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Abstract. The aim of this paper is to characterize the Lp
−Lq boundedness of two classes

of integral operators from Lp(U , dVα) to Lq(U ,dVβ) in terms of the parameters a, b, c,
p, q and α, β, where U is the Siegel upper half-space. The results in the presented paper
generalize a corresponding result given in C. Liu, Y.Liu, P.Hu, L. Zhou (2019).
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1. Introduction and preliminaries

Let Cn denote the n-dimensional complex Euclidean space, where n is a positive

integer. For z = (z1, . . . , zn) ∈ C
n, the conjugate of z, denoted by z, is defined by

z = (z1, . . . , zn). For z and w = (w1, . . . , wn) ∈ C
n, we use the following notations:

〈z, w〉 := z1w1 + . . .+ znwn and |z| :=
√

〈z, z〉 =

( n
∑

k=1

|zk|
2

)1/2

,

z = (z′, zn), where z′ = (z1, . . . , zn−1) ∈ C
n−1, zn ∈ C

1,

and

̺(z, w) :=
i

2
(wn − zn)− 〈z′, w′〉, ̺(z) := ̺(z, z) = Im zn − |z′|2.

It is obvious that ̺(z, w) = ̺(w, z). The Siegel upper half space in C
n is the set

U := {z ∈ C
n : Im zn > |z′|2} = {z ∈ C

n : ̺(z) > 0}.
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This domain is biholomorphically equivalent to the unit ball of Cn, and its bound-

ary bU := {z ∈ C
n : Im zn = |z′|2} is the standard representation of the Heisenberg

group Hn−1. The Bergman projection P on U is defined by

Pf(z) =
n!

4π
n

∫

U

f(w)

̺(z, w)n+1
dV (w), z ∈ U .

Fix real parameter α and define dVα(z) by

dVα(z) := ̺(z)α dV (z),

where dV is the Lebesgue measure on Cn. As usual, for p > 0, the space Lp(U , dVα)

consists of all Lebesgue measurable functions f on U for which

‖f‖p,α :=

(
∫

U

|f(w)|p dVα(w)

)1/p

< ∞.

The boundedness of the two classes of Bergman type integral operators has been

studied by many authors. In particular, their Lp boundedness is of considerable

interest, see [1], [2], [3], [12]. The properties of several subclasses of biholomorphic

mappings were investigated in [5], [6], [7], [8], [9]. In [11], Zhou obtained the Lp norm

of Ta,b.c by applying the sharp Forelli-Rudin estimates. In [1], Furdui focuses on

the Lp boundedness of Ta,b,c on Fock space. Most recently, Liu et al. in [4] introduced

the following integral operators:

Ta,b,cf(z) := ̺(z)a
∫

U

̺(w)b

̺(z, w)c
f(w) dV (w)

and

Sa,b,cf(z) := ̺(z)a
∫

U

̺(w)b

|̺(z, w)|c
f(w) dV (w),

where a, b and c are real parameters. These operators are modeled on the Bergman

projection Pf(z) = (n!/4π
n)T0,0,n+1f(z). They characterized the L

p boundedness

of Ta,b,c and Sa,b,c as follows.

Theorem A ([4]). Suppose α ∈ R and 1 6 p 6 ∞. Then the following conditions

are equivalent:

(i) The operator T = Ta,b,c is bounded on Lp(U , dVα).

(ii) The operator S = Sa,b,c is bounded on Lp(U , dVα).

(iii) The parameters satisfy the conditions

{

−pa < α+ 1 < p(b+ 1),

c = n+ 1 + a+ b.
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When p = ∞, these conditions should be interpreted as

{

a > 0, b > −1,

c = n+ 1 + a+ b.

Zhao extended the Schur’s test and studied the Lp − Lq boundedness of a class

of integral operators on the unit ball of Cn in [10]. Motivated by the works of Zhao

(see [10]) and Liu et al. (see [4]), our aim is to extend Theorem A to the Lp − Lq

boundedness of integral operators Ta,b,c and Sa,b,c over the Siegel upper half-space U .

We prove the following results.

Theorem 1.1. Suppose 1 < p 6 q < ∞ and −1 < α, β < ∞. If a, b and c are

real numbers, then the following conditions are equivalent:

(i) The operator Ta,b,c is bounded from Lp(U , dVα) to L
q(U , dVβ).

(ii) The operator Sa,b,c is bounded from Lp(U , dVα) to L
q(U , dVβ).

(iii) The parameters satisfy the conditions











−aq < β + 1,

α+ 1 < p(b+ 1),

c = n+ 1 + a+ b+ λ,

where

λ =
n+ 1 + β

q
−

n+ 1 + α

p
.

Theorem 1.2. Suppose 1 = p 6 q < ∞ and −1 < α, β < ∞. If a, b and c

are real numbers such that c > 0 and b > α, then the following conditions are

equivalent:

(i) The operator Ta,b,c is bounded from L1(U , dVα) to L
q(U , dVβ).

(ii) The operator Sa,b,c is bounded from L1(U , dVα) to L
q(U , dVβ).

(iii) The parameters satisfy the condition

{

−aq < β + 1,

c = n+ 1 + a+ b+ λ,

where

λ =
n+ 1 + β

q
− (n+ 1 + α).
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Theorem 1.3. Suppose 1 < p 6 q = ∞. If a, b and c are real numbers such that

a > 0 and b > β, then the following conditions are equivalent:

(i) The operator Ta,b,c is bounded from Lp(U , dVα) to L
∞(U).

(ii) The operator Sa,b,c is bounded from Lp(U , dVα) to L
∞(U).

(iii) The parameters satisfy the conditions







α+ 1

p
< b+ 1,

c = n+ 1 + a+ b+ λ,

where

λ = −
n+ 1 + α

p
.

For the case of 1 = p < q = ∞, we cannot obtain a similar result. We pose

a conjecture as follows.

Conjecture 1.4. Suppose 1 = p < q = ∞. If a, b and c are real numbers such

that b > β, then the following conditions are equivalent:

(i) The operator Ta,b,c is bounded from L1(U , dVα) to L
∞(U).

(ii) The operator Sa,b,c is bounded from L1(U , dVα) to L
∞(U).

(iii) The parameters satisfy the conditions

{

a > 0, b > α,

c = n+ 1 + a+ b+ λ,

where

λ = −n− 1− α.

When a = n + 1, c = 2n + 2, b = 0, we obtain the sufficient conditions for the

boundedness of the Berezin transform from Lp(U , dVα) to L
q(U , dVβ).

Corollary 1.5. Suppose 1 < p 6 q < ∞ and −1 < α, β < ∞. If the parameters

satisfy the conditions














−(n+ 1)q < β + 1,

α+ 1 < p,

n+ 1 + β

q
=

n+ 1 + α

p
,

then Berezin transform

Bf(z) =
n!

4π
n

∫

U

̺(z)n+1

|̺(z, w)|2n+2
f(w) dV (w)

is bounded from Lp(U , dVα) to L
q(U , dVβ).
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Corollary 1.6. Suppose 1 = p 6 q < ∞ and −1 < α, β < ∞. If the parameters

satisfy the conditions














−(n+ 1)q < β + 1,

α < 0,

n+ 1 + β

q
= n+ 1 + α,

then Berezin transform

Bf(z) =
n!

4π
n

∫

U

̺(z)n+1

|̺(z, w)|2n+2
f(w) dV (w)

is bounded from L1(U , dVα) to L
q(U , dVβ).

In order to establish our main results, we recall the following lemmas.

Lemma 1.7 ([4]). Let s, t ∈ R. Then we have

(1.1)

∫

U

̺(w)t

|̺(z, w)|s
dV (w) =







C1(n, s, t)

̺(z)s−t−n−1
if t > −1 and s− t > n+ 1,

∞ otherwise

for all z ∈ U , where

C1(n, s, t) =
4π

nΓ(1 + t)Γ(s− t− n− 1)

Γ2(s/2)
.

Lemma 1.8 ([4]). Suppose that r, s > 0, t > −1 and r + s− t > n+ 1. Then

(1.2)

∫

U

̺(w)t

̺(z, w)r̺(w, u)s
dV (w) =

C2(n, r, s, t)

̺(z, u)r+s−t−n−1

holds for all z, u ∈ U , where

C2(n, r, s, t) =
4π

nΓ(1 + t)Γ(r + s− t− n− 1)

Γ(r)Γ(s)
.

Lemma 1.9 ([10]). Let µ and υ be positive measures on the space X and

let K(x, y) be a nonnegative measurable function on X ×X . Let T be the integral

operator with kernel K, defined as

Tf(x) =

∫

X

f(y)K(x, y) dµ(y).
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Suppose 1 < p 6 q < ∞ and 1/p + 1/p′ = 1. Let γ and δ be two real numbers

such that γ + δ = 1. If there exist positive functions h1 and h2 with two positive

constants C1 and C2 such that

∫

X

h1(y)
p′

K(x, y)γp
′

dµ(y) 6 C1h2(x)
p′

for almost all x ∈ X , and

∫

X

h2(x)
qK(x, y)δq dv(x) 6 C2h1(y)

q

for almost all y ∈ Y , then T is bounded from Lp(X, dµ) into Lq(X, dυ), and the

norm of this operator does not exceed C
1/p′

1 C
1/q
2 .

2. Sufficiency for boundedness of Sa,b,c

In this section we obtain sufficient conditions for the boundedness of the oper-

ator Sa,b,c from Lp(U , dVα) to Lq(U , dVβ). In the next section we shall show that

these conditions are also necessary.

Lemma 2.1. Suppose a, b and c are three real numbers. Let 1 < p 6 q < ∞ and

−1 < α, β < ∞. If the parameters satisfy the conditions











−aq < β + 1,

α+ 1 < p(b+ 1),

c = n+ 1 + a+ b+ λ,

where

λ =
n+ 1 + β

q
−

n+ 1 + α

p
,

then the operator Sa,b,c is bounded from Lp(U , dVα) to L
q(U , dVβ).

P r o o f. Let τ = c− a− b+ α, then it is easy to see that

τ = n+ 1 + α+ λ =
n+ 1 + β

q
+

n+ 1 + α

p′
,

where 1/p+1/p′ = 1. From the last expression we see that τ > 0. Since β+1 > −aq,

we get

−
τ(β + 1)

q
< aτ,
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which is equivalent to

(2.1) −
τ(β + 1)

q
−

a(β + n+ 1)

q
<

a(α+ n+ 1)

p′
.

It is easy to see that α+ 1 < p(b+ 1) is equivalent to

(b− α) +
1 + α

p′
> 0.

Hence

(b− α)τ +
(1 + α)τ

p′
> 0

or

(2.2) −
(α+ 1)τ

p′
−

(b − α)(α+ n+ 1)

p′
<

(b − α)(β + n+ 1)

q
.

By (2.1) and (2.2), we can find two real numbers r and s such that

(2.3) −
τ(β + 1)

q
−

a(β + n+ 1)

q
< rτ + a(r − s) <

a(α+ n+ 1)

p′

and

(2.4) −
(α+ 1)τ

p′
−

(b− α)(α + n+ 1)

p′
< sτ + (b− α)(s− r) <

(b − α)(β + n+ 1)

q
.

Let

(2.5) γ =
(α+ n+ 1)/p′ + (s− r)

τ
, δ =

(β + n+ 1)/q + (r − s)

τ
.

Then

γ + δ =
1

τ

(α+ n+ 1

p′
+

β + n+ 1

q

)

= 1.

Now, (2.3) is equivalent to

−
β + 1

q
−

a

τ

(β + n+ 1

q
+ r − s

)

< r <
a

τ

(α+ n+ 1

p′
+ s− r

)

or

(2.6) −
β + 1

q
− aδ < r < aγ

and (2.4) is equivalent to

−
α+ 1

p′
−

b− α

τ

(α+ n+ 1

p′
+ s− r

)

< s <
b− α

τ

(β + n+ 1

q
+ r − s

)

or

(2.7) −
α+ 1

p′
− (b− α)γ < s < (b− α)δ.
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For z ∈ U , let hr(z) = ̺(z)r and hs(z) = ̺(z)s. Write the operator S as

Sf(z) =

∫

U

f(w)H(z, w) dVα(w),

where

H(z, w) =
̺(w)b−α̺(z)a

|̺(z, w)|c
.

Then we apply Lemma 1.9 using the testing functions hr and hs and the param-

eters γ and δ defined in (2.5). When 1 < p 6 q < ∞, we consider

∫

U

hs(w)
p′

H(z, w)γp
′

dvα(w) = ̺(z)aγp
′

∫

U

̺(w)sp
′+(b−α)γp′+α

|̺(z, w)|cγp′
dV (w).

From the first inequality in (2.7) we know that

sp′ + (b− α)γp′ + α > −1.

Notice that from (2.5) and the fact that c− a− b+ α = τ , we have

(c− a− b+ α)γ = τγ =
α+ n+ 1

p′
+ s− r.

From the above equation, we obtain

cγp′ − (sp′ + (b− α)γp′ + α)− n− 1 = aγp′ − rp′,

and from the second inequality in (2.6) we have

aγp′ − rp′ > 0.

Hence, we can apply Lemma 1.7 to get that

∫

U

hs(w)
p′

H(z, w)γp
′

dvα(w) 6 C3̺(z)
rp′

= C3 hr(z)
p′

for a constant C3 > 0.

Similarly, using the first inequality in (2.6) and the second inequality in (2.7) we

can obtain ∫

U

hr(z)
qH(z, w)sq dvβ(z) 6 C4hs(w)

q

for a constant C4 > 0. Hence, by Lemma 1.9 we know that Sa,b,c is bounded from

Lp(U , dVα) to L
q(U , dVβ). �
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Lemma 2.2. Let 1 = p 6 q < ∞ and −1 < α < b, −1 < β < ∞. If the

parameters satisfy the condition

{

−aq < β + 1,

c = n+ 1 + a+ b+ λ,

where

λ =
n+ 1 + β

q
− (n+ 1 + α),

then the operator Sa,b,c is bounded from L1(U , dVα) to L
q(U , dVβ).

P r o o f. If f ∈ L1(U , dVα), then it is easy to see that

|Sa,b,cf(z)| 6 ̺(z)a
∫

U

̺(w)b

|̺(z, w)|c
|f(w)| dV (w).

We first prove the result for the case q > 1. In this case, we apply Minkowski’s

inequality to get

(
∫

U

|Sa,b,cf(z)|
q dVβ(z)

)1/q

6

(
∫

U

̺(z)aq
(
∫

U

̺(w)b

|̺(z, w)|c
|f(w)| dV (w)

)q

dVβ(z)

)1/q

6

∫

U

(
∫

U

̺(z)aq+β̺(w)bq

|̺(z, w)|cq
|f(w)|q dV (z)

)1/q

dV (w)

=

∫

U

|f(w)|̺(w)b
(
∫

U

̺(z)aq+β

|̺(z, w)|cq
dV (z)

)1/q

dV (w).

Since aq + β > −1 and b > α, simple computation yields that cq − aq − β =

n+1+ q(b−α)> n+1, thus, by Lemma 1.1, there exist a constant C > 0 such that

∫

U

̺(z)aq+β

|̺(z, w)|cq
dV (z) 6

C

̺(w)q(b−α)
.

It follows that

(
∫

U

|Sa,b,cf(z)|
q dVβ(z)

)1/q

6 C1/q

∫

U

|f(w)| dVα(w),

and so the operator Sa,b,c is bounded from L1(U , dVα) to L
q(U , dVβ).

If 1 = p = q and α < b, then for every f ∈ L1(U , dVα) we can apply Fubini’s

theorem to obtain
∫

U

|Sa,b,cf(z)| dVβ(z) 6

∫

U

(

̺(z)a
∫

U

̺(w)b

|̺(z, w)|c
|f(w)| dV (w)

)

dVβ(z)

=

∫

U

̺(w)b|f(w)| dV (w)

∫

U

̺(z)a+β

|̺(z, w)|c
dV (z).
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Since a+ β > −1 and b > α, by Lemma 1.7, it is easy to see that

∫

U

̺(z)a+β

|̺(z, w)|c
dV (z) 6

C′

̺(w)b−α
.

Hence
∫

U

|Sa,b,cf(z)|
q dVβ(z) 6 C′

∫

U

|f(w)| dVα(w),

and so the operator Sa,b,c is bounded from L1(U , dVα) to L
1(U , dVβ). �

Lemma 2.3. Suppose a, b and c are three real numbers such that a > 0. Let

1 < p < q = ∞ and −1 < α, β < ∞. If α+ 1 < p(b+ 1) and c = n+ a+ b+ 1 + λ,

where λ = −(n+ 1 + α)/p, then the operator Sa,b,c is bounded from Lp(U , dVα)

to L∞(U).

P r o o f. Let f ∈ Lp(U , dVα). Then using Hölder’s inequality, we obtain

|Sa,b,cf(z)| 6 ̺(z)a
∫

U

̺(w)b−α

|̺(z, w)|c
|f(w)| dVα(w)

6 ̺(z)a
(
∫

U

|f(w)|p dVα(w)

)1/p(∫

U

̺(w)(b−α)p′

|̺(z, w)|cp′
dVα(w)

)1/p′

,

where 1/p+ 1/p′ = 1.

Notice the fact that c = n+ a+ b+ 1+ λ, λ = −(n+ 1 + α)/p and a > 0, simple

computation leads to

ap′ = cp′ − (b− α)p′ − α− n− 1 > 0.

Since α + 1 < p(b + 1), we see that (b − α)p′ + α > −1. Hence, it follows from

Lemma 1.7 that there exists C > 0 such that

(
∫

U

̺(w)(b−α)p′

|̺(z, w)|cp′
dVα(w)

)1/p′

6 C̺(z)−a,

this implies

sup
z∈U

|Sa,b,cf(z)| 6 C‖f‖p,α.

The proof is complete. �
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3. Necessity for boundedness of Ta,b,c

In this section we obtain necessary conditions for the boundedness of the operator

Ta,b,c from Lp(U , dVα) to L
q(U , dVβ).

Lemma 3.1. Let 1 < p 6 q < ∞ and −1 < α, β < ∞. Suppose that Ta,b,c

is bounded from Lp(U , dVα) to Lq(U , dVβ). Then c > 0, α + 1 < p(b + 1) and

−aq < β + 1.

P r o o f. Let p′ and q′ be the conjugate indices of p and q, respectively. Then

1/p+1/p′ = 1 if 1 < p < ∞, and similarly, 1/q+1/q′ = 1 if 1 < q < ∞. By duality,

the boundedness of T from Lp(U , dVα) to L
q(U , dVβ) implies the boundedness of T

∗

from Lq′(U , dVβ) to L
p′

(U , dVα). It is easy to see that

T ∗
a,b,cf(z) = ̺(z)b−α

∫

U

̺(w)β+a

̺(z, w)c
f(w) dV (w),

where

Lp(U , dVα)
∗ = Lp′

(U , dVα) and Lq(U , dVβ)
∗ = Lq′(U , dVβ).

We first know from [4] that c > 0. Next, for η > 0 we put

fη(z) =
̺(z)t

̺(z, ηi)s
, z ∈ U ,

where s, t are real parameters satisfying conditions























s > 0,

t > max
{

−
β + 1

q′
,−a− β − 1

}

,

s− t > max
{n+ 1 + β

q′
, β + a− c+ n+ 1

}

.

By Lemma 1.7, these conditions guarantee that fη ∈ Lq′(U , dVβ) and

‖fη(z)‖
q′

q′,β = C5η
n+1+β−q′(s−t).

Also, in view of the above condition and that c > 0, we can apply Lemma 1.8 to get

T ∗
a,b,cfη(z) = ̺(z)b−α

∫

U

̺(w)β+a+t

̺(z, w)c̺(w, ηi)s
dV (w) = C6

̺(z)b−α

̺(z, ηi)c+s−β−a−t−n−1
.
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It is easy to see that

‖T ∗
a,b,cfη(z)‖

p′

p′,α = Cp′

6

∫

U

̺(z)(b−α)p′+α

|̺(z, ηi)|p′(c+s−β−a−t−n−1)
dV (z).

Since T ∗
a,b,cfη(z) ∈ Lp′

(U , dVα), by Lemma 1.7 we have

(b− α)p′ + α > −1,

that is,

α+ 1 < p(b+ 1).

Applying the above arguments to T , we conclude that

−1 < β + aq.

�

Lemma 3.2. Let 1 < p 6 q < ∞, c > 0 and −1 < α, β + aq < ∞. Denote

λ =
n+ 1 + β

q
−

n+ 1 + α

p
.

If Ta,b,c is bounded from Lp(U , dVα) to L
q(U , dVβ) and

α+ 1 < p(b+ 1),

then

c = n+ a+ b+ 1 + λ.

P r o o f. For any ξ ∈ U , let

fα(z) =
̺(ξ)n+1+b−(n+1+α)/p

̺(z, ξ)n+1+b
.

By Lemma 1.7 we can easily see that there is a positive constant C7 independent

of ξ such that

‖fα(z)‖p,α 6 C7.

Notice that c > 0 and b > (α+ 1)/p− 1 > −1, by Lemma 1.8 we have

Ta,b,cfα(z) = ̺(z)a̺(ξ)(n+1+b)−(n+1+α)/p

∫

U

̺(w)b

̺(z, w)c̺(w, ξ)n+1+b
dV (w)

= ̺(z)a̺(ξ)(n+1+b)−(n+1+α)/p̺(z, ξ)−c.

Since Ta,b,cfα ∈ Lq(U , dVβ), we know that there is a positive constant C8 such that

‖Ta,b,cfα(z)‖
q
q,β = ̺(ξ)q(n+1+b)−q(n+1+α)/p

∫

U

̺(z)β+aq

|̺(z, ξ)|cq
dV (z) 6 C8.
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Hence
∫

U

̺(z)β+aq

|̺(z, ξ)|cq
dV (z) 6

C8

̺(ξ)q(n+1+b)−q(n+1+α)/p
.

By Lemma 1.7 we have

q(n+ 1 + b)−
q(n+ 1 + α)

p
= cq − (β + aq)− (n+ 1),

that is,

c = n+ a+ b+ 1 + λ.

�

Lemma 3.3. Suppose 1 = p 6 q < ∞ and c > 0, b > α > −1. If Ta,b,c is

bounded from L1(U , dVα) to L
q(U , dVβ), then the parameters satisfy the condition

{

−aq < β + 1,

c = n+ 1 + a+ b+ λ,

where

λ =
n+ 1 + β

q
− (n+ 1 + α).

P r o o f. We first prove the condition −aq < β + 1. In fact, for η > 0, we put

fη(z) =
̺(z)t

̺(z, ηi)s
, z ∈ U ,

where s, t are real parameters satisfying condition






















s > 0,

t > max
{

−
α+ 1

p
,−b− 1

}

,

s− t > max
{n+ 1 + α

p
, n+ 1 + b− c

}

.

By Lemma 1.7 these conditions guarantee that fη ∈ Lp(U , dVα) and

‖fη(z)‖
p
p,α = Cηn+1+α−p(s−t).

Also, in view of the above condition and that c > 0, we can apply Lemma 1.8

to get

Ta,b,cfη(z) = ̺(z)a
∫

U

̺(w)b+t

̺(z, w)c̺(w, ηi)s
dV (w) = C

̺(z)a

̺(z, ηi)c+s−b−t−n−1
.

Since Ta,b,cfη ∈ Lq(U , dVβ), by Lemma 1.7 we have −1 < β + aq or −aq < β + 1.

Now we prove that c = n+ 1 + a+ b+ λ. In fact, for any ξ ∈ U , let

fα(z) =
̺(ξ)b−α

̺(z, ξ)n+1+b
.

487



By Lemma 1.7 we can easily see that there is a positive constant C independent

of ξ such that

‖fα(z)‖1,α 6 C.

Notice that c > 0 and b > α > −1, by Lemma 1.8 we have

Ta,b,cfα(z) = ̺(z)a̺(ξ)b−α

∫

U

̺(w)b

̺(z, w)c̺(w, ξ)n+1+b
dV (w) = ̺(z)a̺(ξ)b−α̺(z, ξ)−c.

Since Ta,b,cfα ∈ Lq(U , dVβ), we know that there is a positive constant C such that

‖Ta,b,cfα(z)‖
q
q,β = ̺(ξ)q(b−α)

∫

U

̺(z)β+aq

|̺(z, ξ)|cq
dV (z) 6 C.

Hence
∫

U

̺(z)β+aq

|̺(z, ξ)|cq
dv(z) 6

C8

̺(ξ)q(b−α)
.

By Lemma 1.7 we have q(b− α) = cq − (β + aq)− (n+ 1), which implies

c = n+ 1 + a+ b + λ

�

Lemma 3.4. Suppose 1 < p < q = ∞ and b > β. If the operator Ta,b,c is bounded

from Lp(U , dVα) to L
∞(U), then the parameters satisfy the conditions

{

α+ 1 < p(b+ 1),

c = n+ 1 + a+ b+ λ,

where

λ = −
n+ 1 + α

p
.

P r o o f. The necessity of condition α+1 < p(b+1) is obtained as in Lemma 3.1.

To see that c = n+ 1+ a+ b+ λ holds, observe that the boundedness of Ta,b,c from

Lp(U , dVα) to L
∞(U) is equivalent to the boundedness of the adjoint T ∗

a,b,c of Ta,b,c

from L1(U , dVβ) to L
p′

(U , dVα).

For any ξ ∈ U ,

fβ(z) =
̺(ξ)b−β

̺(z, ξ)n+1+b
.

Since b > β, using Lemma 1.7, there is a positive constant C independent of ξ

such that

‖fβ(z)‖1,β 6 C.
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Note that α+1 < p(b+1) and b > β imply that c+ b− β− a > 0. By Lemma 1.8

we have

T ∗
a,b,cfβ(z) = ̺(z)b−α̺(ξ)b−β

∫

U

̺(w)β+a

̺(z, w)c̺(w, ξ)n+1+b
dV (w)

= ̺(z)b−α̺(ξ)b−β̺(z, ξ)β+a−b−c.

Since T ∗
a,b,cfβ ∈ Lp′

(U , dVα), we see that there is a positive constant C0 such that

‖T ∗
a,b,cfβ(z)||

p′

p′,α = ̺(ξ)p
′(b−β)

∫

U

̺(z)p
′(b−α)+α

|̺(z, ξ)|(c+b−β−a)p′
dV (z) 6 C0.

Hence
∫

U

̺(z)p
′(b−α)+α

|̺(z, ξ)|(c+b−β−a)p′
dV (z) 6

C0

̺(ξ)p′(b−β)
.

Again by Lemma 1.7, we have

p′(b − β) = p′(c+ b− β − a)− p′(b − α)− α− n− 1,

that is,

c = n+ a+ b+ 1 + λ.

�

4. Completing the proof of Theorems 1.1, 1.2 and 1.3

P r o o f of Theorems 1.1 and 1.2. We now put all the pieces together to prove

the two main theorems.

It is obvious that the boundedness of Sa,b,c from Lp(U , dVα) to Lq(U , dVβ) im-

plies the boundedness of Ta,b,c from Lp(U , dVα) to L
q(U , dVβ). So (ii) implies (i) in

Theorems 1.1 and 1.2.

That (i) implies (iii) in Theorem 1.1 follows from Lemmas 3.1 and 3.2. That (i)

implies (iii) in Theorem 1.2 follows from Lemma 3.3.

It follows from Lemma 2.1 that (iii) implies (ii) in Theorem 1.1; and it follows

from Lemma 2.2 that (iii) implies (ii) in Theorem 1.2. This completes the proof of

Theorems 1.1 and 1.2. �

P r o o f of Theorem 1.3. According to Theorem A, we only need to prove the

case 1 < p < q = ∞.

The test that (ii) implies (i) in Theorem 1.3 is obvious. By Lemma 2.3, we con-

clude that (iii) implies (ii) in Theorem 1.3; and it follows from Lemma 3.4 that (i)

implies (iii) in Theorem 1.3. This completes the proof of Theorem 1.3. �
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