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Abstract. We study a class of typical Hartogs domains which is called a generalized Fock-
Bargmann-Hartogs domain D

p
n,m(µ). The generalized Fock-Bargmann-Hartogs domain is

defined by inequality eµ‖z‖
2

m∑

j=1
|ωj |

2p < 1, where (z, ω) ∈ C
n × C

m. In this paper, we

will establish a rigidity of its holomorphic automorphism group. Our results imply that
a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain D

p
n,m(µ)

becomes a holomorphic automorphism if and only if it keeps the function
m∑

j=1
|ωj |

2peµ‖z‖
2

invariant.

Keywords: generalized Fock-Bargmann-Hartogs domain; holomorphic automorphism
group

MSC 2020 : 32H35

1. Introduction

Let Ω be a domain of Cn and let Aut(Ω) be the set of all of the biholomorphic

self-mappings of Ω. Obviously, Aut(Ω) forms a group under the composition law.

We call Aut(Ω) the holomorphic automorphism group of Ω.

In one complex variable, the only case of the holomorphic automorphism group

we need to study is the unit disk by the well-known Riemann mapping theorem.

However, the classical Riemann mapping theorem is no longer valid for higher di-

mensional cases, which leads to more complicated discussions on determining the
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holomorphic automorphism group of Ω in C
n. Although there are many difficulties

in studying automorphism groups of domains in Cn, great progress has been made in

this field. In fact, the automorphism groups of various bounded domains had been

deeply investigated in the past twenty years. In 1997, Dini-Primicerio in [4] gave the

explicit form for the automorphism group of complex ellipsoid. Later on, Ahn-Byun-

Park in [1] studied the automorphism group of a class Hartogs type domains over

classical symmetric domains, namely Cartan-Hartogs domain. For more references,

please refer to Ishi-Kai, see [5], Kodama, see [7], Tu, see [8] and references therein.

However, there are still a lot of automorphism groups of domains in C
n (whether

bounded or not) that are undetermined. So it is interesting to determine the auto-

morphism groups of various domain explicitly or give the equivalent descriptions for

the holomorphic automorphism group.

We notice that both complex ellipsoid and Cartan-Hartogs domain can be regarded

as Hartogs domains. In general, Hartogs domains are nonhomogeneous domains, but

many properties are similar to the homogeneous domains. Hence, it is much more

convenient to discuss the automorphism group of Hartogs domains. Another typical

example of Hartogs domains is called Fock-Bargmann-Hartogs domains which has

been studied by researchers from the perspective of geometry and analysis.

For a given positive real number µ > 0, the Fock-Bargmann-Hartogs domain

Dn,m(µ) is defined by

Dn,m(µ) = {(z, ω) ∈ C
n × C

m : ‖ω‖2 < e−µ‖z‖2

} (µ > 0),

where ‖·‖ is the standard Hermitian norm. Obviously, the Fock-Bargmann-Hartogs

domains Dn,m(µ) are strongly pseudoconvex domains in C
n+m with smooth real-

analytic boundary. Moreover, each Fock-Bargmann-Hartogs domain Dn,m(µ) is an

unbounded nonhyperbolic domain in the sense of Kobayashi in Cn × C
m.

By verifying that the Bergman kernel ensures revised Cartan’s theorem, Kim-Ninh-

Yamamori in [6] determined the automorphism group of Fock-Bargmann-Hartogs do-

mains. In 2015, Tu-Wang in [9] studied the rigidity of proper holomorphic mappings

between two equidimensional Fock-Bargmann-Hartogs domains and proved that any

proper holomorphic self-mapping on the Fock-Bargmann-Hartogs domain Dn,m(µ)

with m > 2 must be an automorphism. In 2016, Bi-Feng-Tu in [2] proved the exis-

tence of balanced metric on the Fock-Bargmann-Hartogs domains.

In this paper, we will consider a class of more widely Hartogs domain called

generalized Fock-Bargmann-Hartogs domains which is defined by

Dp
n,m(µ) =

{

(z, ω) ∈ C
n × C

m :

m
∑

j=1

|ωj |
2p

< e−µ‖z‖2

}

(µ > 0, p ∈ N
+).
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Obviously, each generalized Fock-Bargmann-Hartogs domain Dp
n,m(µ) is also an

unbounded nonhyperbolic domain. In general, a generalized Fock-Bargmann-Hartogs

domain is not a strongly pseudoconvex domain. When p = 1, this domain degener-

ates into Fock-Bargmann-Hartogs domain. Hence, this can be regarded as a natural

generalization.

Recently, Bi-Tu in [3] has established the rigidity of the proper holomorphic

mappings between two equidimensional generalized Fock-Bargmann-Hartogs do-

mains and determined the holomorphic automorphism group of the generalized

Fock-Bargmann-Hartogs domain. Inspired by this, in our paper we will give an

equivalent description for the holomorphic automorphism group of the generalized

Fock-Bargmann-Hartogs domain. More precisely, our main result is as follows.

Theorem 1.1. For p ∈ N
+, let F be a holomorphic self-mapping of the generalized

Fock-Bargmann-Hartogs domains Dp
n,m(µ). Then F is an automorphism of Dp

n,m(µ)

if and only if F keeps the function

L(z, ω) = eµ‖z‖
2

m
∑

j=1

|ωj |
2p
, (z, ω) ∈ Dp

n,m(µ)

invariant.

Therefore we easily have the following results.

Corollary 1.2. Let F be a holomorphic self-mapping of Fock-Bargmann-Hartogs

domains Dn,m(µ). Then F is an automorphism of Dn,m(µ) if and only if F keeps

the function

L(z, ω) = eµ‖z‖
2

‖ω‖2, (z, ω) ∈ Dn,m(µ)

invariant.

Remark 1.3. We remark that our results are not trivial. For example, when

µ = 0 and m = 1, the generalized Fock-Bargmann-Hartogs domain Dp
n,m(µ) and the

function L(z, ω) in Theorem 1.1 reduce to the domain D and the function M(z, ω)

given by

D = {(z, ω) ∈ C
n × C : |ω| < 1} and M(z, ω) = |ω|2p, (z, ω) ∈ D.

Hence, if we consider, for instance, a holomorphic mapping F : D → C
n+1 defined by

F (z, ω) =
(

z,
2ω − 1

2− ω

)

, (z, ω) ∈ D,

then F induces a holomorphic automorphism of D, while it is obvious that

M(F (z, ω)) 6= M(z, ω) on D.
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2. Preliminaries

In order to prove our results, we firstly give some lemmas.

Lemma 2.1. For p > 0 and p 6= 1 let f : Dp
n,m(µ) → Dp

n,m(µ) be a biholomorphic

mapping with f(0) = 0. Then we have f(z, ω) = (zA, ωU). Here A ∈ U(n), θi ∈ R,

σ ∈ Sm is a permutation (1 6 j 6 m) and

ωU = (ωσ(1), . . . , ωσ(m))







eiθ1
. . .

eiθm






.

P r o o f. This is a direct result of Corollary 1.5 in [3]. �

Lemma 2.2 (Bi-Tu [3]). Let p > 0 and p 6= 1. The automorphism group

Aut(Dp
n,m(µ)) is generated by the following mappings:

ϕA : (z, ω) 7→ (zA, ω),

ϕD : (z, ω) 7→ (z, ωU),

ϕv : (z, ω) 7→ (z + v, ωe(−2µ〈z,v〉−µ‖v‖2)/2p),

where v ∈ Cn, A ∈ U(n), σ ∈ Sm is a permutation and

ωU = (ωσ(1), . . . , ωσ(m))







eiθ1
. . .

eiθm






.

Lemma 2.3. For p,N ∈ N
+ and p > 1, let α = (α1, . . . , αn), β = (β1, . . . , βm)

be tuples of nonnegative integers. For z ∈ C
n, ω ∈ C

m, set

PN (z) =
∑

|α|=N

dαz
α, QN(z, ω) =

∑

|α|+|β|=N
|α|>1,|β|>1

eαβz
αωβ,

RN (z, ω) =
∑

|α|+|β|=N
|α|>1,|β|>1

fαβz
αωβ,

where dα and eαβ are n-dimensional row vectors, fαβ is anm-dimensional row vector,

|α| =
n
∑

j=1

αj . Assume that A is an invertible matrix of order n, 〈·, ·〉 denotes the
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standard Hermitian inner product on Cn or Cm, PN,j, QN,j and RN,j denote the jth

component of PN , QN and RN , respectively.

(i) If

(2.1)
m
∑

j=1

p|ωj |
2(p−1)2Re(ωjR2,j(z, ω)) ≡ 0

and

(2.2)

m
∑

j=1

p|ωj |
2(p−1)(2Re(ωjR3,j(z, ω)) + |R2,j(z, ω)|

2)

+

m
∑

j=1

(

p

2

)

|ωj |
2(p−2)

(2Re(ωjR2,j(z, ω)))
2

+ µ

m
∑

j=1

|ωj |
2p
(‖zA‖

2
− ‖z‖

2
) ≡ 0,

then

R2(z, ω) ≡ 0, R3(z, ω) ≡ 0, ‖z‖2 ≡ ‖zA‖2.

(ii) Suppose that N > 4 and

(2.3)

m
∑

j=1

p|ωj |
2(p−1)

2Re(ωjRN,j(z, ω))

+ µ

m
∑

j=1

|ωj |
2p
2Re〈zA, PN−2(z) +QN−2(z, ω)〉 ≡ 0.

Then

RN (z, ω) ≡ 0, PN−2(z) ≡ 0, QN−2(z, ω) ≡ 0.

P r o o f. Let zA =
n
∑

k=1

Ekzk, where {Ek : 1 6 k 6 n} is the bases of Cn.

(i) For any arbitrarily fixed ω, let us put

g(z) =

m
∑

j=1

ωp−1
j ωp

jRN,j(z, ω).

If
m
∑

j=1

p|ωj|
2(p−1)

2Re(ωjRN,j(z, ω)) ≡ 0,
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then

Re(g(z)) ≡ 0.

Accordingly we obtain that

m
∑

j=1

ωp−1
j ωp

jRN,j(z, ω) ≡ 0

for all z ∈ C
n and all ω ∈ C

m. Thus, by applying the differential operators ∂p/∂ωj
p

(1 6 j 6 m) to both sides of the above equation, it follows that

ωp−1
j RN,j(z, ω) ≡ 0, 1 6 j 6 m,

which implies

RN,j(z, ω) ≡ 0, 1 6 j 6 m.

Hence

RN (z, ω) ≡ 0.

In particular, we conclude by (2.1) that R2(z, ω) = 0.

Since R2(z, ω) = 0, then (2.2) can be rewritten as

(2.4)

m
∑

j=1

p|ωj|
2(p−1)2 Re

(

ωj

(

∑

|α|+|β|=3
|α|>1,|β|>1

fαβz
αωβ

)

j

)

+ µ

m
∑

j=1

|ωj |
2p
(‖zA‖

2
− ‖z‖

2
) ≡ 0.

Take z, z as independent variables. Since the sets {zα, zα : 1 6 |α| 6 2} and

{zizj : 1 6 i, j 6 n} are disjoint, we have

m
∑

j=1

p|ωj |
2(p−1)

2Re(ωjR3,j(z, ω)) ≡ 0

and

(2.5) ‖z‖
2
≡ ‖zA‖

2

by (2.4).

By formula (2.5), we can see that A is an n-dimensional unitary matrix. Similarly

to the above discussion, we can get

R3(z, ω) ≡ 0.
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(ii) It is easy to show

m
∑

j=1

p|ωj |
2(p−1)2Re(ωjRN,j(z, ω))

=

m
∑

j=1

p|ωj |
2(p−1)2Re

(

ωj

(

∑

|α|+|β|=N
|α|>1,|β|>1

fαβz
αωβ

)

j

)

and

2

m
∑

j=1

|ωj |
2p

Re〈zA, PN−2(z) +QN−2(z, ω)〉

=

m
∑

j=1

|ωj|
2p

∑

16k6n

∑

|α|=N−2

{〈Ek, dα〉zkzα + 〈dα, Ek〉zkz
α}

+

m
∑

j=1

|ωj |
2p

∑

16k6n

∑

|α|+|β|=N−2
|α|>1,|β|>1

{〈Ek, eαβ〉zkzαωβ + 〈eαβ , Ek〉z
αωβzk}.

Think of z, z as independent variables and ω, ω as constants. The sets {zα, zα : 1 6

|α| 6 N − 1}, {zkzα, zkz
α : 1 6 k 6 n, |α| = N − 2} and {zkzα, zkz

α : 1 6 k 6 n,

1 6 |α| 6 N − 3} are pairwise disjoint. By (2.3), we have

m
∑

j=1

p|ωj|
2(p−1)

(2Re(ωjRN,j(z, ω))) ≡ 0,(2.6)

〈Ek, dα〉 = 0 (1 6 k 6 n, |α| = N − 2)(2.7)

and

(2.8)
∑

|β|=N−2−|α|

〈Ek, eαβ〉ω
β
≡ 0 (1 6 k 6 n, 1 6 |α| 6 N − 1).

Therefore (2.6) implies

RN (z, w) ≡ 0.

Since {Ek : 1 6 k 6 n} is a basis of Cn, we must have

dα = 0 ⇒ PN−2(z) ≡ 0

by (2.7).
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Formula (2.8) yields that

〈Ek, eαβ〉 = 0.

It follows that

eαβ = 0 ⇒ QN−2(z, ω) ≡ 0.

The proof is finished. �

3. Proof of the main theorem

P r o o f. Firstly, by Lemma 2.2 and Theorem 10 in [6], it is not hard to check

that F keeps the function L(z, ω) invariant if F is an automorphism of generalized

Fock-Bargmann-Hartogs domain.

Secondly, we will prove that the converse also holds. In this part, our proof is

divided into four steps.

Step 1. Let

F (z, ω) = (F1(z, ω), F2(z, ω))

= (F1,1(z, ω), . . . , F1,n(z, ω), F2,1(z, ω), . . . , F2,m(z, ω)).

Since F keeps the function eµ‖z‖
2

m
∑

j=1

|ωj |
2p
invariant, we have

m
∑

j=1

|F2,j(z, 0)|
2p
eµ‖F1(z,0)‖

2

= 0.

Therefore
m
∑

j=1

|F2,j(z, 0)|
2p

= 0.

Then we can see that F2(z, 0) = 0. It follows that F (0, 0) = (v, 0). Consider

a biholomorphic self-mapping of Dp
n,m(µ) which is defined by

G(z, ω) = (z + v, e−µ〈z,v〉/p−µ‖v‖2/2pω).

Then G(z, ω) maps (0, 0) to (v, 0).

In fact, by Lemma 2.2, we know that G is an automorphism of Dp
n,m(µ). Let

H = G−1 ◦ F . Then we obtain that H keeps the function
m
∑

j=1

|ωj |
2peµ‖z‖

2

invariant

and H(0, 0) = (0, 0).
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Let H(0, ω) = (h1(ω), h2(ω)), in which

h1(ω) = ωV +
∑

i>2

fi(ω), h2(ω) = ωU +
∑

i>2

gi(ω),

where fi(ω) and gi(ω) are homogeneous polynomial mappings of degree i. For any

(0, ω) ∈ Dp
n,m(µ) we get

m
∑

j=1

|ωj |
2p

< 1.

For any t ∈ [0, 1] we can see

m
∑

j=1

|tωj |
2p = t2p

m
∑

j=1

|ωj |
2p

6

m
∑

j=1

|ωj|
2p < 1.

Hence we conclude (0, tω) ∈ Dp
n,m(µ) for all t ∈ [0, 1].

Since H keeps the function eµ‖z‖
2

m
∑

j=1

|ωj|
2p invariant, we have

(3.1)

m
∑

j=1

|(h2(tω))j |
2p
eµ‖h1(tω)‖2 =

m
∑

j=1

|(tω)j |
2p
.

Substituting h1(tω) and h2(tω) into (3.1), we obtain

m
∑

j=1

∣

∣

∣

∣

(

tωU +
∑

i>2

gi(tω)

)

j

∣

∣

∣

∣

2p

eµ‖tωV +
∑

i>2
fi(tω)‖2

=
m
∑

j=1

|(tω)j |
2p.

Then we have

m
∑

j=1

∣

∣

∣

∣

(

ωU +
∑

i>2

ti−1gi(ω)

)

j

∣

∣

∣

∣

2p

eµ‖tωV +
∑

i>2
fi(tω)‖2

=

m
∑

j=1

|ωj |
2p
.

Taking t → 0+, we get

(3.2)

m
∑

j=1

|(ωU)j |
2p

=

m
∑

j=1

|ωj |
2p
.

Hence, the correspondence ω 7→ ωU gives rise to a holomorphic automorphism

of complex ellipsoid
{

ω ∈ C
m :

m
∑

j=1

|ω|2p < 1
}

and the self-mapping Φ of Cn × C
m

defined by

Φ(z, ω) = (z, ωU), (z, ω) ∈ C
n × C

m,
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induces a holomorphic automorphism of Dp
n,m(µ) by Lemma 2.1. Therefore, taking

the composite mapping H ◦ Φ−1 if necessary, we may assume that

H(0, ω) =

(

ωV +
∑

i>2

fi(ω), ω +
∑

i>2

gi(ω)

)

,

where fi(ω) and gi(ω) are homogeneous polynomial mappings of degree i.

On the other hand, h2(ω) induces a holomorphic mapping on a bounded domain
{

ω ∈ C
m :

m
∑

j=1

|ωj |
2p < 1

}

satisfying h2(0) = 0 and h′
2(0) = I, where h′

2 is the

derivative of h2 and I is the identity matrix. Hence, by Cartan lemma, we must

have h2(ω) = ω.

Consider (0, ω) ∈ Dp
n,m(µ), then H(0, ω) = (h1(ω), ω). Since H keeps the function

m
∑

j=1

|ωj|
2p
eµ‖z‖

2

invariant, it follows that

(3.3)
m
∑

j=1

|ωj |
2peµ‖h1(ω)‖2

=
m
∑

j=1

|ωj |
2p.

Therefore by (3.3), we must have eµ‖h1(ω)‖2

= 1, which implies that h1(ω) = 0.

Let H(z, ω) = (H1(z, ω), H2(z, ω)). Then we have H(0, 0) = (0, 0), H2(z, 0) = 0

and H(0, ω) = (0, ω) by the above discussions. Therefore we obtain

H1(z, ω) = zA+
∑

i>2

(Pi(z) +Qi(z, ω)), H2(z, ω) = ω +
∑

i>2

Ri(z, ω),

where Pj , Qj and Rj are homogeneous polynomial mappings of degree j, which are

given by Lemma 2.3.

Step 2. Let (z, ω) ∈ Dp
n,m(µ), which means

m
∑

j=1

|ωj |
2p

< e−µ‖z‖2

. It is not hard to

see that

(tz, tω) ∈ Dp
n,m(µ) ∀ t ∈ [0, 1].

Since H(tz, tω) = (H1(tz, tω), H2(tz, tω)) and H keeps the function

m
∑

j=1

|ωj |
2peµ‖z‖

2

invariant, it follows

m
∑

j=1

|(H2(tz, tω))j |
2p
eµ‖H1(tz,tω)‖2

=

m
∑

j=1

|tωj |
2p
eµ‖tz‖

2

,
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which means

(3.4)

∑m
j=1 |(H2(tz, tω))j |

2p

∑m
j=1 |tωj |

2p = eµ‖tz‖
2−µ‖H1(tz,tω)‖2

.

Substituting H1(tz, tω) and H2(tz, tω) into (3.4), we obtain that for all t ∈ [0, 1]

(3.5)

∑m
j=1

∣

∣(tω +
∑

i>2 Ri(tz, tω))j

∣

∣

2p

∑m
j=1 |tωj |

2p = eµ‖tz‖
2−µ‖tzA+

∑
i>2

(Pi(tz)+Qi(tz,tω))‖2

.

Therefore we get

(3.6)

∑m
j=1

∣

∣ωj +
(
∑

i>2 t
i−1Ri(z, ω)

)

j

∣

∣

2p

∑m
j=1 |ωj |

2p

= eµt
2(‖z‖2−‖zA+

∑
i>2

ti−1(Pi(z)+Qi(z,ω))‖
2
).

For the sake of simplicity, we write

H2,j(t, z, ω) =

(

∑

i>2

ti−1Ri(z, ω)

)

j

(1 6 j 6 m).

One can prove that

H2,j(t, z, ω) = t(R2,j(z, ω) + tR3,j(z, ω) +O(t2)).

Then by (3.6) we obtain

(3.7)

∑m
j=1 |ωj +H2,j(t, z, ω)|

2p

∑m
j=1 |ωj |

2p = eµt
2(‖z‖2−‖zA+

∑
i>2

ti−1(Pi(z)+Qi(z,ω))‖
2
).

It follows

(3.8)

∑m
j=1

∣

∣|ωj|
2
+ 2Re(ωjH2,j(t, z, ω)) + |H2,j(t, z, ω)|

2∣
∣

p

∑m
j=1 |ωj |

2p

= eµt
2(‖z‖2−‖zA+

∑
i>2

ti−1(Pi(z)+Qi(z,ω))‖
2
).

Let Tj(t, z, ω) = 2Re(ωjH2,j(t, z, ω)) + |H2,j(t, z, ω)|
2. Then one can see that

Tj(t, z, ω) = t(2Re(ωjR2,j(z, ω)) + t(2Re(ωjR3,j(z, ω)) + |R2,j(z, ω)|
2) + o(t2)).
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Owing to (3.8), we have

(3.9) ln

(

1 +

∑m
j=1

∑p−1
k=0

(

p
k

)

|ωj |
2k
(Tj(t, z, ω))

p−k

∑m
j=1 |ωj |

2p

)

= µt2
(

‖z‖
2
−
∥

∥

∥zA+
∑

i>2

ti−1(Pi(z) +Qi(z, ω))
∥

∥

∥

2
)

.

Direct computations imply that

(3.10) 1 +

∑m
j=1

∑p−1
k=0

(

p
k

)

|ωj |
2k
(Tj(t, z, ω))

p−k

∑m
j=1 |ωj |

2p

= 1 + tA(z, ω) + t2(B(z, ω) + C(z, ω)) + o(t2),

where

A(z, ω) =

∑m
j=1 p|ωj|

2(p−1)
2Re(ωjR2,j(z, ω))

∑m
j=1 |ωj |

2p ,

B(z, ω) =

∑m
j=1 p|ωj|

2(p−1)(2Re(ωjR3,j(z, ω)) + |R2,j(z, ω)|
2)

∑m
j=1 |ωj |

2p

C(z, ω) =

∑m
j=1

(

p
2

)

|ωj |
2(p−2)

(2Re(ωjR2,j(z, ω)))
2

∑m
j=1 |ωj |

2p .

Hence we get

ln(1 + tA(z, ω) + t2(B(z, ω) + C(z, ω)) + o(t2))

= µt2
(

‖z‖
2
−

∥

∥

∥

∥

zA+
∑

i>2

ti−1(Pi(z) +Qi(z, ω))

∥

∥

∥

∥

2)

.

Dividing the two sides of the above equation by t2 and taking t → 0+, we obtain

m
∑

j=1

p|ωj |
2(p−1)2Re(ωjR2,j(z, ω)) = 0

and

m
∑

j=1

p|ωj|
2(p−1)(

2Re(ωjR3,j(z, ω)) + |R2,j(z, ω)|
2)

+

m
∑

j=1

(

p

2

)

|ωj |
2(p−2)

(2Re(ωjR2,j(z, ω)))
2
+ µ

m
∑

j=1

|ωj |
2p
(‖zA‖

2
− ‖z‖

2
) = 0.
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By Lemma 2.3, we have

(3.11) R2(z, ω) = 0, R3(z, ω) = 0, ‖z‖
2
= ‖zA‖

2
.

Since ‖z‖
2
= ‖zA‖

2
, we get that A is a unitary matrix of order n.

Step 3. Now we would like to prove that Pi−2(z) = 0, Qi−2(z, ω) = 0 and

Ri(z, ω) = 0 for all (z, ω) ∈ Dp
n,m(µ) and all i > 3. To this end, assuming not,

we define a positive integer N by

(3.12) N := min{i : (Pi−2(z), Qi−2(z, ω), Ri(z, ω)) 6= (0, 0, 0)}.

From (3.11) we know N > 4. Using (3.4) again, we obtain

(3.13)

∑m
j=1

∣

∣ωj +
(
∑

i>N ti−1Ri(z, ω)
)

j

∣

∣

2p

∑m
j=1 |ωj |

2p

= eµt
2‖z‖2−µ‖tzA+

∑
i>N−2

(Pi(tz)+Qi(tz,tω))‖2

.

Let

H ′
2,j(t, z, ω) =

(

∑

i>N

ti−1Ri(z, ω)

)

j

,

T ′
j(t, z, ω) = 2Re(ωjH

′
2,j
(t, z, ω)) + |H ′

2,j(t, z, ω)|
2
.

By (3.13) we have

(3.14) ln

(

1 +

∑m
j=1

∑p−1
k=0

(

p
k

)

|ωj|
2k(T ′

j
(t, z, ω))

p−k

∑m
j=1 |ωj|

2p

)

= µt2‖z‖2 − µ
∥

∥

∥
tzA+

∑

i>N−2

(Pi(tz) +Qi(tz, tω))
∥

∥

∥

2

.

Equation (3.14) yields that

(3.15) ln

(

1 +
tN−1

∑m
j=1 p|ωj|

2(p−1)2Re(ωjRN,j(z, ω)) + o(tN−1)
∑m

j=1 |ωj |
2p

)

= −µtN−12Re〈zA, PN−2(z) +QN−2(z, ω)〉+ o(tN−1).

Dividing the two sides of equation (3.15) by tN−1 and taking t → 0+, we get

m
∑

j=1

p|ωj|
2(p−1)

2Re(ωjRN,j(z, ω))

+ µ

m
∑

j=1

|ωj|
2p
2Re〈zA, PN−2(z) +QN−2(z, ω)〉 = 0.
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From Lemma 2.3 we have RN (z, ω) = 0, PN−2(z) = 0, QN−2(z, ω) = 0. This is also

a contradiction with (3.12).

Step 4. From Steps 1, 2 and 3, we get G−1 ◦F (z, ω) = H(z, ω) = (zA, ωU), where

U ∈ U(m). Then by Lemma 2.2 and Theorem 10 in [6], we conclude that H is an

automorphism of Dp
n,m(µ). Therefore

F (z, ω) = (zA+ v, ωUe−(µ〈z,v〉)/p−(µ‖v‖2)/2p).

The proof is completed. �
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