Klain in [16] obtained the classification theorem for star-shaped bodies

which is a dual analogue of Hadwiger’s characterization theorem of the Minkowski

mixed volumes. For more results, see [12], [13], [15], [17], [19], [26], [27], [28].

In this paper, we consider the radial Minkowski additive. Let Sn be the set of star

bodies in R
n, Φ be a map from Sn into some abelian group. Map Φ is called radial

Minkowski additive map if

Φ(K+̃L) = Φ(K)+̃Φ(L),

where K,L ∈ Sn. Since (K ∩ L)+̃(K ∪ L) = K+̃L, the radial Minkowski additive

map Φ satisfies the relation

Φ(K ∩ L)+̃Φ(K ∪ L) = Φ(K)+̃Φ(L);
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this property is called radial valuation. A map Φ is called p-homogeneous if for

K ∈ Sn and λ > 0,

Φ(λK) = λpΦ(K).

From the geometric point of view, the radial Minkowski additive maps enjoying an

invariance property are of particular interest. Under extra continuity assumptions,

we get the following uniqueness result proved in Section 3 (see Theorem 3.1).

Theorem 1.2. Let n > 2. If the map Φ: Sn → R is linear (Φ is radial Minkowski

additive and 1-homogeneous), invariant under proper rotations and continuous at the

unit ball Bn, then Φ is a constant multiple of the dual mean width.

Remark 1.1. Let Φ be a radial Minkowski additive map from Sn into R or Rn.

For K ∈ Sn and the definition of radial function, we have 2K = K+̃K, hence

Φ(2K) = 2Φ(K), by induction, this gives Φ(kK) = kΦ(K) for k ∈ N. Moveover,

we obtain kΦ(K) = Φ(kK) = Φ(m(k/m)K) = mΦ((k/m)K) for k,m ∈ N, hence

Φ(qK) = qΦ(K) for rational q > 0. If Φ is continuous on Sn, we then conclude

that Φ(ΓK) = ΓΦ(K) for real Γ > 0. Thus, the assumption ‘linear and continuous

at Bn’ in Theorem 1.2 is weaker than the assumption ‘radial Minkowski additive and

continuous at Sn’.

In Section 4, we generalize the result of Kiderlen (see [14]); in order to prove the

result, we introduce the radial Minkowski endomorphism.

Definition 1.2. The map Φ: Sn → Sn is called a radial Minkowski endomor-

phism if it satisfies the following conditions:

(i) Φ is continuous with respect to radial metric;

(ii) Φ is radial Minkowski additive,

Φ(K+̃L) = Φ(K)+̃Φ(L) for all K,L ∈ Sn;

(iii) Φ is SO(n) equivariant:

Φ(TK) = TΦ(K) for all T ∈ SO(n).

Theorem 1.3. Φ: Sn → Sn is a radial Minkowski homomorphism if and only if

there is a nonnegative measure µ ∈ M(Sn−1, ê) such that ̺(ΦK, ·) = ̺(K, ·) ∗ µ.
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2. Notation and background material

A set S ⊂ R
n is called starshaped with respect to o if it is not empty and [o, x] ⊂ S

for all x ∈ S. For a compact starshaped set K, the radial function is defined by [22]

̺K(u) = ̺(K,u) = max{λ > 0: λu ∈ K},

where u ∈ Sn−1. We say that K is a star body if K is a compact starshaped set

with a positive continuous radial function, the set of all star bodies in Rn is denoted

by Sn, and Sn
e is the subset of S

n that contains the origin-symmetric star bodies.

From the definition of radial function we have for λ > 0 and T ∈ SO(n),

̺(λK, u) = λ̺(K,u), ̺(TK, u) = ̺(K,T−1u).

The radial linear combination of star bodies is defined by

̺(λK+̃µL, ·) = λ̺(K, ·) + µ̺(L, ·) for any K,L ∈ Sn.

The dual analog form for the Hausdorff metric, the radial metric, is defined by

δ(K,L) = inf{ε > 0: K ⊂ L+̃εBn, L ⊂ K+̃εBn},

where Bn is the Euclidean unit ball of R
n. It is easy to prove that

δ(K,L) = sup
u∈Sn−1

|̺(K,u)− ̺(L, u)| = ‖̺K − ̺L‖∞.

Note that if K,L ∈ Sn, then K ∩ L, K ∪ L ∈ Sn and

̺K∩L(·) = min{̺K(·), ̺L(·)}, ̺K∪L(·) = max{̺K(·), ̺L(·)}.

Lutwak in [18] introduced the notion of the dual mean width M̃(K),

M̃(K) =
2

nωn

∫

Sn−1

̺(K,u) du,

and the dual Steiner point s̃(K),

s̃(K) =
1

ωn

∫

Sn−1

̺(K,u)u du,

where K ∈ Sn. From the definition of dual mean width and dual Steiner point, we

obtain

M̃(K+̃L) = M̃(K) + M̃(L), s̃(K+̃L) = s̃(K) + s̃(L).
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In the following, we define the quantity

s̃q(K) =
1

ωn

∫

Sn−1

̺(K,u)qu du,

where K ∈ Sn and q 6= 0. We then obtain that the quantity s̃q(·) satisfies the radial

valuation property.

Proposition 2.1. Let K,L ∈ Sn. If q 6= 0, then

s̃q(K) + s̃q(L) = s̃q(K ∩ L) + s̃q(K ∪ L).

P r o o f. Assume that K,L ∈ Sn and consider the disjoint partition of Sn−1 =

Ω0 ∪Ω1 ∪ Ω2, where

Ω0 = {u ∈ Sn−1 : ̺(K,u) = ̺(L, u)}, Ω1 = {u ∈ Sn−1 : ̺(K,u) < ̺(L, u)},

Ω2 = {u ∈ Sn−1 : ̺(K,u) > ̺(L, u)}.

Since K ∩ L, K ∪ L ∈ Sn for Hn−1-almost all u ∈ Ω0 we have

̺(K,u) = ̺(L, u) = ̺(K ∪ L, u) = ̺(K ∩ L, u).

For Hn−1-almost all u ∈ Ω1 we have

̺(K,u) = ̺(K ∩ L, u), ̺(L, u) = ̺(K ∪ L, u).

For Hn−1-almost all u ∈ Ω2 we have

̺(L, u) = ̺(K ∩ L, u), ̺(K,u) = ̺(K ∪ L, u).

It follows that
∫

Sn−1

̺(K,u)qu du =

∫

Ω0

̺(K,u)qu du+

∫

Ω1

̺(K,u)qu du+

∫

Ω2

̺(K,u)qu du

=

∫

Ω0

̺(K ∩ L, u)qu du+

∫

Ω1

̺(K ∩ L, u)qu du

+

∫

Ω2

̺(K ∪ L, u)qu du

and
∫

Sn−1

̺(L, u)qu du =

∫

Ω0

̺(L, u)qu du+

∫

Ω1

̺(L, u)qu du+

∫

Ω2

̺(L, u)qu du

=

∫

Ω0

̺(K ∪ L, u)qu du+

∫

Ω1

̺(K ∪ L, u)qu du

+

∫

Ω2

̺(K ∩ L, u)qu du.
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Since

∫

Sn−1

̺(K ∩ L, u)qu du =

∫

Ω0

̺(K ∩ L, u)qu du+

∫

Ω1

̺(K ∩ L, u)qu du

+

∫

Ω2

̺(K ∩ L, u)qu du,

∫

Sn−1

̺(K ∪ L, u)qu du =

∫

Ω0

̺(K ∪ L, u)qu du+

∫

Ω1

̺(K ∪ L, u)qu du

+

∫

Ω2

̺(K ∪ L, u)qu du,

we obtain

∫

Sn−1

̺(K,u)qu du+

∫

Sn−1

̺(L, u)qu du

=

∫

Sn−1

̺(K ∩ L, u)qu du+

∫

Sn−1

̺(K ∪ L, u)qu du.

The desired result is obtained. �

From Proposition 2.1 we obtain that the dual mean width and dual Steiner point

satisfy the radial valuation property, see [22].

3. A new characterization of balls

In this section, in order to prove Theorem 1.2, we first introduce the radial rotation

mean. If there exists a positive number m and rotations ̺1, ̺2, . . . , ̺m ∈ SO(n) such

that

Kr =
1

m
̺1K+̃

1

m
̺2K+̃ . . . +̃

1

m
̺mK,

then we say that Kr is a radial rotation mean of K. In view of the notion of radial

rotation mean, we show the following result; our proof is based on the techniques

in [22], Theorem 3.3.2.

Lemma 3.1. For every convex body K ∈ Sn with dimK > 0 there is a sequence

of radial rotation means of K converging to a ball.

P r o o f. For L ∈ Sn, let d(L) := min{λ > 0: L ⊂ λBn}, which is continuous.

Since λBn containing K contains all radial rotation means of K, the family R(K)

of radial rotation means of K is bounded. Hence, the function d attains a minimum

d0 > 0 on the compact set clR(K), i.e., d0 = d(L), L ∈ clR(K). We next prove

L = d0Bn; otherwise, we assume that L 6= d0Bn, which implies that there exists
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a vector u0 ∈ Sn−1 with ̺(L, u0) < d0. Thus, we can find a suitable neighbourhood U

of u0 on Sn−1 such that ̺(L, u) < d0 for every u ∈ U . Since Sn−1 is compact, there

exists finitely many rotations ̺1, ̺2, . . . , ̺m ∈ SO(n) such that
m⋃
i=1

̺iU = Sn−1. Let

L̄ =
1

m
̺1L+̃

1

m
̺2L+̃ . . . +̃

1

m
̺mL.

There is a number i ∈ {1, 2 . . . ,m} with u ∈ ̺iU , hence ̺
−1
i u ∈ U , which implies

̺(L, ̺−1
i u) < d0, hence

̺(L̄, u) =
1

m

m∑

i=1

̺(̺iL, u) =
1

m

m∑

i=1

̺(L, ̺−1
i u) < d0.

By the continuity of ̺(L̄, ·), this yields d(L̄) < d0. There is a sequence {Kj} in R(K)

converging to L, and we deduce that

Kj =
1

m
̺1Kj+̃

1

m
̺2Kj+̃ . . . +̃

1

m
̺mKj → L̄

for j → ∞; this gives d(Kj) < d0 for large j. Since Kj ∈ R(K), this contradicts the

minimality of d0. Therefore L is a ball, which proves the theorem. �

From Lemma 3.1 we deduce:

Theorem 3.1. Let n > 2. If the map Φ: Sn → R is radial Minkowski addi-

tive, invariant under proper rotations and continuous at the unit ball Bn, then Φ is

a constant multiple of the dual mean width.

P r o o f. For x ∈ R
n, we can choose ̺ ∈ SO(n) with ̺x = −x, hence Φ(o) =

Φ({x}+̺̃{x}) = 2Φ({x}). Thus Φ(o) = 0 gives Φ({x}) = 0 in general. Let

K ∈ Sn and dimK > 0. If Kr = 1/m(λ1̺1K+̃ . . . +̃λm̺mK) with rational numbers

λ1, . . . , λm > 0 and rotations ̺1, . . . , ̺m ∈ SO(n), then Φ(Kr) = (λ1+. . .+λm)Φ(K)

by the properties of Φ. Since the dual mean width has the same properties as Φ,

we conclude that Φ(K)/M̃(K) = Φ(Kr)/M̃(Kr). It follows from Lemma 3.1 that

the integer m, the rotations ̺i and the rational numbers λi can be chosen so that

(Kr, Bn) is smaller than a given number ε > 0. Since Φ is continuous at Bn, we

deduce that Φ(K)/M̃(K) = 1
2Φ(Bn). �

With the help of Lemma 3.1 and dual Brunn-Minkowski functional of degree α,

we consider the stationary domains under prescribed dual mean width. We say that

K ∈ Sn is stationary for a functional F : Sn → R
+ if

d

dt
F ((1− t)K+̃tL)

∣∣
t=0+

= 0 for all L ∈ Sn.

We now give the definition of dual Brunn-Minkowski functional.
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Definition 3.1. F : Sn → R
+ is called a dual Brunn-Minkowski functional of

degree α if it satisfies the following condition:

(i) F is rigid motion invariant: if ϕ : R
n → R

n is rigid motion, then

F (ϕ(K)) = F (K);

(ii) F is radial Hausdorff continuous: if Km → K in radial metric, then

F (Km) → F (K) as m → ∞;

(iii) F is differentiable, i.e., there exists

d

dt
F ((1− t)K+̃tL)

∣∣
t=0+

;

(iv) F is α-homogeneous for α 6= 0:

F (tK) = tαF (K) for t ∈ R
+;

(v) F satisfies the dual Brunn-Minkowski inequality:

F ((1 − t)K+̃tL))α 6 (1− t)F (K)α + tF (L)α,

and equality holds if and only if K and L are dilates.

Theorem 3.2. Let F : Sn → R
+ be a dual Brunn-Minkowski functional of de-

gree α. If K ∈ Sn is a stationary domain for the functional

Φ(K) =
F (K)α

M̃(K)
,

then K is a ball.

P r o o f. By Lemma 3.1, we know that there exists a sequence of dual rotation

means of K which converges to a ball in radial Hausdorff distance, and F is contin-

uous. Let Bn
r be the ball of radius r. We have

F (Bn
r )

α = lim
m→∞

F
( 1

m
̺1K+̃

1

m
̺2K+̃ . . . +̃

1

m
̺mK

)α

.

Using the dual Brunn-Minkowski inequality (v) and (iv) in Definition 3.1, we obtain

F (Bn
r )

α
6 F (K)α.

However, the dual mean width of K, M̃(K) satisfies (i), (ii), (iv) and is linear with

respect to radial sum, thus, the maximizers of the quotient functional Φ(K) over Sn
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are balls. We next shall prove that balls are unique. Otherwise, we assume K1 is

a maximizer of Φ, different from a ball, and let M̃(Bn
r ) = M̃(K1). Since K1 and B

n
r

are not dilates, we get

Φ
(K1+̃Bn

r

2

)
<

1

2
Φ(K1) +

1

2
Φ(Bn

r ) = Φ(Bn
r ),

against the assumption that Bn
r .

On the other hand, put

Ψ1(t) = F ((1 − t)K+̃tL)α, Ψ2(t) = M̃((1− t)K+̃tL)α, Ψ(t) =
Ψ1(t)

Ψ2(t)
.

It is clear that Ψ1(t) is concave on [0, 1] and Ψ2(t) is linear. Therefore for t ∈ [0, 1],

Ψ(t) >
Ψ1(0) + Ψ

′

1,+(0)t

Ψ2(0) + Ψ
′

2,+(0)t
,

where Ψ
′

1,+ means the right derivatives of Ψ1 at 0. Assume that K is stationary

for Φ. This gives
Ψ1(0) + Ψ

′

1,+(0)t

Ψ2(0) + Ψ
′

2,+(0)t
=

Ψ1(0)

Ψ2(0)
.

It follows that

Ψ(t) > Ψ(0), t ∈ [0, 1].

By the arbitrariness of L, we deduce that K is a maximizer for Φ over Sn. This

completes the proof. �

4. Radial Minkowski homomorphism

In the following, we give the proof of Theorem 1.3; some basic facts on spherical

harmonics are needed, see [25]. Let SO(n) and Sn−1 be equipped with the invariant

probability measures. Let C(SO(n)) and C(Sn−1) be the sets of continuous functions

on SO(n) and Sn−1, respectively. Similarly, M(SO(n)),M(Sn−1) denote their dual

spaces of signed finite Borel measures. Assume f ∈ C(Sn−1) and µ ∈ M(Sn−1).

We have Tf(u) = f(T−1u), T ∈ SO(n), thus, we say that the group SO(n) is left

translation invariant. The convolution µ ∗ f ∈ C(Sn−1) of a measure µ ∈ M(SO(n))

and a function f ∈ C(Sn−1) is defined by

(µ ∗ f)(u) =

∫

SO(n)

Tf(u) dµ(T ).

649



The canonical pairing of f ∈ C(Sn−1) and µ ∈ M(Sn−1) is defined by (see [25])

〈µ, f〉 = 〈f, µ〉 =

∫

SO(n)

f(u) dµ(u).

If ν ∈ M(Sn−1), then

(4.1) 〈µ ∗ ν, f〉 = 〈µ, ν ∗ f〉.

LetHn
k be the finite dimensional vector space of spherical harmonics of dimension n

and order k, and N(n, k) denote the dimension of Hn
k . The space of all finite sums of

spherical harmonics of dimension n is denoted by Hn. Moreover, the Hn
k are pairwise

orthogonal with respect to the inner product on C(Sn−1). Clearly, Hn
k is invariant

with respect to rotations. If H1, . . . , HN(n,k) is an orthonormal basis of H
n
k , then

there is a unique polynomial Pn
k ∈ C[−1, 1] of degree k such that

N(n,k)∑

k=1

Hi(u)Hi(v) = N(n, k)Pn
k (u · v).

The polynomial Pn
k is called the Legendre polynomial of dimension n and order k.

A function f ∈ C(Sn−1) is called zonal if Tf = f , where T ∈ SO(n − 1) is

the subgroup of rotations leaving the pole ê of Sn−1. Zonal functions depend only

on the scalar product, 〈u, ê〉. The set of continuous zonal functions and their dual

on Sn−1 will be denoted by C(Sn−1, ê) and M(Sn−1, ê), respectively. The map

Λ: C[−1, 1] → C(Sn−1, ê) is defined by Λf(u) = f(〈u, ê〉), u ∈ Sn−1. Clearly, Λ is an

isomorphism between functions on [−1, 1] and zonal functions on Sn−1 (see, e.g. [25]).

If f ∈ C(Sn−1), µ ∈ M(Sn−1, ê) and ϑ ∈ SO(n), then

(f ∗ µ)(ϑ̂) =

∫

Sn−1

f(ϑu) dµ(u)

and thus, for every η ∈ SO(n), (ηf ∗ µ) = η(f ∗ µ). Therefore, the zonal func-

tion ΛPn
k is the unique zonal spherical harmonic in Hn

k , up to a multiplicative con-

stant. For Hn
k we can choose an orthonormal basis Hk1, . . . ,HkN(n,k). The family

{Hk1, . . . ,HkN(n,k)} is a complete orthogonal system in L
2(Sn−1). In particular, for

every f ∈ L2(Sn−1), the series

(4.2) f ∼

∞∑

k=1

πkf

converges to f , where πkf ∈ Hn
k is the orthogonal projection of f on the space H

n
k .

By the properties of the Legendre polynomials, it is easy to show that πkf =

650



N(n, k)(f ∗ ΛPn
k ). For a measure µ ∈ M(Sn−1),

µ ∼
∞∑

k=1

πkµ,

where πkµ ∈ Hn
k . Since P

n
0 (t) = 1, N(n, 0) = 1 and Pn

1 (t) = t, N(n, 1) = n, we

obtain for µ ∈ M(Sn−1),

π0µ = µ(Sn−1), (π1µ)(u) = n

∫

Sn−1

u · v dµ(v).

For every star body K ∈ Sn it follows that

ωnπ0̺(K, ·) = Ṽ (Bn,K) =
1

n

∫

Sn−1

̺(K,u) du.

In order to prove our result, we need to quote the following important lemmas.

Lemma 4.1 ([23], [24]). Let Φ: C(Sn−1) → C(Sn−1) be a monotone, linear map.

Then Φ is SO(n) equivariant if and only if there is a measure µ ∈ M(Sn−1, ê) such

that Φf = f ∗ µ.

In view of the above lemmas, we give the proof of Theorem 1.3.

Theorem 4.1. Φ: Sn → Sn is a radial Minkowski homomorphism if and only if

there is a nonnegative measure µ ∈ M(Sn−1, ê) such that ̺(ΦK, ·) = ̺(K, ·) ∗ µ.

P r o o f. Assume that ̺(ΦK, ·) = ̺(K, ·) ∗ µ. Let Ki,K ∈ Sn. If Ki → K, then

we have

ΦKi → ΦK,

i.e., Φ is continous. For any T ∈ SO(n), we obtain

̺(ΦTK, ·) = ̺(TK, ·) ∗ µ = ̺(K,T−1·) ∗ µ = ̺(ΦK,T−1·) = ̺(TΦK, ·).

In view of the notion of radial sum, we obtain

̺(ΦK+̃ΦL, ·) = ̺(ΦK, ·) + ̺(ΦL, ·) = ̺(K, ·) ∗ µ+ ̺(L, ·) ∗ µ = ̺(Φ(K+̃L), ·).

Thus, by the definition of radial Minkowski homomorphism, we know that the map Φ

is a radial Minkowski homomorphism.

Conversely, since the vector space {̺(K, ·) − ̺(L, ·) : K,L ∈ Sn} coincides

with C(Sn−1), we consider the operator Φ̃ : C(Sn−1) → C(Sn−1) defined by

Φ̃f = ̺(ΦK1, ·)− ̺(ΦL1, ·),
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where f = ̺(K1, ·) − ̺(L1, ·) is a linear extension of Φ to C(Sn−1) that intertwines

with rotations. Since the cone of radial functions is invariant under Φ̃, it is also

monotone.

Similarly, we define Φ̃g = ̺(ΦK2, ·)− ̺(ΦL2, ·). This yields

Φ̃f + Φ̃g = ̺(ΦK1, ·)− ̺(ΦL1, ·) + ̺(ΦK2, ·)− ̺(ΦL2, ·)

= ̺(ΦK1+̃ΦK2, ·)− ̺(ΦL1+̃ΦL2, ·) = ̺(Φ(K1+̃K2), ·)− ̺(Φ(L1+̃L2), ·)

= Φ̃(̺(K1+̃K2, ·)− ̺(L1+̃L2, ·)) = Φ̃(f + g),

and so Φ̃ is linear. In terms of Lemma 4.1, we have Φ̃f = f ∗ µ. The desired result

is obtained. �

By the dual mixed volume, we have the relation Ṽ (K,ΦL) = Ṽ (ΨK,L), where

K,L ∈ Sn the map Φ is a radial Minkowski homomorphism and the map Ψ is a radial

Blaschke-Minkowski homomorphism, see [23]. Indeed, in terms of the notation of

radial Minkowski homomorphism and radial Blaschke-Minkowski homomorphism,

we have

Ṽ (K,ΦL) =
1

n
〈̺ΦL, ̺K〉 =

1

n
〈̺L ∗ µ, ̺K〉 =

1

n
〈̺L, ̺K ∗ µ〉 = Ṽ (ΨK,L).

Since the spherical convolution operators are multiplier transformations, by The-

orem 4.1 we obtain:

Lemma 4.2. Let K ∈ Sn. If Φ is a radial Minkowski homomorphism which is

generated by the zonal measure µ, then

πk̺(ΦK, ·) = µkπk̺(K, ·),

where µk are the Legendre coefficients of µ.

Definition 4.1. If Φ is a radial Minkowski homomorphism generated by the

zonal measure µ, then the subset Sn(Φ) of Sn, defined by

Sn(Φ) = {K ∈ Sn : πk̺(K, ·) = 0 if µk = 0},

is called the injectivity set of Φ.

It is not hard to show that Sn(Φ) is a nonempty rotation and dilatation invariant

subset, and it is closed under radial sum. By Lemma 4.2, we know that K ∈ Sn(Φ)

is uniquely determined by its image Φ. A star body K ∈ Sn is called polynomial

if ̺(K, ·) ∈ Hn.

Theorem 4.2. If Φ is a radial Minkowski homomorphism with Sn
e ⊂ Sn(Φ), then

for every polynomial L ∈ Sn
e there exists origin-symmetry star bodies K1,K2 ∈ Sn

e

such that L+̃ΦK2 = ΦK1.
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P r o o f. By (4.1), we get that

̺(L, ·) =

m∑

k=1

πk̺(L, ·),

where L is a polynomial. From the properties of the orthogonal projection of f

on Hn
k , we have πk̺(L, ·) = 0 for all odd k ∈ N. Since Sn

e ⊂ Sn(Φ), this yields

µk 6= 0 for all even k ∈ N. Thus, we define

f :=

m∑

k=1

ckπk̺(L, ·),

where ck = 0 if k is odd, when k is even, ck = µ−1
k . It is easy to get that f is an even

continuous function on Sn−1, since spherical convolution operators are multiplier

transformations, we have

f ∗ µ =
∑

k = 1mckµkπk̺(L, ·) =
∑

k = 1mµkπk̺(L, ·) = ̺(L, ·).

Let f+, f− denote the positive and negative parts of f , respectively, andK1,K2 ∈ Sn

with ̺(K1, ·) = f+, ̺(K2, ·) = f−, and so

̺(K1, ·) ∗ µ = ̺(K2, ·) + ̺(L, ·).

It follows from Theorem 4.1 that L+̃ΦK2 = ΦK1. �
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