ON A KLEINECKE-SHIROKOV THEOREM

Vasile Lauric, Tallahassee

Received March 7, 2020. Published online March 8, 2021.

Abstract. We prove that for normal operators $N_{1}, N_{2} \in \mathcal{L}(\mathcal{H})$, the generalized commutator $\left[N_{1}, N_{2} ; X\right]$ approaches zero when $\left[N_{1}, N_{2} ;\left[N_{1}, N_{2} ; X\right]\right]$ tends to zero in the norm of the Schatten-von Neumann class \mathcal{C}_{p} with $p>1$ and X varies in a bounded set of such a class.

Keywords: Kleinecke-Shirokov theorem; generalized commutator
MSC 2020: 47B47, 47B10, 47B20

1. Introduction

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space, and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} and $\mathcal{C}_{p}(\mathcal{H})$ (or \mathcal{C}_{p}) the Schatten-von Neumann p-classes with $|\cdot|_{p}, p \geqslant 1$, being their respective norm. Furthermore, let $\mathbb{K}(\mathcal{H})$ (or \mathbb{K}) denote the ideal of compact operators. For arbitrary operators $S, T, X \in \mathcal{L}(\mathcal{H}),[S, T ; X]$ denotes the generalized commutator, that is $S X-X T$, and for $S=T$ this becomes the usual commutator of S and X which is denoted by $[S ; X]$.

Kleinecke in [3] and Shirokov in [4] proved that for arbitrary $S, T, X \in \mathcal{L}(\mathcal{H})$ such that $[S, T ;[S, T ; X]]=0,[S, T ; X]$ is quasi-nilpotent, that is its spectral radius $r([S, T ; X])$ is zero. Ackermans-van Eijndhoven-Martens (see [2], Theorem 0.5) obtained a stronger conclusion under the additional hypothesis of normality.

Theorem 1.1 ([2], Theorem 0.5). Let $N_{1}, N_{2} \in \mathcal{L}(\mathcal{H})$ be normal operators and $X \in \mathcal{L}(\mathcal{H})$ be such that $\left[N_{1}, N_{2} ;\left[N_{1}, N_{2} ; X\right]\right]=0$. Then $\left[N_{1}, N_{2} ; X\right]=0$.

Furthermore, Ackermans-van Eijndhoven-Martens provided a result concerning the asymptotic dependence of [$\left.N_{1}, N_{2} ; X\right]$ in terms of $\left[N_{1}, N_{2} ;\left[N_{1}, N_{2} ; X\right]\right]$ in the context of an algebra topology on $\mathcal{L}(\mathcal{H})$ as follows.

Definition 1.1. A topology τ on $\mathcal{L}(\mathcal{H})$ is an algebra topology if
(a) τ is not finer than the uniform (norm) topology,
(b) $(\mathcal{L}(\mathcal{H}), \tau)$ is a locally convex vector space, and
(c) the mapping $X \mapsto S X T$ is τ - τ continuous for any $S, T \in \mathcal{L}(\mathcal{H})$.

Theorem 1.2 ([2], Theorem 2.5). Let τ be an algebra topology on $\mathcal{L}(\mathcal{H})$ and let W be a τ-open neighborhood of $0_{\mathcal{H}}$. Let N_{1} and N_{2} be normal operators of $\mathcal{L}(\mathcal{H})$ and $K>0$. Then there exists a τ-open neighborhood V of $0_{\mathcal{H}}$ so that $\left[N_{1}, N_{2} ; X\right] \in W$ for all $X \in \mathcal{L}(\mathcal{H})$ with both $\|X\| \leqslant K$ and $\left[N_{1}, N_{2} ;\left[N_{1}, N_{2} ; X\right]\right] \in V$.

2. Results

It is the purpose of this section to extend such a result to normed ideals.
Definition 2.1. A proper two-sided ideal \mathcal{J} of $\mathcal{L}(\mathcal{H})$ is called a normed ideal if it is endowed with a norm $|\cdot|_{\mathcal{J}}$ so that
(a) $\left(\mathcal{J},|\cdot|_{\mathcal{J}}\right)$ is a Banach space,
(b) $|S X T|_{\mathcal{J}} \leqslant\|S\|\|T\| \|\left. X\right|_{\mathcal{J}}$ for $S, T \in \mathcal{L}(\mathcal{H})$ and $X \in \mathcal{J}$,
(c) $|U X V|_{\mathcal{J}}=|X|_{\mathcal{J}}$ for any unitary operators $U, V \in \mathcal{L}(\mathcal{H})$ and $X \in \mathcal{J}$, and
(d) $\left|X^{*}\right|_{\mathcal{J}}=|X|_{\mathcal{J}}$ for any $X \in \mathcal{J}$.

The above definition differs from what traditionally is called a normed ideal. In what follows, \mathcal{J} denotes a normed ideal according to the definition above.

Lemma 2.1. Let $A \in \mathcal{L}(\mathcal{H})$ be a self-adjoint operator and $X \in \mathcal{J}$. Then the function $f: \mathbb{R} \rightarrow \mathcal{J}$ defined by $f(t)=\mathrm{e}^{\mathrm{i} t A} X \mathrm{e}^{-\mathrm{i} t A}$ is \mathcal{J}-differentiable, that is

$$
D_{\mathcal{J}}(f)\left(t_{0}\right):=\lim _{t \rightarrow t_{0}} \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}=\mathrm{ie}^{\mathrm{i} t_{0} A}[A, X] \mathrm{e}^{-\mathrm{i} t_{0} A}
$$

In particular, f is continuous.
Proof. Let A and X be as in the hypothesis and we prove that

$$
\lim _{t \rightarrow t_{0}}\left|\frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}-\mathrm{ie}^{\mathrm{i} t_{0} A}[A, X] \mathrm{e}^{-\mathrm{i} t_{0} A}\right|_{\mathcal{J}}=0
$$

Indeed,

$$
\begin{aligned}
& \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}-\mathrm{ie}^{\mathrm{i} t_{0} A}[A, X] \mathrm{e}^{-\mathrm{i} t_{0} A}=\frac{\mathrm{e}^{\mathrm{i} t A} X \mathrm{e}^{-\mathrm{i} t A}-\mathrm{e}^{\mathrm{i} t_{0} A} X \mathrm{e}^{-\mathrm{i} t_{0} A}}{t-t_{0}}-\mathrm{ie}^{\mathrm{i} t_{0} A}[A, X] \mathrm{e}^{-\mathrm{i} t_{0} A} \\
&=\mathrm{e}^{\mathrm{i} t_{0} A}\left(\frac{\mathrm{e}^{\mathrm{i}\left(t-t_{0}\right) A} X \mathrm{e}^{-\mathrm{i}\left(t-t_{0}\right) A}-X}{t-t_{0}}-\mathrm{i}[A ; X]\right) \mathrm{e}^{-\mathrm{i} t_{0} A} \\
&=\mathrm{e}^{\mathrm{i} t_{0} A}\left(\frac{\mathrm{e}^{\mathrm{i}\left(t-t_{0}\right) A} X-X \mathrm{e}^{\mathrm{i}\left(t-t_{0}\right) A}}{t-t_{0}}-\mathrm{i}[A ; X] \mathrm{e}^{\mathrm{i}\left(t-t_{0}\right) A}\right) \mathrm{e}^{-\mathrm{i} t A}
\end{aligned}
$$

Since the operator $\mathrm{e}^{\mathrm{i} s A}$ is unitary for any $s \in \mathbb{R}$, it is enough to show

$$
\lim _{u \rightarrow 0}\left|\frac{\mathrm{e}^{\mathrm{i} u A} X-X \mathrm{e}^{\mathrm{i} u A}}{u}-\mathrm{i}[A ; X] \mathrm{e}^{\mathrm{i} u A}\right|_{\mathcal{J}}=0
$$

Indeed,

$$
\mathrm{e}^{\mathrm{i} u A} X-X \mathrm{e}^{\mathrm{i} u A}=\sum_{k=0}^{\infty} \frac{(\mathrm{i} u A)^{k}}{k!} X-X \frac{(\mathrm{i} u A)^{k}}{k!}=\mathrm{i}[A ; X]+\sum_{k=2}^{\infty} \frac{(\mathrm{i} u)^{k}}{k!}\left[A^{k} X-X A^{k}\right]
$$

and by an induction argument one can prove that

$$
\left|A^{k} X-X A^{k}\right|_{\mathcal{J}} \leqslant k\|A\|^{k-1}|[A ; X]|_{\mathcal{J}}
$$

and thus

$$
\left|\frac{\mathrm{e}^{\mathrm{i} u A} X-X \mathrm{e}^{\mathrm{i} u A}}{u}-\mathrm{i}[A ; X] \mathrm{e}^{\mathrm{i} u A A}\right|_{\mathcal{J}} \leqslant\left(\left\|I-\mathrm{e}^{\mathrm{i} u A}\right\|+\sum_{k=2}^{\infty} \frac{|u|^{k-1}}{(k-1)!}\|A\|^{k-1}\right)|[A ; X]|_{\mathcal{J}} .
$$

Furthermore, $\left\|I-\mathrm{e}^{\mathrm{i} u A}\right\| \leqslant \mathrm{e}^{|u|\|A\|}-1$ and consequently

$$
\left|\frac{\mathrm{e}^{\mathrm{i} u A} X-X \mathrm{e}^{\mathrm{i} u A}}{u}-\mathrm{i}[A ; X] \mathrm{e}^{\mathrm{i} u A}\right|_{\mathcal{J}} \leqslant 2\left(\mathrm{e}^{|u|\|A\|}-1\right)|[A ; X]|_{\mathcal{J}},
$$

which ends the proof.
Theorem 2.1. Let A be a self-adjoint operator in $\mathcal{L}(\mathcal{H})$ and $K>0$. Then for any $\varepsilon>0$, there exists $\delta>0$ so that for any $X \in \mathcal{J}$ with $|X|_{\mathcal{J}} \leqslant K$, the inequality $|[A ;[A ; X]]|_{\mathcal{J}}<\delta$ implies $|[A ; X]|_{\mathcal{J}}<\varepsilon$.

Proof. For A and X as in the hypothesis, let f be the function defined above. According to Lemma 2.1, f is twice \mathcal{J}-differentiable and

$$
\mathrm{i}[A ; X]=D_{\mathcal{J}}(f)(0)=\frac{f(u)-f(0)}{u}-\frac{1}{u} \int_{0}^{u}\left(\int_{0}^{t} D_{\mathcal{J}}\left(D_{\mathcal{J}}(f)\right)(s) \mathrm{d} s\right) \mathrm{d} t .
$$

Let $\varepsilon>0$ and $X \in \mathcal{J}$ with $|X|_{\mathcal{J}} \leqslant K$ and $u>0$; thus $|f(u)-f(0)|_{\mathcal{J}} \leqslant 2 K$ and $|(f(u)-f(0)) / u|_{\mathcal{J}}<\frac{1}{2} \varepsilon$ for $u>4 K / \varepsilon$. On the other hand, let $|[A ;[A ; X]]|_{\mathcal{J}}<\delta$ with δ to be described later; thus

$$
\left|\frac{1}{u} \int_{0}^{u}\left(\int_{0}^{t} D_{\mathcal{J}}\left(D_{\mathcal{J}}(f)\right)(s) \mathrm{d} s\right) \mathrm{d} t\right|_{\mathcal{J}} \leqslant \frac{1}{u} \int_{0}^{u}\left(\int_{0}^{t}|[A ;[A ; X]]|_{\mathcal{J}} \mathrm{d} s\right) \mathrm{d} t \leqslant \frac{u}{2} \delta .
$$

Selecting $\delta<\varepsilon / u$, and since u has to be large enough, precisely $u>4 K / \varepsilon$, then $\delta<\varepsilon^{2} /(4 K)$ ensures that $\left|(1 / u) \int_{0}^{u}\left(\int_{0}^{t} D_{\mathcal{J}}\left(D_{\mathcal{J}}(f)\right)(s) \mathrm{d} s\right) \mathrm{d} t\right|_{\mathcal{J}} \leqslant \frac{1}{2} \varepsilon$, and consequently $|[A ; X]|_{\mathcal{J}}<\varepsilon$.

Corollary 2.1. Let A and B be self-adjoint operators in $\mathcal{L}(\mathcal{H})$ and $K>0$. Then for any $\varepsilon>0$, there exists $\delta>0$ such that for any $X \in \mathcal{J}$ with $|X|_{\mathcal{J}} \leqslant K$, the inequality $|[A, B ;[A, B ; X]]|_{\mathcal{J}}<\delta$ implies $|[A, B ; X]|_{\mathcal{J}}<\varepsilon$.
Proof. Put $C=A \oplus B$ and $\widetilde{X}=\left(\begin{array}{cc}0 & X \\ 0 & 0\end{array}\right)$, and observe that $[C ; \widetilde{X}]=$
$0[A, B ; X]$ $\left(\begin{array}{cc}0 & {[A, B ; X]} \\ 0 & 0\end{array}\right)$. Moreover, for an arbitrary $X \in \mathcal{J}$ is equivalent to $\widetilde{X} \in \mathcal{J}$ and $|X|_{\mathcal{J}}=|\widetilde{X}|_{\mathcal{J}}$, and by applying Theorem 2.1, the proof is done.

The result can be extended to normal operators, but relative to normed ideals for which the Fuglede-Putnam theorem is known to be valid.

Theorem 2.2 ([1], [5]). If N_{1}, N_{2} are normal operators and $X \in \mathcal{L}(\mathcal{H})$ so that $\left[N_{1}, N_{2} ; X\right] \in \mathcal{C}_{p}$ with $p>1$, then $\left[N_{1}^{*}, N_{2}^{*} ; X\right] \in \mathcal{C}_{p}$ and

$$
\left|\left[N_{1}^{*}, N_{2}^{*} ; X\right]\right|_{p}<c(p)\left|\left[N_{1}, N_{2} ; X\right]\right|_{p}
$$

On other the hand, the Fuglede-Putnam theorem is not valid if $p=1$ (cf. [6], Corollary 8.6), more precisely there exist a normal operator N and a compact operator X so that $[N ; X]$ is a rank one operator (thus, a trace-class operator) and $\left[N^{*}, X\right]$ is not a trace-class operator.

Theorem 2.3. Let N_{1} and N_{2} be normal operators in $\mathcal{L}(\mathcal{H}), p>1$ and $K>0$. Then for any $\varepsilon>0$, there exists $\delta>0$ so that for any $X \in \mathcal{C}_{p}$ with $|X|_{p} \leqslant K$, the inequality $\left|\left[N_{1}, N_{2} ;\left[N_{1}, N_{2} ; X\right]\right]\right|_{p}<\delta$ implies $\left|\left[N_{1}, N_{2} ; X\right]\right|_{p}<\varepsilon$.

Proof. Let $A_{j}+\mathrm{i} B_{j}=N_{j}, j=1,2$, be the Cartesian decomposition of N_{j}. Let N_{1} and N_{2} be normal operators that satisfy $\left|\left[N_{1}, N_{2} ;\left[N_{1}, N_{2} ; X\right]\right]\right|_{p}<\delta$. According to Theorem 2.2,

$$
\left|\left[N_{1}^{*}, N_{2}^{*} ;\left[N_{1}, N_{2} ; X\right]\right]\right|_{p}<c(p) \delta
$$

Since $\left[N_{1}^{*}, N_{2}^{*} ;\left[N_{1}, N_{2} ; X\right]\right]=\left[N_{1}, N_{2} ;\left[N_{1}^{*}, N_{2}^{*} ; X\right]\right]$, it implies

$$
\left|\left[N_{1}, N_{2} ;\left[N_{1}^{*}, N_{2}^{*} ; X\right]\right]\right|_{p}<c(p) \delta
$$

and after one more application of Theorem 2.2,

$$
\left|\left[N_{1}^{*}, N_{2}^{*} ;\left[N_{1}^{*}, N_{2}^{*} ; X\right]\right]\right|_{p}<c(p)^{2} \delta
$$

Consequently,

$$
\left|\left[C_{1}, C_{2} ;\left[C_{1}, C_{2} ; X\right]\right]\right|_{p}<d(p) \delta
$$

where $C_{1}=A_{1}, C_{2}=A_{2}$ or $C_{1}=B_{1}, C_{2}=B_{2}$ and $d(p)$ is a constant that depends only on p, which proves that $\left|\left[C_{1}, C_{2} ;\left[C_{1}, C_{2} ; X\right]\right]\right|_{p}$ becomes as small as necessary if $\left|\left[N_{1}, N_{2} ;\left[N_{1}, N_{2} ; X\right]\right]\right|_{p}$ does so. For an arbitrary $\varepsilon>0$, let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, where δ_{1} and δ_{2} are the two positive δ 's resulting by applying Corollary 2.1 for the pairs A_{1}, A_{2} and B_{1}, B_{2}, and thus $\left|\left[A_{1}, A_{2} ; X\right]\right|_{p}<\varepsilon,\left|\left[B_{1}, B_{2} ; X\right]\right|_{p}<\varepsilon$. Consequently $\left|\left[N_{1}, N_{2} ; X\right]\right|_{p}<2 \varepsilon$ and the proof is finished.

The hypothesis of normality can be relaxed as follows.

Theorem 2.4. Let $T_{1}, T_{2} \in \mathcal{L}(\mathcal{H})$ be such that T_{1} and T_{2}^{*} are subnormal operators, and let $p>1$ and $K>0$. Then for any $\varepsilon>0$, there exists $\delta>0$ so that for any $X \in \mathcal{C}_{p}$ with $|X|_{p} \leqslant K$, the inequality $\left|\left[T_{1}, T_{2} ;\left[T_{1}, T_{2} ; X\right]\right]\right|_{p}<\delta$ implies $\left|\left[T_{1}, T_{2} ; X\right]\right|_{p}<\varepsilon$.

Proof. Let T_{1} and T_{2}^{*} be subnormal operators. One may assume that there are some normal operators $N_{i} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H}), i=1,2$, so that $N_{1}=\left(\begin{array}{cc}S_{1} & A \\ 0 & B\end{array}\right)$ and $N_{2}=\left(\begin{array}{cc}S_{2} & 0 \\ C & D\end{array}\right)$, after an extension by zero if necessary. Thus,

$$
\begin{aligned}
{\left[N_{1}, N_{2} ; X \oplus 0\right] } & =\left[S_{1}, S_{2} ; X\right] \oplus 0 \\
{\left[N_{1}, N_{2} ;\left[N_{1}, N_{2} ; X \oplus 0\right]\right] } & =\left[S_{1}, S_{2} ;\left[S_{1}, S_{2} ; X\right]\right] \oplus 0
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\left[N_{1}, N_{2} ; X \oplus 0\right]\right|_{p} & =\left|\left[S_{1}, S_{2} ; X\right] \oplus 0\right|_{p} \\
\left|\left[N_{1}, N_{2} ;\left[N_{1}, N_{2} ; X \oplus 0\right]\right]\right|_{p} & =\left|\left[S_{1}, S_{2} ;\left[S_{1}, S_{2} ; X\right]\right] \oplus 0\right|_{p}
\end{aligned}
$$

as well, and Theorem 2.3 can be applied.

3. Remarks

Let $\pi: \mathcal{L}(\mathcal{H}) \rightarrow \mathcal{L}(\mathcal{H}) / \mathbb{K}$ denote the canonical projection onto the Calkin algebra $\mathcal{L}(\mathcal{H}) / \mathbb{K}$ which is a C^{*}-algebra. Let $N_{1}, N_{2} \in \mathcal{L}(\mathcal{H})$ be essentially normal operators (that is, their self-commutator is a compact operator, or equivalently $\pi\left(N_{i}\right)$ is a normal operator, $i=1,2)$ and let $X \in \mathcal{L}(\mathcal{H})$ be such that $\left[N_{1}, N_{2} ;\left[N_{1}, N_{2} ; X\right]\right] \in \mathbb{K}$, or equivalently $\left[\pi\left(N_{1}\right), \pi\left(N_{2}\right) ;\left[\pi\left(N_{1}\right), \pi\left(N_{2}\right) ; \pi(X)\right]\right]=0$. According to Theorem 1.1, $\left[N_{1}, N_{2} ; X\right] \in \mathbb{K}$.

It is natural to ask a similar question whether $\left[N_{1}, N_{2} ;\left[N_{1}, N_{2} ; X\right]\right] \in \mathcal{J}$ implies $\left[N_{1}, N_{2} ; X\right] \in \mathcal{J}$ relative to a normed ideal \mathcal{J} when $X \in \mathcal{L}(\mathcal{H})$, not necessarilly in a normed ideal. The most appropriate choice of a normed ideal is the class of Hilbert-Schmidt operators \mathcal{C}_{2}.

Let $N \in \mathcal{L}(\mathcal{H})$ be a normal operator and $X \in \mathcal{L}(\mathcal{H})$ be such that $[N ;[N ; X]] \in \mathcal{C}_{2}$. Does it imply that $[N ; X] \in \mathcal{C}_{2}$?

The following example shows that the answer to the above question is negative. In what follows, the operators act on $l^{2}(\mathbb{N})$, the Hilbert space of square-summable complex sequences, and $\left\{e_{i}\right\}_{i \geqslant 0}$ is its cononical orthonormal basis.

Example 3.1. Let D be a diagonal operator with the diagonal entries $d_{i}, i \geqslant 1$, described below. Let X be the unilateral shift operator. Then $[D ;[D ; X]] \in \mathcal{C}_{2}$ and $[D ; X] \notin \mathcal{C}_{2}$.

Indeed, for $i \geqslant 1$, the entry $(i, i-1)$ of $Y=[D ; X]$ is $y_{i, i-1}=\left(d_{i}-d_{i-1}\right)$ and that of $Z=[D ;[D ; X]]$ is $z_{i, i-1}=\left(d_{i}-d_{i-1}\right)^{2}$, and all other entries of Y and Z are equal to zero. Let $d_{i}-d_{i-1}=a_{i-1}, i \geqslant 1$ and $Z \in \mathcal{C}_{2}$ be equivalent to $\sum_{i=1}^{\infty}\left|a_{i}\right|^{4}<\infty$ and $Y \notin \mathcal{C}_{2}$ be equivalent to $\sum_{i=1}^{\infty}\left|a_{i}\right|^{2}=\infty$. Furthermore, the boundedness of D be equivalent to the boundedness of the partial sums of the series $\sum_{i=1}^{\infty} a_{i}$. An instance of such a sequence is $a_{i}=(-1)^{i} / i^{\alpha}$ with $\alpha \in\left(\frac{1}{4}, \frac{1}{2}\right]$.

References

[1] A.Abdessemed, E.B.Davies: Some commutator estimates in the Schatten classes. J. Lond. Math. Soc., II. Ser. 39 (1989), 299-308.
zbl MR doi
[2] S. T. M. Ackermans, S. J. L. van Eijndhoven, F. J. L. Martens: On almost commuting operators. Indag. Math. 45 (1983), 385-391.
[3] D. C. Kleinecke: On operator commutators. Proc. Am. Math. Soc. 8 (1957), 535-536.
zbl MR doi
[4] F. V. Shirokov: Proof of a conjecutre of Kaplansky. Usp. Mat. Nauk 11 (1956), 167-168. (In Russian.)

Zbl MR
[5] V. Shulman: Some remarks on the Fuglede-Weiss theorem. Bull. Lond. Math. Soc. 28 (1996), 385-392.
zbl MR doi
[6] V. Shulman, L. Turowska: Operator synthesis. II: Individual synthesis and linear operator equations. J. Reine Angew. Math. 590 (2006), 143-187.
zbl MR doi
Author's address: Vasile Lauric, Department of Mathematics, Florida A\& M University, 1601 S. Martin L. King Jr. Blvd., Tallahassee, FL 32307, USA, e-mail: vlauri@ netzero.com.

