A CLASS OF MULTIPLICATIVE LATTICES

TIBERIU DUMITRESCU, MIHAI EPURE, Bucharest

Received January 28, 2020. Published online March 15, 2021.

Abstract. We study the multiplicative lattices L which satisfy the condition a = (a : (a : b))(a : b) for all $a, b \in L$. Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group \mathbb{Z} or \mathbb{R} . A sharp lattice L localized at its maximal elements are totally ordered sharp lattices. The converse is true if L has finite character.

Keywords: multiplicative lattice; Prüfer lattice; Prüfer integral domain

MSC 2020: 06F99, 13F05, 13A15

1. INTRODUCTION

We recall some standard terminology. A multiplicative lattice is a complete lattice (L, \leq) (with bottom element 0 and top element 1) which is also a commutative monoid with identity 1 (the top element) such that

$$a\left(\bigvee_{\alpha} b_{\alpha}\right) = \bigvee_{\alpha} (ab_{\alpha}) \quad \text{for each } a, b_{\alpha} \in L.$$

When $x \leq y$ $(x, y \in L)$, we say that x is below y or that y is above x. An element x of L is cancellative if xy = xz $(y, z \in L)$ implies y = z. For $x, y \in L$, (y : x) denotes the element $\bigvee \{a \in L; ax \leq y\}$; so $(y : x)x \leq y$.

An element c of L is compact if $c \leq \bigvee S$, with $S \subseteq L$, implies $c \leq \bigvee T$ for some finite subset T of S (here $\bigvee W$ denotes the join of all elements in W). An element in L is proper if $x \neq 1$. When 1 is compact, every proper element is below some maximal element (i.e., maximal in $L - \{1\}$). Let $\operatorname{Max}(L)$ denote the set of maximal elements of L. By "(L, m) is local", we mean that $\operatorname{Max}(L) = \{m\}$. A proper element p is prime if $xy \leq p$ (with $x, y \in L$) implies $x \leq p$ or $y \leq p$. Every maximal element is

DOI: 10.21136/CMJ.2021.0034-20

591

prime, L is a (*lattice*) domain if 0 is a prime element. An element x is meet-principal (or weak meet-principal) if

$$y \wedge zx = ((y:x) \wedge z)x \quad \forall y, z \in L \quad (\text{or } (y:x)x = x \wedge y \; \forall y \in L).$$

An element x is *join-principal* (or *weak join-principal*) if

$$y \lor (z:x) = ((yx \lor z):x) \quad \forall y, z \in L \quad (\text{or } (xy:x) = y \lor (0:x) \; \forall x \in L).$$

And x is principal if it is both meet-principal and join-principal. If x and y are principal elements, then so is xy. The converse is also true if L is a lattice domain and $xy \neq 0$. In a lattice domain, every nonzero principal element is cancellative. The lattice L is principally generated if every element is a join of principal elements. Moreover, L is a C-lattice if 1 is compact, the set of compact elements is closed under multiplication and every element is a join of compact elements. In a C-lattice, every principal element is compact.

The C-lattices have a well behaved localization theory. Let L be a C-lattice and L^* the set of its compact elements. For $p \in L$ a prime element and $x \in L$, the *localization* of x at p is

$$x_p = \bigvee \{a \in L^*; as \leq x \text{ for some } s \in L^* \text{ with } s \leq p \}.$$

Then $L_p := \{x_p; x \in L\}$ is again a lattice with multiplication $(x, y) \mapsto (xy)_p$, join $\{(b_\alpha)\} \mapsto (\bigvee b_\alpha)_p$ and meet $\{(b_\alpha)\} \mapsto (\bigwedge b_\alpha)_p$. For $x, y \in L$, we have:

 $\triangleright x \leq x_p, (x_p)_p = x_p, (x \wedge y)_p = x_p \wedge y_p$, and $x_p = 1$ if and only if $x \leq p$.

 $\triangleright x = y$ if and only if $x_m = y_m$ for each $m \in Max(L)$.

- $\triangleright (y:x)_p \leq (y_p:x_p)$ with equality if x is compact.
- ▷ The set of compact elements of L_p is $\{c_p: c \in L^*\}$.
- ▷ A compact element x is principal if and only if x_m is principal for each $m \in Max(L)$.

In [1] a study of sharp integral domains was done. An integral domain D is a sharp domain if whenever $A_1A_2 \subseteq B$ with A_1, A_2, B ideals of D, we have a factorization $B = B_1B_2$ with $B_i \supseteq A_i$ ideals of D, i = 1, 2. Moreover, sharp domains and some of their generalizations have been investigated by various authors, see also [8]. In the present paper we extend almost all results in [1] to the setup of multiplicative lattices. Our key definition is the following.

Definition 1. A lattice *L* is a *sharp lattice* if whenever $a_1a_2 \leq b$ with $a_1, a_2, b \in L$, we have a factorization $b = b_1b_2$ with $a_i \leq b_i \in L$, i = 1, 2.

In Section 2 we work in the setup of C-lattices (simply called lattices). After obtaining some basic facts (see Propositions 2 and 3), we show that if (L, m) is a local sharp lattice and $m = x_1 \vee \ldots \vee x_n$ with x_1, \ldots, x_n join principal elements, then $m = x_i$ for some *i*, see Theorem 6. While a lattice whose elements are principal is trivially a sharp lattice (see Remark 5), the converse is true in a principally generated lattice whose elements are compact, see Corollary 8.

In Section 3, we work in the setup of C-lattice domains generated by principal elements (simply called lattices). It turns out that every nontrivial totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group \mathbb{Z} or \mathbb{R} , see Theorem 16. A nontrivial sharp lattice L is Prüfer (i.e., its compacts are principal) of dimension one (see Theorem 17), thus, the localizations at its maximal elements are totally ordered sharp lattices. The converse is true if L has finite character (see Definition 18) because in this case $(a:b)_m = (a_m:b_m)$ for all $a, b \in L - \{0\}$ and $m \in Max(L)$, see Proposition 19. A countable sharp lattice has all its elements principal, see Corollary 23.

For basic facts or terminology, our reference papers are [2] and [11].

2. Basic results

In this section, the term *lattice* means a C-lattice.

We begin by giving several characterizations for the sharp lattices. As usual, we say that a divides b (denoted $a \mid b$) if b = ac for some $c \in L$.

Proposition 2. For a lattice *L* the following statements are equivalent:

- (i) L is sharp.
- (ii) a = (a : (a : b))(a : b) for all $a, b \in L$.
- (iii) $(a:b) \mid a \text{ for all } a, b \in L.$
- (iv) $(a:b) \mid a$ whenever $a, b \in L, 0 < a < b < 1$ and a is not a prime.

Proof. (i) \Rightarrow (iii) Since $(a : (a : b))(a : b) \leq a$, and L is sharp, we have a factorization $a = a_1 a_2$ with $a_1 \geq (a : (a : b))$ and $a_2 \geq (a : b)$. We get

$$a_2 \leqslant (a:a_1) \leqslant (a:(a:(a:b))) = (a:b) \leqslant a_2,$$

where the equality is easy to check, so $(a:b) = a_2$ divides a.

(iii) \Rightarrow (ii) From a = x(a:b) with $x \in L$, we get $x \leq (a:(a:b))$, so

$$a = x(a:b) \leqslant (a:(a:b))(a:b) \leqslant a$$

(ii) \Rightarrow (i) Let $a_1, a_2, b \in L$ with $b \ge a_1 a_2$. By (ii) we get $b = (b : (b : a_1))(b : a_1)$ and clearly $a_1 \le (b : (b : a_1))$ and $a_2 \le (b : a_1)$. (iv) \Leftrightarrow (iii) Follows from observing that:

(1) $(a:b) = (a:(a \lor b))$ and (2) $(a:b) \in \{a,1\}$ if a is a prime.

Proposition 3. If L is a sharp lattice and $m \in L$ a maximal element, there is no element properly between m and m^2 .

Proof. If $m^2 < x < m$, then (x : m) = m, so (x : (x : m)) = m, thus $x = (x : m)(x : (x : m)) = m^2$, a contradiction, see Proposition 2.

Recall that a ring R is a special primary ring if R has a unique maximal ideal M and if each proper ideal of R is a power of M, see [9], page 206.

Corollary 4. The ideal lattice of a Noetherian commutative unitary ring R is sharp if and only if R is a finite direct product of Dedekind domains and special primary rings.

Proof. Combine Propositions 2 and 3 and [6], Theorem 39.2, Proposition 39.4.

Remark 5. Let L be a lattice.

- (i) If all elements of L are weak meet principal, then L is sharp (see Proposition 2). In particular, this happens when $a \wedge b = ab$ for all $a, b \in L$.
- (ii) If L is sharp, then every $p \in L \{1\}$ whose only divisors are p and 1 is a prime element because (p:b) = p or 1 for all $b \in L$ (see Proposition 2). The converse is not true. Indeed, let L be the lattice 0 < a < b < c < 1 with $a^2 = b^2 = ab = 0$, $ac = a, bc = b, c^2 = c$. Here every $x \in L \{c, 1\}$ has nontrivial factors, while the lattice is not sharp because (a:b) = b does not divide a.
- (iii) A finite lattice $0 < a_1 < \ldots < a_n < 1$, $n \ge 2$, is sharp provided $a_{i+1}^2 \ge a_i$ for $1 \le i \le n-1$. By Proposition 2 (iv), it suffices to show that whenever $(a_i : a_j) = a_k$ with $1 \le i < j, k \le n$, it follows that a_k divides a_i . Indeed, from $(a_i : a_j) = a_k$ we get $a_j a_k \le a_i \le a_{i+1}^2 \le a_j a_k$, so $a_i = a_j a_k$.
- (iv) Using similar arguments, it can be shown that a lattice whose poset is 0 < a < b < c < 1 is sharp if and only if $c^2 \ge b$ and either $b^2 \ge a$ or $(b^2 = 0$ and bc = a). In this case, a computer search finds 13 sharp lattices out of 22 lattices.

We give the main result of this section.

Theorem 6. Let L be a sharp lattice.

- (i) If $x, y \in L$ are join principal elements and $(x : y) \lor (y : x) = x \lor y$, then $x \lor y = 1$.
- (ii) If (L, m) is local and $m = x_1 \vee \ldots \vee x_n$ with x_1, \ldots, x_n join principal elements, then $m = x_i$ for some *i*.

Proof. (i) Since L is sharp and $(x \lor y)^2 \leq x^2 \lor y$, we can factorize $x^2 \lor y = ab$ with $x \lor y \leq a \land b$. Since x is join principal and $(y : x) \leq x \lor y$, we get

$$x \lor y \leqslant a \leqslant (x^2 \lor y) : b \leqslant (x^2 \lor y) : (x \lor y) = (x^2 \lor y) : x = x \lor (y : x) = x \lor y.$$

Thus $a = x \lor y = b$, as a and b play symmetric roles. So $x^2 \lor y = ab = (x \lor y)^2$. As y is join principal and $(x^2 : y) \leq (x : y) \leq x \lor y$, we finally get

$$1 = ((x^2 \lor xy \lor y^2) : y) = (x^2 : y) \lor x \lor y = x \lor y.$$

(ii) Suppose that $n \ge 2$ and no x_i can be deleted from the given representation $m = x_1 \lor \ldots \lor x_n$. It is straightforward to show that a factor lattice of a sharp lattice is again sharp. Modding out by $x_3 \lor \ldots \lor x_n$, we may assume that n = 2. As $(x_1 : x_2) \lor (x_2 : x_1) \le m = x_1 \lor x_2$, we get a contradiction from (i).

Before giving an application of Theorem 6, we insert a simple lemma.

Lemma 7. Let L be a sharp lattice and $p \in L$ a prime element. If L is sharp, then so is L_p .

Proof. Let $a_1, a_2, b \in L$ with $(a_1a_2)_p \leq b_p$. As L is sharp, we have $b_p = c_1c_2$ for some $a_i \leq c_i \in L$ (i = 1, 2), so $b_p = (c_1c_2)_p$ and $(a_i)_p \leq (c_i)_p$.

Following [3], we say that a lattice L is weak Noetherian if it is principally generated and each $x \in L$ is compact.

Corollary 8. Let L be a weak Noetherian lattice. Then L is sharp if and only if its elements are principal.

Proof. The "only if part" is covered by Remark 5 (i). For the converse, pick an arbitrary maximal element $m \in L$. It suffices to prove that m is principal, see [3], Theorem 1.1. As m is compact, we can check this property locally (see [3], Lemma 1.1), so we may assume that L is local (see Lemma 7). Apply Theorem 6 (ii) to complete the proof.

3. Sharp lattice domains

In this section, the term *lattice* means a C-lattice domain generated by principal elements.

First we introduce an ad-hoc definition.

Definition 9. A lattice L is a *pseudo-Dedekind lattice* if (x : a) is a principal element whenever $x, a \in L$ and x is principal.

Proposition 10. Every sharp lattice is pseudo-Dedekind.

Proof. The assertion follows from Proposition 2 because a factor of a nonzero principal element is principal [3], Lemma 2.3. $\hfill \Box$

Example 11. There exist pseudo-Dedekind lattices which are not sharp. For instance, let M be the (distributive) lattice of all ideals of the multiplicative monoid $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, see [2], page 138. Every $a \in M$ has the form $a = \bigcup \{y\mathbb{N}_0 | y \in S\}$ for some $S \subseteq \mathbb{N}_0$. If $x \in \mathbb{N}_0$, then $(x\mathbb{N}_0 : a) = \bigcap \{(x\mathbb{N}_0 : y\mathbb{N}_0) : y \in S\} = z\mathbb{N}_0$ (for some $z \in \mathbb{N}_0$) is a principal element. So M is a pseudo-Dedekind lattice. But M is not sharp because for $a = 4\mathbb{N}_0 \cup 9\mathbb{N}_0$ and $b = 2\mathbb{N}_0 \cup 3\mathbb{N}_0$, we get $(a : b) = b^2$ and (a : (a : b)) = b, so $(a : b)(a : (a : b)) = b^3 \neq a$. See also [1], Example 8 for a ring-theoretic example of this kind.

A lattice L is a *Prüfer lattice* if every nonzero compact element of L is principal. It is well known (see [2], Theorem 3.4) that L is a Prüfer lattice if and only if L_m is totally ordered for each maximal element m.

Indeed, the "if part" follows from the fact that a locally principal nonzero compact element is principal. For the converse, we may assume that L is a Prüfer local lattice. Let a, b be principal nonzero elements of L. Then $a \vee b = c$ is compact, hence principal. We get $c = (a : c)c \vee (b : c)c = ((a : c) \vee (b : c))c$, so $1 = (a : c) \vee (b : c)$ since c is cancellative. As L is local, one of the terms, say (a : c), equals 1, hence $b \leq c \leq a$. So every two principal elements are comparable, thus, L is totally ordered. We show that a sharp lattice is Prüfer.

Remark 12. If *L* is a pseudo-Dedekind lattice, then the set *P* of all principal elements of *L* is a cancellative GCD monoid in the sense of [7], Section 10.2. Indeed, the LCM of two elements $x, y \in P$ is $x \land y = y(x : y)$.

Proposition 13. Every sharp lattice is Prüfer.

Proof. As L is principally generated, it suffices to show that $a \lor b$ is a principal element for each pair of nonzero principal elements $a, b \in L$. Dividing a, b by their GCD (see Remark 12), we may assume that (a : b) = a and (b : a) = b. Then $a \lor b = 1$ (see Theorem 6).

Example 14. Let \mathbb{Z}_{-} denote the set of all integers ≤ 0 together with the symbol $-\infty$. Then \mathbb{Z}_{-} is a lattice under the usual addition and order. Note that \mathbb{Z}_{-} is isomorphic to the ideal lattice of a discrete valuation domain, so \mathbb{Z}_{-} is sharp.

Let \mathbb{R}_1 denote the set of all intervals $(r, \infty]$ and $[r, \infty]$ for $r \in \mathbb{R}_{\geq 0}$ together with $\{\infty\}$. Then \mathbb{R}_1 is a lattice under the usual interval addition and inclusion. To show that \mathbb{R}_1 is sharp, it suffices to check that a = (a : (a : b))(a : b) for all $a, b \in \mathbb{R}_1 - \{\{\infty\}\}$ with $a \leq b$, see Proposition 2. This is done in the table below.

a	b	(a:b)	(a:(a:b))
$[r,\infty]$	$[t,\infty]$	$[r-t,\infty]$	$[t,\infty]$
$(r,\infty]$	$(t,\infty]$	$[r-t,\infty]$	$(t,\infty]$
$[r,\infty]$	$(t,\infty]$	$[r-t,\infty]$	$[t,\infty]$
$(r,\infty]$	$[t,\infty]$	$(r-t,\infty]$	$[t,\infty]$

Note that \mathbb{R}_1 is isomorphic to the ideal lattice of a valuation domain with value group \mathbb{R} .

We embark to show that every nontrivial totally ordered sharp lattice is isomorphic to \mathbb{Z}_{-} or \mathbb{R}_{1} above. Although the following lemma is known, we insert a proof for reader's convenience.

Lemma 15. Let $L \neq \{0, 1\}$ be a totally ordered lattice with maximal element m and $p \in L$, $0 \neq p \neq m$, a prime element. Then

- (i) p is not principal.
- (ii) (z:(z:p)) = p for each nonzero principal element $z \leq p$.
- (iii) If L is also pseudo-Dedekind, then $\text{Spec}(L) = \{0, m\}$.

Proof. As $p \neq m$, there exists a principal element $p < y \leq m$.

(i) As y is principal, we get p = y(p : y) = yp because p is a prime so p = (p : y). Hence, p is not cancellative, so it is not principal.

(ii) Let $z \leq p$ be a nonzero principal element. Note that $(z : (z : p)) \neq 1$, otherwise $zy = (z : p)y \geq (z : y)y = z$, so zy = z, a contradiction because z is cancellative. Since $p \leq (z : (z : p))$, it suffices to show that $x \leq (z : (z : p))$ for each principal $x \leq p$. As p is prime, we have $z \leq p < x^2$. If $x \leq (z : (z : p))$, then $x(z : p) \leq z$, so $z = x^2(z : x^2) \leq x^2(z : p) \leq zx$, hence z = zx, thus x = 1, a contradiction.

Theorem 16. For a totally ordered lattice $L \neq \{0, 1\}$, the following are equivalent:

- (i) L is sharp.
- (ii) L is pseudo-Dedekind.
- (iii) L is isomorphic to \mathbb{Z}_{-} or \mathbb{R}_{1} of Example 14.

P r o o f. (i) \Rightarrow (ii) follows from Proposition 10.

(ii) \Rightarrow (iii) Let *m* be the maximal element of *L*. Let *G* be the monoid of nonzero principal elements of *L*. Then *G* is a cancellative totally ordered monoid with respect to the opposite of the order induced from *L*. Let $a, b \in G$. Since *L* is totally ordered, we get that *a* divides *b* or *b* divides *a*. Moreover, since $\text{Spec}(L) = \{0, m\}$ (see Lemma 15), *a* divides some power of *b*. By [5], Proposition 2.1.1, the quotient group of *G* can be embedded as an ordered subgroup *K* of $(\mathbb{R}, +)$; hence *K* is cyclic or dense in \mathbb{R} . If *K* is cyclic, it follows easily that *L* is isomorphic to \mathbb{Z}_{-} of Example 14. Suppose that *K* is dense in \mathbb{R} , so there exists an ordered monoid embedding $v: G \to \mathbb{R}_{\geq 0}$ with dense image. We claim that *v* is onto. Deny, so there exists a positive real $g \notin v(G)$. Let $a \in G$ with v(a) > g and set $b := \bigvee\{x \in G: v(x) \geq g\}$. Since *L* is pseudo-Dedekind, it follows that c = (a : b) is a principal element. On the other hand, a straightforward computation shows that

(3.1)
$$c = \bigvee \{ x \in G \colon v(x) \ge v(a) - g \},$$

so $v(c) \ge v(a) - g$, in fact v(c) > v(a) - g because $g \notin v(G)$. As K is dense in \mathbb{R} , there exists $d \in G$ with v(c) > v(d) > v(a) - g, so c < d. On the other hand, formula (1) gives $d \leqslant c$, a contradiction. It remains that $v(G) = \mathbb{R}_{\ge 0}$. Now it is easy to see that sending $[r, \infty]$ into $v^{-1}(r)$ and $(r, \infty]$ into $\bigvee \{x \in G : v(x) \ge r\}$ we get a lattice isomorphism from \mathbb{R}_1 to L.

(iii) \Rightarrow (i) follows from Example 14.

We prove the main result of this paper.

Theorem 17. Let $L \neq \{0,1\}$ be a sharp lattice. Then L_m is isomorphic to \mathbb{Z}_- or \mathbb{R}_1 (see Example 14) for every $m \in Max(L)$ and L is a one-dimensional Prüfer lattice.

Proof. As L is a Prüfer lattice (see Proposition 13), we may change L by L_m and thus assume that L is totally ordered and sharp (see Lemma 7). Apply Theorem 16 and Lemma 15 to complete.

We extend the concepts of "finite character" and "*h*-local" from integral domains to lattices.

Definition 18. Let L be a lattice.

- (i) L has *finite character* if every nonzero element is below only finitely many maximal elements.
- (ii) L is *h*-local if it has finite character and every nonzero prime element is below a unique maximal element.

The next result extends [10], Lemma 3.8 to lattices.

Proposition 19. Let L be an h-local lattice. If $a, b \in L - \{0\}$ and $m \in Max(L)$, then $(a : b)_m = (a_m : b_m)$.

Proof. We first prove two claims.

Claim 1: If $n \in Max(L) - \{m\}$, then $a_n \notin m$.

Suppose that $a_n \leq m$. Let S be the set of all products bc, where $b, c \in L$ are compact elements with $b \leq m$ and $c \leq n$. Note that S is multiplicatively closed. Moreover, a is not above any member of S. Indeed, if $bc \leq a$ and $c \leq n$, then $b \leq a_n \leq m$. By [2], Theorem 2.2 and its proof, there exits a prime element $p \geq a$ such that p is not above any member of S. It follows that $p \leq m \wedge n$, which is a contradiction because L is h-local. Indeed, if $p \leq m$, then $b \leq m$ for a compact $b \leq p$, so $b = b \cdot 1 \in S$. Thus, Claim 1 is proved.

Claim 2: The element $s := \bigwedge \{a_n : n \in Max(L), n \neq m\}$ is not below m.

Indeed, as L is h-local, a is below only finitely many maximal elements n_1, \ldots, n_k distinct from m, hence $s = a_{n_1} \wedge \ldots \wedge a_{n_k}$. By Claim 1, s is not below m, thus Claim 2 is proved. To complete the proof, we use element s in Claim 2 as follows. We have

$$sb(a_m:b_m) \leqslant \bigwedge \{a_q: q \in \operatorname{Max}(L)\} = a$$

so $s(a_m : b_m) \leq (a : b)$, hence $(a_m : b_m) \leq (a : b)_m$ because $s \leq m$. Since clearly $(a : b)_m \leq (a_m : b_m)$, we get the result.

Theorem 20. For a finite character lattice $L \neq \{0, 1\}$, the following statements are equivalent:

- (i) L is sharp.
- (ii) L_m is isomorphic to \mathbb{Z}_- or \mathbb{R}_1 (see Example 14) for every $m \in Max(L)$.

Proof. (i) \Rightarrow (ii) is covered by Theorem 17.

(ii) \Rightarrow (i) From (ii) we derive that *L* has Krull dimension one, so *L* is *h*-local. Let $a, b \in L - \{0\}$. It suffices to check locally the equality a = (a : (a : b))(a : b). But this follows from Theorem 16 and Proposition 19.

Say that elements a, b of a lattice L are *comaximal* if $a \lor b = 1$. The following result is [4], Lemma 4.

Lemma 21. Let *L* be a lattice and $z \in L$ a compact element which is below infinitely many maximal elements. There exists an infinite set $\{a_n: n \ge 1\}$ of pairwise comaximal proper compact elements such that $z \le a_n$ for each *n*.

Proposition 22. Any countable pseudo-Dedekind Prüfer lattice L has finite character.

Proof. Suppose on the contrary there exists a nonzero element $z \in L$ which is below infinitely many maximal elements. Since L is principally generated, we may assume that z is principal. By Lemma 21, there exists an infinite set $(a_n)_{n \ge 1}$ of proper pairwise comaximal compact elements above z. As L is Prüfer, each a_n is principal. Since L is countable, we get $\tau := \bigwedge_{n \in A} a_n = \bigwedge_{n \in B} a_n$ for two nonempty subsets $B \not\subseteq A$ of \mathbb{N} . Pick $k \in B - A$, so $a_k \ge \tau$. Since every a_n is above z, we get $z = a_n b_n$ for a nonzero principal element $b_n \in L$ and $(z : b_n) = a_n$. We have

$$\tau = \bigwedge_{n \in A} a_n = \bigwedge_{n \in A} (z : b_n) = \Big(z : \bigvee_{n \in A} b_n \Big),$$

so τ is a principal element because L is pseudo-Dedekind. From $a_k \ge \tau$ we get $\tau = a_k c$ for a nonzero principal element $c \in L$. Hence,

$$c \leqslant (\tau:a_k) = \bigwedge_{n \in A} (a_n:a_k) = \bigwedge_{n \in A} a_n = \tau = a_k c$$

because $a_n \vee a_k = 1$ for each $n \in A$. From $a_k c = c$, we get $a_k = 1$, which is a contradiction.

A lattice L is a *Dedekind lattice* if every element of L is principal.

Corollary 23. A countable sharp lattice L is a Dedekind lattice.

Proof. Let $m \in Max(L)$. As L_m is countable, Theorem 17 implies that L_m is isomorphic to \mathbb{Z}_- , so each element of L_m is principal. By Proposition 22, L has finite character. It follows easily that every element of L is compact and locally principal, hence principal.

Our concluding remark is in the spirit of [11], Remark 4.7.

Remark 24. Let L be a Prüfer lattice. Then L is modular because it is locally totally ordered. By [2], Theorem 3.4, L is isomorphic to the lattice of ideals of some Prüfer integral domain. In particular, it follows that a sharp lattice is isomorphic to the lattice of ideals of some sharp integral domain.

Acknowledgement. We thank the referee whose suggestions improved the quality of this paper.

References

[1] Z. Ahmad, T. Dumitrescu, M. Epure: A Schreier domain type condition. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55 (2012), 241-247. zbl MR [2] D. D. Anderson: Abstract commutative ideal theory without chain condition. Algebra Univers. 6 (1976), 131–145. zbl MR doi [3] D. D. Anderson, C. Jayaram: Principal element lattices. Czech. Math. J. 46 (1996). 99 - 109.zbl MR doi [4] T. Dumitrescu: A Bazzoni-type theorem for multiplicative lattices. Advances in Rings, Modules and Factorizations. Springer Proceedings in Mathematics & Statistics 321. Springer, Cham, 2020. zbl doi [5] A. J. Engler, A. Prestel: Valued Fields. Springer Monographs in Mathematics. Springer, Berlin, 2005. zbl MR doi [6] R. Gilmer: Multiplicative Ideal Theory. Pure and Applied Mathematics 12. Marcel Dekker, New York, 1972. zbl MR [7] F. Halter-Koch: Ideal Systems: An Introduction to Multiplicative Ideal Theory. Pure and Applied Mathematics, Marcel Dekker 211. Marcel Dekker, New York, 1998. zbl MR doi [8] C. Y. Jung, W. Khalid, W. Nazeer, T. Tariq, S. M. Kang: On an extension of sharp domains. Int. J. Pure Appl. Math. 115 (2017), 353-360. doi [9] M. D. Larsen, P. J. McCarthy: Multiplicative Theory of Ideals. Pure and Applied Mathematics 43. Academic Press, New York, 1971. zbl MR [10] B. Olberding: Globalizing local properties of Prüfer domains. J. Algebra 205 (1998), 480 - 504. zbl MR doi [11] B. Olberding, A. Reinhart: Radical factorization in commutative rings, monoids and multiplicative lattices. Algebra Univers. 80 (2019), Article ID 24, 29 pages. zbl MR doi

Authors' addresses: Tiberiu Dumitrescu, Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei Str., Bucharest, RO 010014, Romania, e-mail: tiberiu_dumitrescu2003@yahoo.com, tiberiu@fmi.unibuc.ro; Mihai Epure (corresponding author), Simion Stoilow Institute of Mathematics of the Romanian Academy Research, Unit 5, P.O. Box 1-764, RO-014700 Bucharest, Romania, e-mail: epuremihai@ yahoo.com, mihai.epure@imar.ro.