ON A KLEINECKE-SHIROKOV THEOREM

VASILE LAURIC, Tallahassee

Received March 7, 2020. Published online March 8, 2021.

Abstract. We prove that for normal operators $N_1, N_2 \in \mathcal{L}(\mathcal{H})$, the generalized commutator $[N_1, N_2; X]$ approaches zero when $[N_1, N_2; [N_1, N_2; X]]$ tends to zero in the norm of the Schatten-von Neumann class \mathcal{C}_p with p > 1 and X varies in a bounded set of such a class.

Keywords: Kleinecke-Shirokov theorem; generalized commutator

MSC 2020: 47B47, 47B10, 47B20

1. INTRODUCTION

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space, and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} and $\mathcal{C}_p(\mathcal{H})$ (or \mathcal{C}_p) the Schatten-von Neumann *p*-classes with $|\cdot|_p$, $p \ge 1$, being their respective norm. Furthermore, let $\mathbb{K}(\mathcal{H})$ (or \mathbb{K}) denote the ideal of compact operators. For arbitrary operators $S, T, X \in \mathcal{L}(\mathcal{H})$, [S, T; X] denotes the generalized commutator, that is SX - XT, and for S = T this becomes the usual commutator of S and X which is denoted by [S; X].

Kleinecke in [3] and Shirokov in [4] proved that for arbitrary $S, T, X \in \mathcal{L}(\mathcal{H})$ such that [S, T; [S, T; X]] = 0, [S, T; X] is quasi-nilpotent, that is its spectral radius r([S, T; X]) is zero. Ackermans-van Eijndhoven-Martens (see [2], Theorem 0.5) obtained a stronger conclusion under the additional hypothesis of normality.

Theorem 1.1 ([2], Theorem 0.5). Let $N_1, N_2 \in \mathcal{L}(\mathcal{H})$ be normal operators and $X \in \mathcal{L}(\mathcal{H})$ be such that $[N_1, N_2; [N_1, N_2; X]] = 0$. Then $[N_1, N_2; X] = 0$.

Furthermore, Ackermans-van Eijndhoven-Martens provided a result concerning the asymptotic dependence of $[N_1, N_2; X]$ in terms of $[N_1, N_2; [N_1, N_2; X]]$ in the context of an *algebra topology* on $\mathcal{L}(\mathcal{H})$ as follows.

DOI: 10.21136/CMJ.2021.0103-20

Definition 1.1. A topology τ on $\mathcal{L}(\mathcal{H})$ is an *algebra topology* if

(a) τ is not finer than the uniform (norm) topology,

(b) $(\mathcal{L}(\mathcal{H}), \tau)$ is a locally convex vector space, and

(c) the mapping $X \mapsto SXT$ is $\tau \cdot \tau$ continuous for any $S, T \in \mathcal{L}(\mathcal{H})$.

Theorem 1.2 ([2], Theorem 2.5). Let τ be an algebra topology on $\mathcal{L}(\mathcal{H})$ and let W be a τ -open neighborhood of $0_{\mathcal{H}}$. Let N_1 and N_2 be normal operators of $\mathcal{L}(\mathcal{H})$ and K > 0. Then there exists a τ -open neighborhood V of $0_{\mathcal{H}}$ so that $[N_1, N_2; X] \in W$ for all $X \in \mathcal{L}(\mathcal{H})$ with both $||X|| \leq K$ and $[N_1, N_2; [N_1, N_2; X]] \in V$.

2. Results

It is the purpose of this section to extend such a result to normed ideals.

Definition 2.1. A proper two-sided ideal \mathcal{J} of $\mathcal{L}(\mathcal{H})$ is called a *normed ideal* if it is endowed with a norm $|\cdot|_{\mathcal{J}}$ so that

- (a) $(\mathcal{J}, |\cdot|_{\mathcal{J}})$ is a Banach space,
- (b) $|SXT|_{\mathcal{J}} \leq ||S|| ||T|| |X|_{\mathcal{J}}$ for $S, T \in \mathcal{L}(\mathcal{H})$ and $X \in \mathcal{J}$,
- (c) $|UXV|_{\mathcal{J}} = |X|_{\mathcal{J}}$ for any unitary operators $U, V \in \mathcal{L}(\mathcal{H})$ and $X \in \mathcal{J}$, and
- (d) $|X^*|_{\mathcal{J}} = |X|_{\mathcal{J}}$ for any $X \in \mathcal{J}$.

The above definition differs from what traditionally is called a normed ideal. In what follows, \mathcal{J} denotes a normed ideal according to the definition above.

Lemma 2.1. Let $A \in \mathcal{L}(\mathcal{H})$ be a self-adjoint operator and $X \in \mathcal{J}$. Then the function $f \colon \mathbb{R} \to \mathcal{J}$ defined by $f(t) = e^{itA} X e^{-itA}$ is \mathcal{J} -differentiable, that is

$$D_{\mathcal{J}}(f)(t_0) := \lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0} = \mathrm{i} \mathrm{e}^{\mathrm{i} t_0 A} [A, X] \mathrm{e}^{-\mathrm{i} t_0 A}.$$

In particular, f is continuous.

Proof. Let A and X be as in the hypothesis and we prove that

$$\lim_{t \to t_0} \left| \frac{f(t) - f(t_0)}{t - t_0} - i e^{i t_0 A} [A, X] e^{-i t_0 A} \right|_{\mathcal{J}} = 0.$$

Indeed,

$$\frac{f(t) - f(t_0)}{t - t_0} - ie^{it_0 A} [A, X] e^{-it_0 A} = \frac{e^{itA} X e^{-itA} - e^{it_0 A} X e^{-it_0 A}}{t - t_0} - ie^{it_0 A} [A, X] e^{-it_0 A}$$
$$= e^{it_0 A} \Big(\frac{e^{i(t - t_0)A} X e^{-i(t - t_0)A} - X}{t - t_0} - i[A; X] \Big) e^{-it_0 A}$$
$$= e^{it_0 A} \Big(\frac{e^{i(t - t_0)A} X - X e^{i(t - t_0)A}}{t - t_0} - i[A; X] e^{i(t - t_0)A} \Big) e^{-itA}.$$

Since the operator e^{isA} is unitary for any $s \in \mathbb{R}$, it is enough to show

$$\lim_{u \to 0} \left| \frac{\mathrm{e}^{\mathrm{i}uA} X - X \mathrm{e}^{\mathrm{i}uA}}{u} - \mathrm{i}[A; X] \mathrm{e}^{\mathrm{i}uA} \right|_{\mathcal{J}} = 0.$$

Indeed,

$$e^{iuA}X - Xe^{iuA} = \sum_{k=0}^{\infty} \frac{(iuA)^k}{k!} X - X \frac{(iuA)^k}{k!} = i[A;X] + \sum_{k=2}^{\infty} \frac{(iu)^k}{k!} [A^k X - XA^k]$$

and by an induction argument one can prove that

$$|A^{k}X - XA^{k}|_{\mathcal{J}} \leq k ||A||^{k-1} |[A;X]|_{\mathcal{J}},$$

and thus

$$\left|\frac{\mathrm{e}^{\mathrm{i}uA}X - X\mathrm{e}^{\mathrm{i}uA}}{u} - \mathrm{i}[A;X]\mathrm{e}^{\mathrm{i}uA}\right|_{\mathcal{J}} \leqslant \left(\|I - \mathrm{e}^{\mathrm{i}uA}\| + \sum_{k=2}^{\infty} \frac{|u|^{k-1}}{(k-1)!} \|A\|^{k-1}\right) |[A;X]|_{\mathcal{J}}.$$

Furthermore, $||I - e^{iuA}|| \le e^{|u|||A||} - 1$ and consequently

$$\left|\frac{\mathrm{e}^{\mathrm{i}uA}X - X\mathrm{e}^{\mathrm{i}uA}}{u} - \mathrm{i}[A;X]\mathrm{e}^{\mathrm{i}uA}\right|_{\mathcal{J}} \leq 2(\mathrm{e}^{|u|||A||} - 1)|[A;X]|_{\mathcal{J}},$$

which ends the proof.

Theorem 2.1. Let A be a self-adjoint operator in $\mathcal{L}(\mathcal{H})$ and K > 0. Then for any $\varepsilon > 0$, there exists $\delta > 0$ so that for any $X \in \mathcal{J}$ with $|X|_{\mathcal{J}} \leq K$, the inequality $|[A; [A; X]]|_{\mathcal{J}} < \delta$ implies $|[A; X]|_{\mathcal{J}} < \varepsilon$.

Proof. For A and X as in the hypothesis, let f be the function defined above. According to Lemma 2.1, f is twice \mathcal{J} -differentiable and

$$i[A;X] = D_{\mathcal{J}}(f)(0) = \frac{f(u) - f(0)}{u} - \frac{1}{u} \int_0^u \left(\int_0^t D_{\mathcal{J}}(D_{\mathcal{J}}(f))(s) \, \mathrm{d}s \right) \mathrm{d}t.$$

Let $\varepsilon > 0$ and $X \in \mathcal{J}$ with $|X|_{\mathcal{J}} \leq K$ and u > 0; thus $|f(u) - f(0)|_{\mathcal{J}} \leq 2K$ and $|(f(u) - f(0))/u|_{\mathcal{J}} < \frac{1}{2}\varepsilon$ for $u > 4K/\varepsilon$. On the other hand, let $|[A; [A; X]]|_{\mathcal{J}} < \delta$ with δ to be described later; thus

$$\left|\frac{1}{u}\int_0^u \left(\int_0^t D_{\mathcal{J}}(D_{\mathcal{J}}(f))(s)\,\mathrm{d}s\right)\mathrm{d}t\right|_{\mathcal{J}} \leqslant \frac{1}{u}\int_0^u \left(\int_0^t |[A;[A;X]]|_{\mathcal{J}}\,\mathrm{d}s\right)\mathrm{d}t \leqslant \frac{u}{2}\delta.$$

Selecting $\delta < \varepsilon/u$, and since u has to be large enough, precisely $u > 4K/\varepsilon$, then $\delta < \varepsilon^2/(4K)$ ensures that $|(1/u) \int_0^u (\int_0^t D_{\mathcal{J}}(D_{\mathcal{J}}(f))(s) \, \mathrm{d}s) \, \mathrm{d}t|_{\mathcal{J}} \leq \frac{1}{2}\varepsilon$, and consequently $|[A;X]|_{\mathcal{J}} < \varepsilon$.

819

Corollary 2.1. Let A and B be self-adjoint operators in $\mathcal{L}(\mathcal{H})$ and K > 0. Then for any $\varepsilon > 0$, there exists $\delta > 0$ such that for any $X \in \mathcal{J}$ with $|X|_{\mathcal{J}} \leq K$, the inequality $|[A, B; [A, B; X]]|_{\mathcal{J}} < \delta$ implies $|[A, B; X]|_{\mathcal{J}} < \varepsilon$.

Proof. Put $C = A \oplus B$ and $\widetilde{X} = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}$, and observe that $[C; \widetilde{X}] = \begin{pmatrix} 0 & [A, B; X] \\ 0 & 0 \end{pmatrix}$. Moreover, for an arbitrary $X \in \mathcal{J}$ is equivalent to $\widetilde{X} \in \mathcal{J}$ and $|X|_{\mathcal{J}} = |\widetilde{X}|_{\mathcal{J}}$, and by applying Theorem 2.1, the proof is done.

The result can be extended to normal operators, but relative to normed ideals for which the Fuglede-Putnam theorem is known to be valid.

Theorem 2.2 ([1], [5]). If N_1 , N_2 are normal operators and $X \in \mathcal{L}(\mathcal{H})$ so that $[N_1, N_2; X] \in \mathcal{C}_p$ with p > 1, then $[N_1^*, N_2^*; X] \in \mathcal{C}_p$ and

$$|[N_1^*, N_2^*; X]|_p < c(p)|[N_1, N_2; X]|_p.$$

On other the hand, the Fuglede-Putnam theorem is not valid if p = 1 (cf. [6], Corollary 8.6), more precisely there exist a normal operator N and a compact operator X so that [N; X] is a rank one operator (thus, a trace-class operator) and $[N^*, X]$ is not a trace-class operator.

Theorem 2.3. Let N_1 and N_2 be normal operators in $\mathcal{L}(\mathcal{H})$, p > 1 and K > 0. Then for any $\varepsilon > 0$, there exists $\delta > 0$ so that for any $X \in \mathcal{C}_p$ with $|X|_p \leq K$, the inequality $|[N_1, N_2; [N_1, N_2; X]]|_p < \delta$ implies $|[N_1, N_2; X]|_p < \varepsilon$.

Proof. Let $A_j+iB_j = N_j$, j = 1, 2, be the Cartesian decomposition of N_j . Let N_1 and N_2 be normal operators that satisfy $|[N_1, N_2; [N_1, N_2; X]]|_p < \delta$. According to Theorem 2.2,

$$|[N_1^*, N_2^*; [N_1, N_2; X]]|_p < c(p) \,\delta.$$

Since $[N_1^*, N_2^*; [N_1, N_2; X]] = [N_1, N_2; [N_1^*, N_2^*; X]]$, it implies

$$|[N_1, N_2; [N_1^*, N_2^*; X]]|_p < c(p)\,\delta,$$

and after one more application of Theorem 2.2,

 $|[N_1^*, N_2^*; [N_1^*, N_2^*; X]]|_p < c(p)^2 \,\delta.$

Consequently,

$$|[C_1, C_2; [C_1, C_2; X]]|_p < d(p) \,\delta,$$

where $C_1 = A_1$, $C_2 = A_2$ or $C_1 = B_1$, $C_2 = B_2$ and d(p) is a constant that depends only on p, which proves that $|[C_1, C_2; [C_1, C_2; X]]|_p$ becomes as small as necessary if $|[N_1, N_2; [N_1, N_2; X]]|_p$ does so. For an arbitrary $\varepsilon > 0$, let $\delta = \min \{\delta_1, \delta_2\}$, where δ_1 and δ_2 are the two positive δ 's resulting by applying Corollary 2.1 for the pairs A_1, A_2 and B_1, B_2 , and thus $|[A_1, A_2; X]|_p < \varepsilon$, $|[B_1, B_2; X]|_p < \varepsilon$. Consequently $|[N_1, N_2; X]|_p < 2\varepsilon$ and the proof is finished.

The hypothesis of normality can be relaxed as follows.

Theorem 2.4. Let $T_1, T_2 \in \mathcal{L}(\mathcal{H})$ be such that T_1 and T_2^* are subnormal operators, and let p > 1 and K > 0. Then for any $\varepsilon > 0$, there exists $\delta > 0$ so that for any $X \in \mathcal{C}_p$ with $|X|_p \leq K$, the inequality $|[T_1, T_2; [T_1, T_2; X]]|_p < \delta$ implies $|[T_1, T_2; X]|_p < \varepsilon$.

Proof. Let T_1 and T_2^* be subnormal operators. One may assume that there are some normal operators $N_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$, i = 1, 2, so that $N_1 = \begin{pmatrix} S_1 & A \\ 0 & B \end{pmatrix}$ and $N_2 = \begin{pmatrix} S_2 & 0 \\ C & D \end{pmatrix}$, after an extension by zero if necessary. Thus,

$$[N_1, N_2; X \oplus 0] = [S_1, S_2; X] \oplus 0$$
$$[N_1, N_2; [N_1, N_2; X \oplus 0]] = [S_1, S_2; [S_1, S_2; X]] \oplus 0,$$

and

$$\begin{split} |[N_1, N_2; X \oplus 0]|_p &= |[S_1, S_2; X] \oplus 0|_p \\ |[N_1, N_2; [N_1, N_2; X \oplus 0]]|_p &= |[S_1, S_2; [S_1, S_2; X]] \oplus 0|_p \end{split}$$

as well, and Theorem 2.3 can be applied.

3. Remarks

Let $\pi: \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})/\mathbb{K}$ denote the canonical projection onto the Calkin algebra $\mathcal{L}(\mathcal{H})/\mathbb{K}$ which is a C^* -algebra. Let $N_1, N_2 \in \mathcal{L}(\mathcal{H})$ be essentially normal operators (that is, their self-commutator is a compact operator, or equivalently $\pi(N_i)$ is a normal operator, i = 1, 2) and let $X \in \mathcal{L}(\mathcal{H})$ be such that $[N_1, N_2; [N_1, N_2; X]] \in \mathbb{K}$, or equivalently $[\pi(N_1), \pi(N_2); [\pi(N_1), \pi(N_2); \pi(X)]] = 0$. According to Theorem 1.1, $[N_1, N_2; X] \in \mathbb{K}$.

It is natural to ask a similar question whether $[N_1, N_2; [N_1, N_2; X]] \in \mathcal{J}$ implies $[N_1, N_2; X] \in \mathcal{J}$ relative to a normed ideal \mathcal{J} when $X \in \mathcal{L}(\mathcal{H})$, not necessarilly in a normed ideal. The most appropriate choice of a normed ideal is the class of Hilbert-Schmidt operators \mathcal{C}_2 .

Let $N \in \mathcal{L}(\mathcal{H})$ be a normal operator and $X \in \mathcal{L}(\mathcal{H})$ be such that $[N; [N; X]] \in \mathcal{C}_2$. Does it imply that $[N; X] \in \mathcal{C}_2$?

The following example shows that the answer to the above question is negative. In what follows, the operators act on $l^2(\mathbb{N})$, the Hilbert space of square-summable complex sequences, and $\{e_i\}_{i\geq 0}$ is its cononical orthonormal basis.

Example 3.1. Let D be a diagonal operator with the diagonal entries d_i , $i \ge 1$, described below. Let X be the unilateral shift operator. Then $[D; [D; X]] \in C_2$ and $[D; X] \notin C_2$.

Indeed, for $i \ge 1$, the entry (i, i - 1) of Y = [D; X] is $y_{i,i-1} = (d_i - d_{i-1})$ and that of Z = [D; [D; X]] is $z_{i,i-1} = (d_i - d_{i-1})^2$, and all other entries of Y and Z are equal to zero. Let $d_i - d_{i-1} = a_{i-1}$, $i \ge 1$ and $Z \in C_2$ be equivalent to $\sum_{i=1}^{\infty} |a_i|^4 < \infty$ and $Y \notin C_2$ be equivalent to $\sum_{i=1}^{\infty} |a_i|^2 = \infty$. Furthermore, the boundedness of D be equivalent to the boundedness of the partial sums of the series $\sum_{i=1}^{\infty} a_i$. An instance of such a sequence is $a_i = (-1)^i / i^\alpha$ with $\alpha \in (\frac{1}{4}, \frac{1}{2}]$.

References

 A. Abdessemed, E. B. Davies: Some commutator estimates in the Schatten classes. J. Lond. Math. Soc., II. Ser. 39 (1989), 299–308.

zbl MR doi

zbl MR

- [2] S. T. M. Ackermans, S. J. L. van Eijndhoven, F. J. L. Martens: On almost commuting operators. Indag. Math. 45 (1983), 385–391.
- [3] D. C. Kleinecke: On operator commutators. Proc. Am. Math. Soc. 8 (1957), 535–536.
- [4] F. V. Shirokov: Proof of a conjecutre of Kaplansky. Usp. Mat. Nauk 11 (1956), 167–168. (In Russian.)
- [5] V. Shulman: Some remarks on the Fuglede-Weiss theorem. Bull. Lond. Math. Soc. 28 (1996), 385–392.
- [6] V. Shulman, L. Turowska: Operator synthesis. II: Individual synthesis and linear operator equations. J. Reine Angew. Math. 590 (2006), 143–187.

Author's address: Vasile Lauric, Department of Mathematics, Florida A& M University, 1601 S. Martin L. King Jr. Blvd., Tallahassee, FL 32307, USA, e-mail: vlauri@netzero.com.