A CLASS OF MULTIPLICATIVE LATTICES

Tiberiu Dumitrescu, Mihai Epure, Bucharest

Received January 28, 2020. Published online March 15, 2021.

Abstract. We study the multiplicative lattices L which satisfy the condition $a=$ $(a:(a: b))(a: b)$ for all $a, b \in L$. Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group \mathbb{Z} or \mathbb{R}. A sharp lattice L localized at its maximal elements are totally ordered sharp lattices. The converse is true if L has finite character.

Keywords: multiplicative lattice; Prüfer lattice; Prüfer integral domain
MSC 2020: 06F99, 13F05, 13A15

1. Introduction

We recall some standard terminology. A multiplicative lattice is a complete lattice (L, \leqslant) (with bottom element 0 and top element 1) which is also a commutative monoid with identity 1 (the top element) such that

$$
a\left(\bigvee_{\alpha} b_{\alpha}\right)=\bigvee_{\alpha}\left(a b_{\alpha}\right) \quad \text { for each } a, b_{\alpha} \in L
$$

When $x \leqslant y(x, y \in L)$, we say that x is below y or that y is above x. An element x of L is cancellative if $x y=x z(y, z \in L)$ implies $y=z$. For $x, y \in L,(y: x)$ denotes the element $\bigvee\{a \in L ; a x \leqslant y\}$; so $(y: x) x \leqslant y$.

An element c of L is compact if $c \leqslant \bigvee S$, with $S \subseteq L$, implies $c \leqslant \bigvee T$ for some finite subset T of S (here $\bigvee W$ denotes the join of all elements in W). An element in L is proper if $x \neq 1$. When 1 is compact, every proper element is below some maximal element (i.e., maximal in $L-\{1\}$). Let $\operatorname{Max}(L)$ denote the set of maximal elements of L. By " (L, m) is local", we mean that $\operatorname{Max}(L)=\{m\}$. A proper element p is prime if $x y \leqslant p$ (with $x, y \in L$) implies $x \leqslant p$ or $y \leqslant p$. Every maximal element is
prime, L is a (lattice) domain if 0 is a prime element. An element x is meet-principal (or weak meet-principal) if

$$
y \wedge z x=((y: x) \wedge z) x \quad \forall y, z \in L \quad(\text { or }(y: x) x=x \wedge y \forall y \in L)
$$

An element x is join-principal (or weak join-principal) if

$$
y \vee(z: x)=((y x \vee z): x) \quad \forall y, z \in L \quad(\text { or }(x y: x)=y \vee(0: x) \forall x \in L) .
$$

And x is principal if it is both meet-principal and join-principal. If x and y are principal elements, then so is $x y$. The converse is also true if L is a lattice domain and $x y \neq 0$. In a lattice domain, every nonzero principal element is cancellative. The lattice L is principally generated if every element is a join of principal elements. Moreover, L is a C-lattice if 1 is compact, the set of compact elements is closed under multiplication and every element is a join of compact elements. In a C-lattice, every principal element is compact.

The C-lattices have a well behaved localization theory. Let L be a C-lattice and L^{*} the set of its compact elements. For $p \in L$ a prime element and $x \in L$, the localization of x at p is

$$
x_{p}=\bigvee\left\{a \in L^{*} ; a s \leqslant x \text { for some } s \in L^{*} \text { with } s \nless p\right\} .
$$

Then $L_{p}:=\left\{x_{p} ; x \in L\right\}$ is again a lattice with multiplication $(x, y) \mapsto(x y)_{p}$, join $\left\{\left(b_{\alpha}\right)\right\} \mapsto\left(\bigvee b_{\alpha}\right)_{p}$ and meet $\left\{\left(b_{\alpha}\right)\right\} \mapsto\left(\bigwedge b_{\alpha}\right)_{p}$. For $x, y \in L$, we have: $\triangleright x \leqslant x_{p},\left(x_{p}\right)_{p}=x_{p},(x \wedge y)_{p}=x_{p} \wedge y_{p}$, and $x_{p}=1$ if and only if $x \nless p$.
$\triangleright x=y$ if and only if $x_{m}=y_{m}$ for each $m \in \operatorname{Max}(L)$.
$\triangleright(y: x)_{p} \leqslant\left(y_{p}: x_{p}\right)$ with equality if x is compact.
\triangleright The set of compact elements of L_{p} is $\left\{c_{p}: c \in L^{*}\right\}$.
\triangleright A compact element x is principal if and only if x_{m} is principal for each $m \in \operatorname{Max}(L)$.
In [1] a study of sharp integral domains was done. An integral domain D is a sharp domain if whenever $A_{1} A_{2} \subseteq B$ with A_{1}, A_{2}, B ideals of D, we have a factorization $B=B_{1} B_{2}$ with $B_{i} \supseteq A_{i}$ ideals of $D, i=1,2$. Moreover, sharp domains and some of their generalizations have been investigated by various authors, see also [8]. In the present paper we extend almost all results in [1] to the setup of multiplicative lattices. Our key definition is the following.

Definition 1. A lattice L is a sharp lattice if whenever $a_{1} a_{2} \leqslant b$ with $a_{1}, a_{2}, b \in L$, we have a factorization $b=b_{1} b_{2}$ with $a_{i} \leqslant b_{i} \in L, i=1,2$.

In Section 2 we work in the setup of C-lattices (simply called lattices). After obtaining some basic facts (see Propositions 2 and 3), we show that if (L, m) is a local sharp lattice and $m=x_{1} \vee \ldots \vee x_{n}$ with x_{1}, \ldots, x_{n} join principal elements, then $m=x_{i}$ for some i, see Theorem 6. While a lattice whose elements are principal is trivially a sharp lattice (see Remark 5), the converse is true in a principally generated lattice whose elements are compact, see Corollary 8.

In Section 3, we work in the setup of C-lattice domains generated by principal elements (simply called lattices). It turns out that every nontrivial totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group \mathbb{Z} or \mathbb{R}, see Theorem 16. A nontrivial sharp lattice L is Prüfer (i.e., its compacts are principal) of dimension one (see Theorem 17), thus, the localizations at its maximal elements are totally ordered sharp lattices. The converse is true if L has finite character (see Definition 18) because in this case $(a: b)_{m}=\left(a_{m}: b_{m}\right)$ for all $a, b \in L-\{0\}$ and $m \in \operatorname{Max}(L)$, see Proposition 19. A countable sharp lattice has all its elements principal, see Corollary 23.

For basic facts or terminology, our reference papers are [2] and [11].

2. BASIC RESULTS

In this section, the term lattice means a C-lattice.
We begin by giving several characterizations for the sharp lattices. As usual, we say that a divides b (denoted $a \mid b)$ if $b=a c$ for some $c \in L$.

Proposition 2. For a lattice L the following statements are equivalent:
(i) L is sharp.
(ii) $a=(a:(a: b))(a: b)$ for all $a, b \in L$.
(iii) $(a: b) \mid a$ for all $a, b \in L$.
(iv) $(a: b) \mid a$ whenever $a, b \in L, 0<a<b<1$ and a is not a prime.

Proof. (i) \Rightarrow (iii) Since $(a:(a: b))(a: b) \leqslant a$, and L is sharp, we have a factorization $a=a_{1} a_{2}$ with $a_{1} \geqslant(a:(a: b))$ and $a_{2} \geqslant(a: b)$. We get

$$
a_{2} \leqslant\left(a: a_{1}\right) \leqslant(a:(a:(a: b)))=(a: b) \leqslant a_{2},
$$

where the equality is easy to check, so $(a: b)=a_{2}$ divides a.
(iii) \Rightarrow (ii) From $a=x(a: b)$ with $x \in L$, we get $x \leqslant(a:(a: b))$, so

$$
a=x(a: b) \leqslant(a:(a: b))(a: b) \leqslant a .
$$

(ii) \Rightarrow (i) Let $a_{1}, a_{2}, b \in L$ with $b \geqslant a_{1} a_{2}$. By (ii) we get $b=\left(b:\left(b: a_{1}\right)\right)\left(b: a_{1}\right)$ and clearly $a_{1} \leqslant\left(b:\left(b: a_{1}\right)\right)$ and $a_{2} \leqslant\left(b: a_{1}\right)$.
(iv) \Leftrightarrow (iii) Follows from observing that:
(1) $(a: b)=(a:(a \vee b))$ and (2) $(a: b) \in\{a, 1\}$ if a is a prime.

Proposition 3. If L is a sharp lattice and $m \in L$ a maximal element, there is no element properly between m and m^{2}.

Proof. If $m^{2}<x<m$, then $(x: m)=m$, so $(x:(x: m))=m$, thus $x=(x: m)(x:(x: m))=m^{2}$, a contradiction, see Proposition 2.

Recall that a ring R is a special primary ring if R has a unique maximal ideal M and if each proper ideal of R is a power of M, see [9], page 206.

Corollary 4. The ideal lattice of a Noetherian commutative unitary ring R is sharp if and only if R is a finite direct product of Dedekind domains and special primary rings.

Proof. Combine Propositions 2 and 3 and [6], Theorem 39.2, Proposition 39.4.

Remark 5. Let L be a lattice.
(i) If all elements of L are weak meet principal, then L is sharp (see Proposition 2). In particular, this happens when $a \wedge b=a b$ for all $a, b \in L$.
(ii) If L is sharp, then every $p \in L-\{1\}$ whose only divisors are p and 1 is a prime element because $(p: b)=p$ or 1 for all $b \in L$ (see Proposition 2). The converse is not true. Indeed, let L be the lattice $0<a<b<c<1$ with $a^{2}=b^{2}=a b=0$, $a c=a, b c=b, c^{2}=c$. Here every $x \in L-\{c, 1\}$ has nontrivial factors, while the lattice is not sharp because $(a: b)=b$ does not divide a.
(iii) A finite lattice $0<a_{1}<\ldots<a_{n}<1, n \geqslant 2$, is sharp provided $a_{i+1}^{2} \geqslant a_{i}$ for $1 \leqslant i \leqslant n-1$. By Proposition 2 (iv), it suffices to show that whenever $\left(a_{i}: a_{j}\right)=a_{k}$ with $1 \leqslant i<j, k \leqslant n$, it follows that a_{k} divides a_{i}. Indeed, from $\left(a_{i}: a_{j}\right)=a_{k}$ we get $a_{j} a_{k} \leqslant a_{i} \leqslant a_{i+1}^{2} \leqslant a_{j} a_{k}$, so $a_{i}=a_{j} a_{k}$.
(iv) Using similar arguments, it can be shown that a lattice whose poset is $0<a<$ $b<c<1$ is sharp if and only if $c^{2} \geqslant b$ and either $b^{2} \geqslant a$ or ($b^{2}=0$ and $\left.b c=a\right)$. In this case, a computer search finds 13 sharp lattices out of 22 lattices.

We give the main result of this section.

Theorem 6. Let L be a sharp lattice.
(i) If $x, y \in L$ are join principal elements and $(x: y) \vee(y: x)=x \vee y$, then $x \vee y=1$.
(ii) If (L, m) is local and $m=x_{1} \vee \ldots \vee x_{n}$ with x_{1}, \ldots, x_{n} join principal elements, then $m=x_{i}$ for some i.

Proof. (i) Since L is sharp and $(x \vee y)^{2} \leqslant x^{2} \vee y$, we can factorize $x^{2} \vee y=a b$ with $x \vee y \leqslant a \wedge b$. Since x is join principal and $(y: x) \leqslant x \vee y$, we get

$$
x \vee y \leqslant a \leqslant\left(x^{2} \vee y\right): b \leqslant\left(x^{2} \vee y\right):(x \vee y)=\left(x^{2} \vee y\right): x=x \vee(y: x)=x \vee y
$$

Thus $a=x \vee y=b$, as a and b play symmetric roles. So $x^{2} \vee y=a b=(x \vee y)^{2}$. As y is join principal and $\left(x^{2}: y\right) \leqslant(x: y) \leqslant x \vee y$, we finally get

$$
1=\left(\left(x^{2} \vee x y \vee y^{2}\right): y\right)=\left(x^{2}: y\right) \vee x \vee y=x \vee y
$$

(ii) Suppose that $n \geqslant 2$ and no x_{i} can be deleted from the given representation $m=x_{1} \vee \ldots \vee x_{n}$. It is straightforward to show that a factor lattice of a sharp lattice is again sharp. Modding out by $x_{3} \vee \ldots \vee x_{n}$, we may assume that $n=2$. As $\left(x_{1}: x_{2}\right) \vee\left(x_{2}: x_{1}\right) \leqslant m=x_{1} \vee x_{2}$, we get a contradiction from (i).

Before giving an application of Theorem 6, we insert a simple lemma.

Lemma 7. Let L be a sharp lattice and $p \in L$ a prime element. If L is sharp, then so is L_{p}.

Proof. Let $a_{1}, a_{2}, b \in L$ with $\left(a_{1} a_{2}\right)_{p} \leqslant b_{p}$. As L is sharp, we have $b_{p}=c_{1} c_{2}$ for some $a_{i} \leqslant c_{i} \in L(i=1,2)$, so $b_{p}=\left(c_{1} c_{2}\right)_{p}$ and $\left(a_{i}\right)_{p} \leqslant\left(c_{i}\right)_{p}$.

Following [3], we say that a lattice L is weak Noetherian if it is principally generated and each $x \in L$ is compact.

Corollary 8. Let L be a weak Noetherian lattice. Then L is sharp if and only if its elements are principal.

Proof. The "only if part" is covered by Remark 5 (i). For the converse, pick an arbitrary maximal element $m \in L$. It suffices to prove that m is principal, see [3], Theorem 1.1. As m is compact, we can check this property locally (see [3], Lemma 1.1), so we may assume that L is local (see Lemma 7). Apply Theorem 6 (ii) to complete the proof.

3. SHARP LATTICE DOMAINS

In this section, the term lattice means a C-lattice domain generated by principal elements.

First we introduce an ad-hoc definition.
Definition 9. A lattice L is a pseudo-Dedekind lattice if ($x: a$) is a principal element whenever $x, a \in L$ and x is principal.

Proposition 10. Every sharp lattice is pseudo-Dedekind.
Proof. The assertion follows from Proposition 2 because a factor of a nonzero principal element is principal [3], Lemma 2.3.

Example 11. There exist pseudo-Dedekind lattices which are not sharp. For instance, let M be the (distributive) lattice of all ideals of the multiplicative monoid $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, see [2], page 138. Every $a \in M$ has the form $a=\bigcup\left\{y \mathbb{N}_{0} \mid y \in S\right\}$ for some $S \subseteq \mathbb{N}_{0}$. If $x \in \mathbb{N}_{0}$, then $\left(x \mathbb{N}_{0}: a\right)=\bigcap\left\{\left(x \mathbb{N}_{0}: y \mathbb{N}_{0}\right): y \in S\right\}=z \mathbb{N}_{0}$ (for some $z \in \mathbb{N}_{0}$) is a principal element. So M is a pseudo-Dedekind lattice. But M is not sharp because for $a=4 \mathbb{N}_{0} \cup 9 \mathbb{N}_{0}$ and $b=2 \mathbb{N}_{0} \cup 3 \mathbb{N}_{0}$, we get $(a: b)=b^{2}$ and $(a:(a: b))=b$, so $(a: b)(a:(a: b))=b^{3} \neq a$. See also [1], Example 8 for a ring-theoretic example of this kind.

A lattice L is a Prüfer lattice if every nonzero compact element of L is principal. It is well known (see [2], Theorem 3.4) that L is a Prüfer lattice if and only if L_{m} is totally ordered for each maximal element m.

Indeed, the "if part" follows from the fact that a locally principal nonzero compact element is principal. For the converse, we may assume that L is a Prüfer local lattice. Let a, b be principal nonzero elements of L. Then $a \vee b=c$ is compact, hence principal. We get $c=(a: c) c \vee(b: c) c=((a: c) \vee(b: c)) c$, so $1=(a: c) \vee(b: c)$ since c is cancellative. As L is local, one of the terms, say ($a: c$), equals 1 , hence $b \leqslant c \leqslant a$. So every two principal elements are comparable, thus, L is totally ordered.

We show that a sharp lattice is Prüfer.
Remark 12. If L is a pseudo-Dedekind lattice, then the set P of all principal elements of L is a cancellative GCD monoid in the sense of [7], Section 10.2. Indeed, the LCM of two elements $x, y \in P$ is $x \wedge y=y(x: y)$.

Proposition 13. Every sharp lattice is Prüfer.

Proof. As L is principally generated, it suffices to show that $a \vee b$ is a principal element for each pair of nonzero principal elements $a, b \in L$. Dividing a, b by their GCD (see Remark 12), we may assume that $(a: b)=a$ and $(b: a)=b$. Then $a \vee b=1$ (see Theorem 6).

Example 14. Let \mathbb{Z}_{-}denote the set of all integers $\leqslant 0$ together with the symbol $-\infty$. Then \mathbb{Z}_{-}is a lattice under the usual addition and order. Note that \mathbb{Z}_{-}is isomorphic to the ideal lattice of a discrete valuation domain, so \mathbb{Z}_{-}is sharp.

Let \mathbb{R}_{1} denote the set of all intervals $(r, \infty]$ and $[r, \infty]$ for $r \in \mathbb{R} \geqslant 0$ together with $\{\infty\}$. Then \mathbb{R}_{1} is a lattice under the usual interval addition and inclusion. To show that \mathbb{R}_{1} is sharp, it suffices to check that $a=(a:(a: b))(a: b)$ for all $a, b \in \mathbb{R}_{1}-\{\{\infty\}\}$ with $a \leqslant b$, see Proposition 2. This is done in the table below.

a	b	$(a: b)$	$(a:(a: b))$
$[r, \infty]$	$[t, \infty]$	$[r-t, \infty]$	$[t, \infty]$
$(r, \infty]$	$(t, \infty]$	$[r-t, \infty]$	$(t, \infty]$
$[r, \infty]$	$(t, \infty]$	$[r-t, \infty]$	$[t, \infty]$
$(r, \infty]$	$[t, \infty]$	$(r-t, \infty]$	$[t, \infty]$

Note that \mathbb{R}_{1} is isomorphic to the ideal lattice of a valuation domain with value group \mathbb{R}.

We embark to show that every nontrivial totally ordered sharp lattice is isomorphic to \mathbb{Z}_{-}or \mathbb{R}_{1} above. Although the following lemma is known, we insert a proof for reader's convenience.

Lemma 15. Let $L \neq\{0,1\}$ be a totally ordered lattice with maximal element m and $p \in L, 0 \neq p \neq m$, a prime element. Then
(i) p is not principal.
(ii) $(z:(z: p))=p$ for each nonzero principal element $z \leqslant p$.
(iii) If L is also pseudo-Dedekind, then $\operatorname{Spec}(L)=\{0, m\}$.

Proof. As $p \neq m$, there exists a principal element $p<y \leqslant m$.
(i) As y is principal, we get $p=y(p: y)=y p$ because p is a prime so $p=(p: y)$. Hence, p is not cancellative, so it is not principal.
(ii) Let $z \leqslant p$ be a nonzero principal element. Note that $(z:(z: p)) \neq 1$, otherwise $z y=(z: p) y \geqslant(z: y) y=z$, so $z y=z$, a contradiction because z is cancellative. Since $p \leqslant(z:(z: p))$, it suffices to show that $x \nless(z:(z: p))$ for each principal $x \nless p$. As p is prime, we have $z \leqslant p<x^{2}$. If $x \leqslant(z:(z: p))$, then $x(z: p) \leqslant z$, so $z=x^{2}\left(z: x^{2}\right) \leqslant x^{2}(z: p) \leqslant z x$, hence $z=z x$, thus $x=1$, a contradiction.

Theorem 16. For a totally ordered lattice $L \neq\{0,1\}$, the following are equivalent:
(i) L is sharp.
(ii) L is pseudo-Dedekind.
(iii) L is isomorphic to \mathbb{Z}_{-}or \mathbb{R}_{1} of Example 14.

Proof. (i) \Rightarrow (ii) follows from Proposition 10 .
(ii) \Rightarrow (iii) Let m be the maximal element of L. Let G be the monoid of nonzero principal elements of L. Then G is a cancellative totally ordered monoid with respect to the opposite of the order induced from L. Let $a, b \in G$. Since L is totally ordered, we get that a divides b or b divides a. Moreover, since $\operatorname{Spec}(L)=\{0, m\}$ (see Lemma 15), a divides some power of b. By [5], Proposition 2.1.1, the quotient group of G can be embedded as an ordered subgroup K of $(\mathbb{R},+)$; hence K is cyclic or dense in \mathbb{R}. If K is cyclic, it follows easily that L is isomorphic to \mathbb{Z}_{-} of Example 14. Suppose that K is dense in \mathbb{R}, so there exists an ordered monoid embedding $v: G \rightarrow \mathbb{R}_{\geqslant 0}$ with dense image. We claim that v is onto. Deny, so there exists a positive real $g \notin v(G)$. Let $a \in G$ with $v(a)>g$ and set $b:=$ $\bigvee\{x \in G: v(x) \geqslant g\}$. Since L is pseudo-Dedekind, it follows that $c=(a: b)$ is a principal element. On the other hand, a straightforward computation shows that

$$
\begin{equation*}
c=\bigvee\{x \in G: v(x) \geqslant v(a)-g\}, \tag{3.1}
\end{equation*}
$$

so $v(c) \geqslant v(a)-g$, in fact $v(c)>v(a)-g$ because $g \notin v(G)$. As K is dense in \mathbb{R}, there exists $d \in G$ with $v(c)>v(d)>v(a)-g$, so $c<d$. On the other hand, formula (1) gives $d \leqslant c$, a contradiction. It remains that $v(G)=\mathbb{R}_{\geqslant 0}$. Now it is easy to see that sending $[r, \infty]$ into $v^{-1}(r)$ and $(r, \infty]$ into $\bigvee\{x \in G: v(x) \geqslant r\}$ we get a lattice isomorphism from \mathbb{R}_{1} to L.
(iii) \Rightarrow (i) follows from Example 14.

We prove the main result of this paper.

Theorem 17. Let $L \neq\{0,1\}$ be a sharp lattice. Then L_{m} is isomorphic to \mathbb{Z}_{-} or \mathbb{R}_{1} (see Example 14) for every $m \in \operatorname{Max}(L)$ and L is a one-dimensional Prüfer lattice.

Proof. As L is a Prüfer lattice (see Proposition 13), we may change L by L_{m} and thus assume that L is totally ordered and sharp (see Lemma 7). Apply Theorem 16 and Lemma 15 to complete.

We extend the concepts of "finite character" and " h-local" from integral domains to lattices.

Definition 18. Let L be a lattice.
(i) L has finite character if every nonzero element is below only finitely many maximal elements.
(ii) L is h-local if it has finite character and every nonzero prime element is below a unique maximal element.

The next result extends [10], Lemma 3.8 to lattices.

Proposition 19. Let L be an h-local lattice. If $a, b \in L-\{0\}$ and $m \in \operatorname{Max}(L)$, then $(a: b)_{m}=\left(a_{m}: b_{m}\right)$.

Proof. We first prove two claims.
Claim 1: If $n \in \operatorname{Max}(L)-\{m\}$, then $a_{n} \nless m$.
Suppose that $a_{n} \leqslant m$. Let S be the set of all products $b c$, where $b, c \in L$ are compact elements with $b \nless m$ and $c \nless n$. Note that S is multiplicatively closed. Moreover, a is not above any member of S. Indeed, if $b c \leqslant a$ and $c \nless n$, then $b \leqslant a_{n} \leqslant m$. By [2], Theorem 2.2 and its proof, there exits a prime element $p \geqslant a$ such that p is not above any member of S. It follows that $p \leqslant m \wedge n$, which is a contradiction because L is h-local. Indeed, if $p \nless m$, then $b \nless m$ for a compact $b \leqslant p$, so $b=b \cdot 1 \in S$. Thus, Claim 1 is proved.

Claim 2: The element $s:=\bigwedge\left\{a_{n}: n \in \operatorname{Max}(L), n \neq m\right\}$ is not below m.
Indeed, as L is h-local, a is below only finitely many maximal elements n_{1}, \ldots, n_{k} distinct from m, hence $s=a_{n_{1}} \wedge \ldots \wedge a_{n_{k}}$. By Claim $1, s$ is not below m, thus Claim 2 is proved. To complete the proof, we use element s in Claim 2 as follows. We have

$$
s b\left(a_{m}: b_{m}\right) \leqslant \bigwedge\left\{a_{q}: q \in \operatorname{Max}(L)\right\}=a
$$

so $s\left(a_{m}: b_{m}\right) \leqslant(a: b)$, hence $\left(a_{m}: b_{m}\right) \leqslant(a: b)_{m}$ because $s \nless m$. Since clearly $(a: b)_{m} \leqslant\left(a_{m}: b_{m}\right)$, we get the result.

Theorem 20. For a finite character lattice $L \neq\{0,1\}$, the following statements are equivalent:
(i) L is sharp.
(ii) L_{m} is isomorphic to \mathbb{Z}_{-}or \mathbb{R}_{1} (see Example 14) for every $m \in \operatorname{Max}(L)$.

Proof. (i) \Rightarrow (ii) is covered by Theorem 17 .
(ii) \Rightarrow (i) From (ii) we derive that L has Krull dimension one, so L is h-local. Let $a, b \in L-\{0\}$. It suffices to check locally the equality $a=(a:(a: b))(a: b)$. But this follows from Theorem 16 and Proposition 19.

Say that elements a, b of a lattice L are comaximal if $a \vee b=1$. The following result is [4], Lemma 4.

Lemma 21. Let L be a lattice and $z \in L$ a compact element which is below infinitely many maximal elements. There exists an infinite set $\left\{a_{n}: n \geqslant 1\right\}$ of pairwise comaximal proper compact elements such that $z \leqslant a_{n}$ for each n.

Proposition 22. Any countable pseudo-Dedekind Prüfer lattice L has finite character.

Proof. Suppose on the contrary there exists a nonzero element $z \in L$ which is below infinitely many maximal elements. Since L is principally generated, we may assume that z is principal. By Lemma 21, there exists an infinite set $\left(a_{n}\right)_{n \geqslant 1}$ of proper pairwise comaximal compact elements above z. As L is Prüfer, each a_{n} is principal. Since L is countable, we get $\tau:=\bigwedge_{n \in A} a_{n}=\bigwedge_{n \in B} a_{n}$ for two nonempty subsets $B \nsubseteq A$ of \mathbb{N}. Pick $k \in B-A$, so $a_{k} \geqslant \tau$. Since every a_{n} is above z, we get $z=a_{n} b_{n}$ for a nonzero principal element $b_{n} \in L$ and $\left(z: b_{n}\right)=a_{n}$. We have

$$
\tau=\bigwedge_{n \in A} a_{n}=\bigwedge_{n \in A}\left(z: b_{n}\right)=\left(z: \bigvee_{n \in A} b_{n}\right)
$$

so τ is a principal element because L is pseudo-Dedekind. From $a_{k} \geqslant \tau$ we get $\tau=a_{k} c$ for a nonzero principal element $c \in L$. Hence,

$$
c \leqslant\left(\tau: a_{k}\right)=\bigwedge_{n \in A}\left(a_{n}: a_{k}\right)=\bigwedge_{n \in A} a_{n}=\tau=a_{k} c
$$

because $a_{n} \vee a_{k}=1$ for each $n \in A$. From $a_{k} c=c$, we get $a_{k}=1$, which is a contradiction.

A lattice L is a Dedekind lattice if every element of L is principal.

Corollary 23. A countable sharp lattice L is a Dedekind lattice.
Proof. Let $m \in \operatorname{Max}(L)$. As L_{m} is countable, Theorem 17 implies that L_{m} is isomorphic to \mathbb{Z}_{-}, so each element of L_{m} is principal. By Proposition $22, L$ has finite character. It follows easily that every element of L is compact and locally principal, hence principal.

Our concluding remark is in the spirit of [11], Remark 4.7.
Remark 24. Let L be a Prüfer lattice. Then L is modular because it is locally totally ordered. By [2], Theorem 3.4, L is isomorphic to the lattice of ideals of some Prüfer integral domain. In particular, it follows that a sharp lattice is isomorphic to the lattice of ideals of some sharp integral domain.

Acknowledgement. We thank the referee whose suggestions improved the quality of this paper.

References

[1] Z. Ahmad, T. Dumitrescu, M. Epure: A Schreier domain type condition. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55 (2012), 241-247.
zbl MR
[2] D. D. Anderson: Abstract commutative ideal theory without chain condition. Algebra Univers. 6 (1976), 131-145.
zbl MR doi
[3] D. D. Anderson, C. Jayaram: Principal element lattices. Czech. Math. J. 46 (1996), 99-109.
[4] T. Dumitrescu: A Bazzoni-type theorem for multiplicative lattices. Advances in Rings, Modules and Factorizations. Springer Proceedings in Mathematics \& Statistics 321. Springer, Cham, 2020.
zbl MR doi
] A. J. Engler, A. Prestel: Valued Fields. Springer Monographs in Mathematics. Springer, Berlin, 2005.
zbl doi
] R. Gilmer: Multiplicative Ideal Theory. Pure and Applied Mathematics 12. Marcel Dekker, New York, 1972.
zbl MR doi
[7] F. Halter-Koch: Ideal Systems: An Introduction to Multiplicative Ideal Theory. Pure and Applied Mathematics, Marcel Dekker 211. Marcel Dekker, New York, 1998.
zbl MR
[8] C. Y. Jung, W. Khalid, W. Nazeer, T. Tariq, S. M. Kang: On an extension of sharp domains. Int. J. Pure Appl. Math. 115 (2017), 353-360.
zbl MR doi
[9] M. D. Larsen, P. J. McCarthy: Multiplicative Theory of Ideals. Pure and Applied Mathematics 43. Academic Press, New York, 1971.
zbl MR
[10] B. Olberding: Globalizing local properties of Prüfer domains. J. Algebra 205 (1998), 480-504.
[11] B. Olberding, A. Reinhart: Radical factorization in commutative rings, monoids and multiplicative lattices. Algebra Univers. 80 (2019), Article ID 24, 29 pages.

Authors' addresses: Tiberiu Dumitrescu, Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei Str., Bucharest, RO 010014, Romania, e-mail: tiberiu_dumitrescu2003@yahoo.com, tiberiu@fmi.unibuc.ro; Mihai Epure (corresponding author), Simion Stoilow Institute of Mathematics of the Romanian Academy Research, Unit 5, P.O. Box 1-764, RO-014700 Bucharest, Romania, e-mail: epuremihai@ yahoo.com, mihai.epure@imar.ro.

