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Abstract. The goal of this article is to associate a p-adic analytic function to the Euler
constants γp(a, F ), study the properties of these functions in the neighborhood of s = 1 and
introduce a p-adic analogue of the infinite sum

∑

n>1
f(n)/n for an algebraic valued, periodic

function f . After this, we prove the theorem of Baker, Birch and Wirsing in this setup
and discuss irrationality results associated to p-adic Euler constants generalising the earlier
known results in this direction. Finally, we define and prove certain properties of p-adic
Euler-Briggs constants analogous to the ones proved by Gun, Saha and Sinha.
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1. Introduction

The Euler’s constant γ is defined as:

γ = lim
x→∞

(∑

n6x

1

n
− log x

)
.

This constant is associated to well known number theoretic functions. For instance,

if we denote ζ(s) as the Reimann Zeta function, then γ is the constant term of the

Laurent series expansion of ζ(s) around s = 1.

Focussing on the p-adic setup, in 1964, Kubota and Leopoldt in [11] introduced the

p-adic analogue of the Zeta function ζp(s) and the Hurwitz zeta function Hp(s, a, F )

whenever p | F . Since γ could also be realised as the derivative of log gamma func-

tion, Morita in [14] introduced a p-adic analogue of the gamma function, and defined

p-adic Euler’s constant γp.

Around the same time, Diamond in [7] defined the p-adic analogue of the log

gamma function different from Morita’s log gamma function, and also defined the
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p-adic analogue of Lehmer constants γp(a, F ), building upon the work of Lehmer

(see [13]) in this context. He however noted that Euler’s constant defined by him is

the same as Morita’s upto a rational factor. Soon, certain constants γp and γp(a, p
m)

were realised as integrals by Koblitz, see [10].

In this article, we restrict ourselves to odd primes p and study the p-adic Eu-

ler constants by associating an analytic function analogous to p-adic Hurwitz zeta

function Hp(s, a, F ). To elaborate further, let N denote the set of natural numbers

and 1a,F : N → {0, 1} be the indicator function of the natural numbers n congruent

to a modF . Given our procedure in the classical setup, we can recover the con-

stant γ(a, F ) via a Dirichlet series associated to 1a,F . We would like to imitate this

process in the p-adic setup. More precisely:

Question 1. Can we realise γp(a, F ) as the constant term of the Laurent expan-

sion of a p-adic “Dirichlet series” associated to the arithmetic function 1a,F around

s = 1?

We now elaborate on the issue pertaining to the above question. We begin with

the construction of the p-adic function Hp(s, a, F ), see [21]. Given the Hurwitz zeta

function

(1) H(s, a, F ) =
∑

n>0

1

(a+ nF )s
, Re s > 1,

one can interpolate it continuously to a p-adic analytic functionHp(s, a, F ) by consid-

ering the meromorphic continuation of H(s, a, F ) to the whole complex plane. When

p | F , p ∤ a, we interpolate at certain negative integers and we have Hp(1−n, a, F ) =

H(1−n, a, F ) whenever n ≡ 0 mod(p−1). In the region {s ∈ Cp : |s|p < p1−1/(p−1)},

we obtain the following expansion for Hp(s, a, F ):

Hp(s, a, F ) =
〈a〉1−s

F (s− 1)

∞∑

j=0

(
1− s

j

)
Bj

(F
a

)j
,

where Bj denotes the jth Bernoulli number,
(
t
j

)
= (t)(t − 1) . . . (t − j + 1)/j !, and

〈a〉t := lim
n→t

〈a〉n. (See Section 2 for the definition of 〈a〉.) As mentioned in Proposi-

tion 3, we have

(2)
d

ds
(s− 1)Hp(s, a, F )

∣∣
s=1

= γp(a, F ).

We can extend the above definition (see [19]), to periodic Dirichlet series in the p-adic

setup as follows: If f is an even periodic function of period F , the p-adic periodic
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Dirichlet series Lp(s, f) is defined by

(3) Lp(s, f) =

Kf∑

a=0,
(a,p)=1

f(a)Hp(s, a,Kf ),

where Kf denotes the least common multiple of F and p. We shall refer to the above

series as the Washington series. This series does not provide a satisfactory answer

to Question 1. The analogy mentioned by Morita in [15] also does not give the

required analytic function. The issue in both places is that the function f is twisted

by the principal character χ0 mod p. This does not affect the properties of the

Dirichlet characters or more generally completely multiplicative functions, but as an

“additive” analogue, we note that we are missing the contribution from the p ‘parts’.

In Section 3, to function 1a,F , we associate a p-adic L series Hp(s, a, F ) when p ∤ F .

This (see Definition 5) is primarily motivated by the definition of γp(a, F ) given by

Diamond. Naturally, we will be working with the definiton of γp given by Diamond.

We prove the distribution formula (see Proposition 2) for Hp(s, a, F ), and with this,

we can unambiguously define an analogue of periodic Dirichlet series Lp(s, f) in this

context. It should be noted here that for any odd periodic function f , we have

Lp(s, f) ≡ 0 and at the same time, there are nonzero periodic even functions f for

which Lp(s, f) ≡ 0. While we are not able to classify all such periodic functions, we

rule out this scenario in the case when p ∤ F . More precisely, we prove the following

theorem in the end of Section 4.

Theorem 1. Let F be a natural number greater than one, co-prime to p and let f

be a nonzero even arithmetic function of period F taking algebraic values. Then we

have Lp(s, f) 6≡ 0.

In Section 5, we give an affirmative answer to Question 1. With the definition

of Lp(s, f), we can talk about its value at s = 1 whenever it exists. The theory now

follows just as in the classical setup owing to the Gauss formula given by Diamond

in the p-adic setup. By appealing to the theorem of Brumer, which is the p-adic

analogue of Baker’s theorem in linear forms of logarithms of algebraic numbers, we

can discuss certain linear independence and irrationality results. We present the

theorem of Baker, Birch and Wirsing (see [2], Theorem 1) in this context.

Theorem 2. Let f be an even periodic arithmetic function of period F taking

algebraic values and satisfying f(a) = 0 whenever 1 < (a, F ) < F . If Lp(s, f) 6≡ 0,

then Lp(1, f) 6= 0.

The above theorem is different from the one mentioned in [18] as we are not

working with (3). With the above theorem, we prove the following:
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Theorem 3. Let F be a positive integer which is not a power of p. Then at most

one of the elements of the set

{γp, γp(a, F ) : 1 6 a 6 F, (a, F ) = 1}

is algebraic.

This theorem was proved by Murty and Saradha in [18] for F being a prime. Our

setting also extends the results of Chatterjee and Gun, see [5].

Finally, we introduce a p-adic analogue of generalised Euler-Briggs constant

γp(Ω, a, F ) for a finite set of primes Ω (not containing p) in Section 6, and prove

the same results mentioned in [8], [9], in the p-adic context. We prove the following

theorem.

Theorem 4. Let Ω be a finite set of primes and let

VQ,N := Q〈γp(Ω, a,m) : 1 6 a < N, 1 6 m 6 N, (a,m) = (m,PΩ) = 1〉.

Then we have dimQ VQ,N ≫Ω N2/ logN as N → ∞.

2. Preliminaries

We state the theorems and remarks required to prove the results. Let N denote

the natural numbers, Z the integers, Q the rationals, and Q the field of algebraic

numbers. For a rational number a whose denominator is co-prime to F , we denote aF

as the representative of a modF in the set {0, . . . , F − 1}. Throughout, we consider

periodic arithmetic functions f : N → Q of period F , i.e. f(n + F ) = f(n) for all

natural numbers n, and we extend the domain to Z by setting f(n+ F ) = f(n) for

all n ∈ Z. We say that an arithmetic function f of period F is even if f(−n) = f(n),

and odd if f(−n) = −f(n) for all integers n. Given any arithmetic function f of

period F , we can decompose it as the odd and even part. We define the odd and

even parts of f , denoted by fo and fe, to be

fo(n) :=
f(n)− f(−n)

2
and fe(n) :=

f(n) + f(−n)

2
.

Since f is of period F , it follows that fo and fe are arithmetic functions of period F .

Note that fo is an odd arithmetic function whereas fe is an even arithmetic function.

Also, an arithmetic function f of period F is said to be of Dirichlet type if it is

supported at the co-prime residue classes (Z/FZ)∗. Such functions can be written

as Q linear combinations of Dirichlet characters of period F . We now mention certain

results in the classical setup.
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2.1. Classical setup. If we denote L(s, f) =
∞∑

n=1
f(n)/ns for Re s > 1, the condi-

tion
F∑

a=1
f(a) = 0 ensures that L(1, f) exists. In fact, we have the following expression

for L(1, f).

(4) L(1, f) =
F∑

a=1

f(a)γ(a, F ) = −
F−1∑

a=1

f̂(a) log(1− e2πia/F ),

where f̂(a) = F−1
F−1∑
b=0

f(b)e−2πiba/F .

Finally, we define the generalised Euler-Briggs constants following Gun, Saha and

Sinha, see [9].

Definition 1. Let Ω be a finite set of primes, F a natural number co-prime to

elements of Ω and a such that 1 6 a 6 F . We define the generalised Euler-Briggs

constants γ(Ω, a, F ) by the following limit:

γ(Ω, a, F ) := lim
x→∞

(
∑

n6x
n≡a modF,
(n,PΩ)=1

1

n
− δΩ

log x

F

)
.

Here they denote

PΩ :=
∏

p∈Ω

p and δΩ :=
∏

p∈Ω

(
1−

1

p

)
.

By convention, PΩ = 1, δΩ = 1 when Ω = ∅.

2.2. The p-adic setup. Let p be an odd prime number, Zp and Qp be the

completion of Z and Q, respectively, under the p-adic metric. Let vp : Q
∗

p → Q be

the valuation map with vp(p) = 1 and |p|p = 1/p. Moreover, let Cp denote the

completion of the algebraic closure Qp of Q under this metric, and Up denote the

units of the integral closure of Zp in Cp. Let us denote

Qp[[X ]] =

{ ∞∑

i>0

aiX
i : ai ∈ Qp

}
, Qp{X} =

{ ∞∑

i>0

aiX
i : ai → 0

}
.

Following Cohen in [6], we define the operator 〈.〉 : Q∗
p → U1, where U1 = {x ∈ Zp :

|x − 1|p 6 1/p}. If we denote µ∞ as the roots of unity in Cp, then we have the

Teichmuller character ω : Z∗
p → µ∞, i.e. ω(x) is the unique (p − 1)st root of unity

such that ω(x) ≡ x mod p.
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Definition 2. The map 〈.〉 : Z∗
p → U1 is defined as

〈x〉 :=
x

ω(x)
.

This map is extended to Q∗
p by setting 〈x〉 := 〈x/pvp(x)〉.

2.2.1. The Iwasawa logarithm. With the analogy in the classical case, we write

logp(1 +X) =
∑

k>1

(−1)k−1X
k

k
.

We note that logp(1 + X) ∈ Qp[[X ]], and moreover, it has a radius of convergence

|p|
1/(p−1)
p . The logp map can be analytically extended to C∗

p satisfying logp p = 0

and

logp(ab) = logp(a) + logp(b) ∀ a, b ∈ C∗
p.

Moreover, we have the following proposition, see [20], page 257.

Proposition 1. Let t ∈ pZp. Then the derivative of

x → (1 + t)x : Zp → Cp

at the origin is logp(1 + t).

In particular, (d/ds)〈d〉s
∣∣
s=0

= logp〈d〉 = logp d.

Remark 1. Note that the derivative mentioned above is the strict differentiation

as defined in [20], page 218, but as mentioned on page 238, for restricted power series

f ∈ Qp{X} one may also take the derivative with respect to X and evaluate it at

a point a ∈ Zp.

2.2.2. The Volkenborn integral.

Definition 3. The Volkenborn integral of a function f ∈ Qp{X} is by definition:

(5)

∫

Zp

f(t) dt = lim
r→∞

1

pr

∑

06n<pr

f(n).

Moreover, if we define

F (x) =

∫

Zp

f(x+ t) dt,
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then we have
d

dx
F (x) =

∫

Zp

∂

∂x
f(x+ t) dt.

We require the Volkenborn Integral mainly for the above property.

2.3. Some transcendental prerequisites in p-adic domain. We mention the

remarkable theorem of Brumer (see [4]) which is the p-adic analogue of Baker’s

theorem of linear forms in logarithms of algebraic numbers.

Theorem 5 (Brumer). Let α1, . . . , αn be the elements of Up which are algebraic

over Q and whose p-adic logarithms are linearly independent over Q. These loga-

rithms are then linearly independent over the algebraic closure Q of Q in Cp.

In fact, the non vanishing of Lp(1, χ) is a consequence of the above theorem. We

require the following corollary by Murty and Saradha (see [18]) which asserts the

transcendence of Q-linear forms of p-adic logarithms of algebraic numbers under

some conditions.

Corollary 1. Let K be a number field. There exists a constant c > 0 depend-

ing on K such that the following holds: Suppose α1, . . . , αm are multiplicatively

independent algebraic numbers in K satisfying |αi − 1|p 6 p−c for 1 6 i 6 m and

β1, . . . , βm ∈ K. The linear form

β1 logp α1 + . . .+ βm logp αm

is either zero or transcendental.

Remark 2. Taking the Iwasawa logarithm, we can remove the condition on c.

Indeed, this is true as we can write

n∑

i=1

βi logp αi =
n∑

i=1

βi

n
logp α

n
i .

Therefore, choosing n such that |αn
i − 1|p < p−c, we can say that

n∑
i=1

βi logp αi is

either zero or transcendental. The existence of n is guaranteed by the following fact:

Let K/Qp be a finite field extension with ring of integers OK and prime ideal p.

Then the quotient group (1 + pOK)/(1 + pmOK) is finite for all natural numbers m,

see [12], page 47. This was also worked out in [5].

2.4. On p-adic Euler constants. We end the preliminaries by defining the p-adic

Euler constants as done by Diamond and stating a few properties.
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Definition 4. Let a, F be integers with vp(a/F ) < 0. We then define

γp(a, F ) = − lim
k→∞

1

Fpk

Fpk−1∑

m=0,
m≡a modF

logp m.

When vp(a) > vp(F ), we write F = pkF ∗ with (p, F ∗) = 1 and set φ = ϕ(F ∗),

where ϕ denotes the Euler Phi function. We define

γp(a, F ) =
pφ

pφ − 1

pφ−1∑

n=0,
vp(a+nF )<φ+k

γp(a+ nF, pφF ).

We state the following results of Diamond which are required for certain compu-

tations in Section 4.

Theorem 6 (Diamond). Let F be a natural number greater than one and r be

a positive integer less than F . We have the following properties.

(1) If d | (r, F ), then Fγp(r, F ) = F/dγp(r/d, F/d)− logp d.

(2) γp(r, F ) = γp(F − r, F ).

(3) If b ∈ Z+, then γp(r, F ) =
b−1∑
n=0

γp(r + nF, bF ).

Theorem 7 (Diamond). Let F > 1 and ζF be a primitive F th root of unity.

Then

Fγp(a, F ) = γp −
F−1∑

r=1

ζ−ar
F logp(1 − ζrF ).

3. On a p-adic analogue of Hurwitz zeta series

For natural integers a, F such that 1 6 a 6 F − 1, p | F , p ∤ a, we rewrite the

p-adic Hurwitz zeta function Hp(s, a, F ) as follows:

Hp(s, a, F ) =
〈a〉1−s

F (s− 1)

∫

Zp

〈
1 +

F

a
t
〉1−s

dt.

The above integral is the same as the infinite series mentioned in the introduction

by [20], pages 173 and 270. We note thatHp(s, a, F ) = Hp(s, F−a, F ) by [20], Propo-

sition 4, page 268. We also have a well known distribution formula for Hp(s, a, F ),

see [6], page 286:

(6) Hp(s, a, F ) =

r−1∑

n=0

Hp(s, a+ nF, Fr),
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where r is a natural number greater than one. When p ∤ F , we observe that the

Volkenborn integral does not exist. In order to define a p-adic analogue for the

Hurwitz zeta function when p ∤ F , we first construct a suitable series in the classical

setup. Let H(s, a, F ) denote the Dirichlet series:

(7) H(s, a, F ) =
∑

n>0

1

(a+ nF )s
, where Re s > 1.

The distribution relation mentioned in (6) is also valid for this Dirichlet series and

therefore we obtain the following equality when r = p:

(8) H(s, a, F )−
1

ps
H(s, ap−1

F , F ) =

p−1∑

n=0,

n6=aF−1
p

H(s, a+ nF, pF ),

where aF denotes the representative of a modF in the set {0, . . . , F − 1}. As we

vary a over the set {ap−i
F }

φ−1
i=0 (φ denotes the order of p in (Z/FZ)∗), we obtain

the following identity:

(9)
(
1−

1

pφs

)
H(s, a, F ) =

φ−1∑

i=0

1

pis

p−1∑

n=0,

ap−i
F+nF 6=0 mod p

H(s, ap−i
F + nF, pF ).

Since we have the p-adic analogues for the Dirichlet series on the right-side, it is

enough to give the corresponding analogue for the Dirichlet polynomial 1/pis. To do

so, we revert back to the p-adic setup. When p | F1 and p ∤ ad, we have

Hp(s, da, dF1) =
〈d〉1−s

d
Hp(s, a, F1).

This shows that 〈d〉1−s/d is the required analogue of the Dirichlet polynomial d−s,

and when d = p, we will have a factor 1/p as 〈p〉1−s = 1. This shall allow us to

‘extend’ the definition of Hp(s, a, F ) when p ∤ F . The same principle was followed

by Diamond (see [7]), while defining the p-adic analogue of Euler constants in Defi-

nition 4. We now define Hp(s, a, F ) for non negative integers a and F with a < F .

Definition 5. We define Hp(s, 0, 1) as

Hp(s, 0, 1) =
p

p− 1

p−1∑

a=1

Hp(s, a, p).

If F > 1, 0 6 a < F with vp(a) < vp(F ). We set

Hp(s, a, F ) =
1

pk
Hp

(
s,

a

pk
,
F

pk

)
if pk‖(a, F ).
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If we further assume that p ∤ F and (a, F ) = 1, we set

Hp(s, a, F ) =
pφ

pφ − 1

∑

n∈N(a,F )

Hp(s, a+ nF, pφF ),

where φ is the order of p modF and

N(a, F ) = {0 6 n < pφ : vp(a+ nF ) < φ}.

Finally, if d = (a, F ) and d > 1, we define

Hp(s, a, F ) =
〈d〉1−s

d
Hp

(
s,

a

d
,
F

d

)
.

Remark 3. We have the following equivalent expressions for Hp(s, a, F ) which

we use frequently for computational reasons.

(1) When p ∤ F , following the same lines as (8) and (9), we have

(10) Hp(s, a, F ) =
pφ

pφ − 1

φ−1∑

i=0

1

pi

p−1∑

n=0

δFi (a, n)Hp(s, ap−i
F + nF, pF ).

(2) For a fixed F co-prime to p, let φ1 be such that p
φ1 ≡ 1 modF . Then we have

Hp(s, a, F ) =
pφ1

pφ1 − 1

∑

n∈N1(a,F )

Hp(s, a+ nF, pφ1F ),

where N1(a, F ) = {0 6 n < pφ1 : vp(a + nF ) < φ1}. The above is true as (9)

holds when we replace φ by φ1.

We start with the proof of the distribution relation for Hp(s, a, F ) providing all

the details. We remark here that any proof of [7], Theorem 14, statement (iv) will

follow through here. The proof purely relies on the distribution formula (6) and

appropriate rearrangements. When p is co-prime to F , we also set

δFi (a, n) :=

{
1 if ap−i

F + nF 6≡ 0 mod p,

0 otherwise.

Proposition 2. LetN be a natural number greater than 1, F be a positive integer

and a be an integer such that 0 6 a 6 F − 1. We have the following distribution

relation:

(11) Hp(s, a, F ) =

N−1∑

n=0

Hp(s, a+ nF,NF ).
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P r o o f. Without loss of generality for F > 1 we can assume that (a, F ) = 1 and

moreover by the surjective group homomorphism Z/MZ → Z/NZ whenever N | M ,

it suffices to do the same when N is a prime. Indeed, if it is true for primes q and r,

then it is true for F = qr as shown below:

Hp(s, a, F ) =

q−1∑

n=0

Hp(s, a+ nF, pF ) =

q−1∑

n=0

r−1∑

m=0

Hp(s, a+ nF +mqF, qrF )

=

qr−1∑

n=0

Hp(s, a+ nF, qrF ).

If p | F , we have the distribution relation as mentioned in (6) for Hp(s, a, F ), so we

need to consider the case when p ∤ F . We have two cases, namely N = p and N 6= p.

Let us denote

F(s) :=

p−1∑

n=0

Hp(s, a+ nF, pF ).

On evaluation of F(s), we obtain

F(s) =

p−1∑

n=0,

n6=−aF−1
p

Hp(s, a+ nF, pF ) +Hp(s, a+−aF−1
pF, pF )

=

p−1∑

n=0,

n6=−aF−1
p

Hp(s, a+ nF, pF ) +
1

p
Hp(s, ap−1

F , F ).

From (10) we have

Hp(s, ap−1
F , F ) =

pφ

pφ − 1

φ−1∑

i=0

1

pi

p−1∑

n=0

δFi+1(a, n)Hp(s, ap−i−1
F + nF, pF ).

Note that when i = φ− 1, we have ap−i−1
F +nF = a+nF . Therefore, substituting

this in the above, we get

F(s) =

p−1∑

n=0,

n6=−aF−1
p

Hp(s, a+ nF, pF ) +
1

pφ − 1

p−1∑

n=0,

n6=−aF−1
p

Hp(s, a+ nF, pF )

+
1

p

(
pφ

pφ − 1

φ−2∑

i=0

1

pi

p−1∑

n=0

δFi+1(a, n)Hp(s, ap−i−1
F + nF, pF )

)
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=
pφ

pφ − 1

(
p−1∑

n=0,

n6=−aF−1
p

Hp(s, a+ nF, pF )

+

φ−2∑

i=0

1

pi+1

p−1∑

n=0

δFi+1(a, n)Hp(s, ap−i−1
F + nF, pF )

)

=
pφ

pφ − 1

(φ−1∑

i=0

1

pi

p−1∑

n=0

δFi (a, n)Hp(s, ap−i−1
F + nF, pF )

)
= Hp(s, a, F ).

We still need to consider the case when N 6= p and N is a prime. Consider the sum

F(s) =

N−1∑

m=0

Hp(s, a+mF,NF ).

If we set φ as the order of the element p modNF , expanding each term as mentioned

in Remark 3, statement (2), we get

(12) F(s) =
pφ

pφ − 1

φ−1∑

i=0

1

pi

N−1∑

m=0

p−1∑

n=0

δNF
i (a+mF, n)Hp((a+mF )p−i

NF+nNF, pNF ).

Consider the set of elements

Si := {(a+mF )p−i
NF + nNF : 0 6 m 6 N − 1, 0 6 n 6 p− 1,

(a+mF )p−i
NF + nNF 6≡ 0 mod p}.

For every fixed i such that 0 6 i 6 φ − 1, we note that the terms in (12) vary over

the elements of Si. We note that Si has N(p − 1) elements, and if y ∈ Si, then

y ≡ ap−i
F modF . Therefore all the elements are the representatives of preimages

of ap−i
F modF in (Z/pZ)∗ × (Z/NFZ). For every j such that 1 6 j 6 p − 1, we

denote by bj,i the unique representative in {0, . . . , pF − 1} such that bj,i ≡ j mod p,

bj,i ≡ ap−i modF . Let us also denote

Tj,i := {bj,i + kpF : 0 6 k 6 N − 1}.

Moreover, by the distribution relation (6) for the set Tj,i, we observe that

∑

c∈Tj,i

Hp(s, c, pNF ) = Hp(s, bj,i, pF ).

Now we have Si =
p−1⋃
j=1

Tj,i. Naturally, the sets Tj,i are disjoint. We also note that

{bj,i}
p−1
j=1 = {αn : αn = ap−i

F + nF with 0 6 n 6 p− 1 and p ∤ αn}.

294



We can therefore write (12) as follows:

F(s) =
pφ

pφ − 1

φ−1∑

i=0

1

pi

p−1∑

n=0

δFi (a, n)Hp(s, ap−i
F + nF, pF ) = Hp(s, a, F ).

We get the last equality from Remark 3, statement (2). The above proof works

verbatim when F = 1, a = 0, thereby proving the proposition. �

4. On the p-adic series Lp(s, f)

Definition 6. Let f : N → Cp be a periodic function of period F . We define

Lp(s, f) :=

F−1∑

a=0

f(a)Hp(s, a, F ).

Remark 4. We make the following remarks.

(1) If f and g are two periodic functions, then Lp(s, f) + Lp(s, g) = Lp(s, f + g).

This is a consequence of Proposition 6.

(2) Since Hp(s, a, F ) = Hp(s, F − a, F ), whenever p | F , p ∤ a for arbitrary positive

numbers b and F , we have Hp(s, b, F ) = Hp(s, F − b, F ). Hence, if f is odd

of period F , then Lp(s, f) ≡ 0. But the map f → Lp(s, f) need not be in-

jective even when the function f is even. Consider the example f : N → Q of

period p such that f(n) = 1 whenever (n, p) = 1 and f(n) = −(p−1) otherwise.

Therefore

Lp(s, f) =
f(0)

p
Hp(s, 0, 1) +

p−1∑

a=1

Hp(s, a, p).

From the definition, we have Lp(s, f) ≡ 0. More generally, the same is true

whenever f is a periodic function of period pk such that f(n) = 1 whenever

(n, p) = 1, f(npk) = −ϕ(pk) and f(n) = 0 otherwise.

(3) Lp(s, χ) is slightly different from the Kubota p-adic L function Lp(s, χ) for

a primitive Dirichlet character χ of conductor k. We have

Lp(s, χ) =

kp∑

a=0,
(a,p)=1

χ(a)Hp(s, a, kp),

where the sum runs over 0 6 a < kp with (a, p) = 1. On the contrary, we have

Lp(s, χ) =

k−1∑

a=0

χ(a)Hp(s, a, k) =

kp−1∑

a=0

χ(a)Hp(s, a, kp)
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=

kp∑

a=0,
(a,p)=1

χ(a)Hp(s, a, kp) +
∑

06a<k

χ(pa)Hp(s, pa, kp)

⇒
(
1−

χ(p)

p

)
Lp(s, χ) = Lp(s, χ).

So upto an “Euler” factor, both the p-adic L functions are equal.

(4) Let f be an even periodic function of period F . The Washington series Lp(s, f)

is the same as Lp(s, fχ0), where χ0 denotes the principal character mod p.

We now prove Theorem 1. The strategy of the proof is to first show that the

functions {Hp(s, a, pF ) : 1 6 a 6 1
2pF, (a, p) = 1} are linearly independent over Q.

To prove this, we transfer the expression to the real setup using analytic continuation.

We then proceed to prove that if f : N → Q is an even arithmetic function of period F

co-prime to p such that
F−1∑

a=0

f(a)Hp(s, a, F ) ≡ 0,

then f ≡ 0. The proof involves a valuation argument.

P r o o f of Theorem 1. Let F be greater than one such that p | F . Suppose there

exists αa ∈ Q such that
F/2∑

a=1,
(a,p)=1

αaHp(s, a, F ) = 0.

Then substituting s = 1 − k, where k runs over the positive integers satisfying

k ≡ 0 mod(p−1), and noting that Hp(1−k, a, F ) = H(1−k, a, F ) for such integers k

(recall here that H(s, a, F ) is the Dirichlet series (7)), we have

(13)

F/2∑

a=1,
(a,p)=1

αaH(1− k, a, F ) = 0.

We now construct an even arithmetic function g of period F as follows:

g(n) =

{
αa if (n, p) = 1 and n ≡ ±a modF,

0 otherwise.

Note that from (13) and using H(1− k, a, F ) = H(1− k, F − a, F ) we obtain

F∑

a=1

g(a)H(1− k, a, F ) = 0 ⇒ L(1− k, g) = 0 whenever k ≡ 0 mod(p− 1).

296



Now, from [17], Lemma 2.1 we have L(k, ĝ) = 0 for positive integers k ≡ 0 mod(p−1)

and consequently ĝ ≡ 0 (see [1], Theorem 11.3). This implies g ≡ 0. Therefore we

have the following:

(14)

F/2∑

a=1,
(a,p)=1

αaHp(s, a, F ) = 0 ⇒ αa = 0 for all a such that 1 6 a 6 F/2, (a, p) = 1.

Now let f be an even algebraic arithmetic function of period F co-prime to p such

that
F−1∑

a=0

f(a)Hp(s, a, F ) = 0.

We therefore have

f(0)
〈F 〉1−s

F
Hp(s, 0, 1)

+
pφ

pφ − 1

F−1∑

a=0

f(a)

φ−1∑

i=0

1

pi

p−1∑

n=0

δi(a, n)Hp(s, ap−i
F + nF, pF ) = 0,

where φ denotes the order of p in (Z/FZ)∗. Rewriting the equation, we get

p

p− 1
f(0)

p−1∑

n=1

Hp(s, nF, pF ) +
pφ

pφ − 1

pF∑

a=1,
(a,p)=1,

F ∤a

φ−1∑

i=0

f(api)

pi
Hp(s, a, pF ) = 0.

Since f is even, as mentioned in (14) we have f(0) = 0, and for all a such that

(a, p) = 1,

(15)

φ−1∑

i=0

f(api)

pi
= 0.

Note that the above equality is also valid when p | a as we can replace a by a + F .

Suppose f(b) 6= 0 for some b. Let M[b] = min{vp(f(bpi)) : 0 6 i 6 φ− 1}. We note

that there exists j such that M[b] = vp(f(bp
j)). In (15), by replacing a with bpj+1,

we obtain
φ−1∑

i=0

f(bpi+j+1)

pi
= 0.

But this is not possible, as

vp

(φ−1∑

i=0

f(bpi+j+1)

pi

)
= vp

(f(bpj)
pφ−1

)
= M[b] − φ+ 1,

a contradiction to (15). Hence f(b) = 0 for all b. �
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5. On the value of Lp(1, f) for periodic functions f

5.1. p-adic Euler constants. We begin by associating the constants γp(a, F ) to

the p-adic Hurwitz zeta function.

Proposition 3. Let F be a natural number greater than one with p | F and a < F

such that p ∤ a. We have

γp(a, F ) =
d

ds
(s− 1)Hp(s, a, F )

∣∣
s=1

.

P r o o f. Since 〈Ft/a+ 1〉s ∈ Qp{t}, we can evaluate

d

ds
(s− 1)Hp(s, a, F ) =

d

ds

〈a〉1−s

F

∫

Zp

〈
1 +

F

a
t
〉1−s

dt

=
1

F

(
− logp〈a〉〈a〉

1−s

∫

Zp

〈
1 +

F

a
t
〉1−s

dt+ 〈a〉1−s

∫

Zp

∂

∂s

〈
1 +

F

a
t
〉1−s

dt

)
.

Evaluating the derivative at s = 1, we have

d

ds
(s− 1)Hp(s, a, F )

∣∣
s=1

= −
1

F

(
logp〈a〉+

∫

Zp

logp

〈
1 +

F

a
t
〉)

dt = γp(a, F ),

the last equality from Definitions 4 and 5. �

From [10] we recall that we can write

(16) γp =
p

p− 1

p−1∑

a=1

γp(a, p).

In particular, the above shows that γp is the derivative of (s−1)Hp(s, 0, 1) evaluated

at s = 1. We set

γp(0, F ) :=
1

F
γp −

logp F

F

so that we can realise it as the derivative of (s− 1)Hp(s, 0, F ) evaluated at s = 1.

Corollary 2. Let F be a natural number greater than or equal to 1, and let

0 6 a < F . The residue of Hp(s, a, F ) at s = 1 is 1/F . Moreover, we have

d

ds
(s− 1)Hp(s, a, F )

∣∣
s=1

= γp(a, F ).
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P r o o f. We need to consider the case when a > 1 as the case a = 0 is already

dealt with. When p | F and p ∤ a, we have the residue of Hp(s, a, F ) at s = 1 to

be 1/F , and by Proposition 3, the constant term is given by γp(a, F ). So, we need

to consider the case when p ∤ F . We further restrict to the case when (a, F ) = 1.

From Remark 3, statement (1) we have

lim
s→1

(s− 1)Hp(s, a, F ) =
pφ

pφ − 1

φ−1∑

i=0

1

pi

p−1∑

n=0

δFi (a, n) lim
s→1

(s− 1)Hp(s, ap−i
F + nF, pF ).

=
pφ

pφ − 1

φ−1∑

i=0

1

pi
p− 1

pF
=

1

F
,

thereby concluding the first part of the corollary. The second part simply follows

from the definition by setting F ∗ = F , and noting that

γp(a1, F1) =
1

p
γp

(a1
p
,
F1

p

)

whenever p | (a1, F1).

If we assume p ∤ F and (a, F ) = d for some d > 1, we have

lim
s→1

Hp(s, a, F ) =
1

d
lim
s→1

Hp

(
s,

a

d
,
F

d

)
,

d

ds
(s− 1)Hp(s, a, F )

∣∣
s=1

=−
logp d

d
lim
s→1

Hp

(
s,

a

d
,
F

d

)
+

1

d

d

ds
(s− 1)Hp

(
s,

a

d
,
F

d

)∣∣∣
s=1

.

Since we have the corollary for the case when (a, F ) = 1, we apply Theorem 6 to

complete the proof. �

We also have the following corollary which was proved by Diamond [7] only for

the case vp(F ) > 0. We remove this condition here.

Corollary 3. Let

Φp(F ) =

F∑

r=1,
(r,F )=1

γp(r, F ).

We then have

Φp(F ) =
ϕ(F )

F
γp +

ϕ(F )

F

∑

d|F

logp d

d− 1
,

where d runs over all the primes dividing F .
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P r o o f. Let us denote

Φp(s, F ) :=

F∑

a=1,
(a,F )=1

Hp(s, a, F ),

Φp(s, F ) =

F−1∑

a=0

∑

d|(a,F )

µ(d)Hp(s, a, F ) =
∑

d|F

µ(d)

F−1∑

a=0,
d|a

Hp(s, a, F )

=
∑

d|F

µ(d)
〈d〉1−s

d

F/d−1∑

a=0

Hp

(
s, a,

F

d

)
=
∏

r|F

(
1−

〈r〉1−s

r

)
Hp(s, 0, 1),

where r runs over all the primes dividing F . The last equality is obtained by Propo-

sition 2, as

Hp(s, 0, 1) =

F/d−1∑

a=0

Hp

(
s, a,

F

d

)
.

Noting that Hp(s, 0, 1) has a pole at s = 1 with residue 1, we arrive at the corollary

by evaluating (d/ds)(s− 1)Φp(s, F )
∣∣
s=1
, by Proposition 1 and Corollary 2. �

By appealing to Theorem 7, we can compute the value of Lp(1, f) whenever it

exists. More precisely:

Corollary 4. The residue of the function Lp(s, f) at s = 1 is 1/F
F−1∑
a=0

f(a). In

particular, Lp(1, f) exists if and only if
F−1∑
a=0

f(a) = 0. Under these assumptions, the

explicit value is given by

Lp(1, f) =

F−1∑

a=0

f(a)γp(a, F ) = −
F−1∑

r=1

f̂(r) logp(1− ζrF ),

where f̂(a) = 1/F
F−1∑
r=0

f(a)ζ−ar
F .

P r o o f. From Corollary 2, along with

Hp(s, 0, F ) =
〈F 〉1−s

F
Hp(s, 0, 1),

we have

lim
s→1

(s− 1)Lp(s, f) =

F−1∑

a=0

lim
s→1

(s− 1)Hp(s, a, F ) =

F−1∑

a=0

f(a)

F
.
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This proves the first part, and therefore, from now on, we assume that
F−1∑
a=0

f(a) = 0.

For 0 6 a < F , again from Corollary 2 we have

Hp(s, a, F ) =
1

F (s− 1)
+ γp(a, F ) + O(s− 1).

Substituting this expression into Definition 6, we get the first equality. The second

equality is an immediate consequence of the first equality, Theorem 7 and the identity

F =
F−1∏
r=1

(1− ζrF ). �

One should observe the similarity between the expression of Lp(1, f) and the value

of L(1, f) as mentioned in (4).

5.2. Proofs of Theorems 2 and 3.

P r o o f of Theorem 2. By Corollaries 3 and 4 we know that

Lp(1, f) = f(0)γp(0, F ) +
∑

(a,F )=1

f(a)γp(a, F )

=
∑

(a,F )=1

(
f(a) +

f(0)

ϕ(F )

)
γp(a, F )−

f(0)

F

∑

r|F

logp r

r − 1
−

f(0)

F
logp F,

where r runs over the primes dividing F . We can write the above equation as

(17) Lp(1, f) = Lp(1, g)−
f(0)

F

∑

r|F

( 1

r − 1
+ vr(F )

)
logp r,

where g : N → Q is the arithmetic function

g(n) =





f(n) +
f(0)

ϕ(F )
if (n, F ) = 1,

0 otherwise.

Since g is a Dirichlet type even function, we note that g ≡
∑

χ modF,
χ(−1)=1

aχχ with aχ ∈ Q

and therefore

Lp(1, g) =
∑

χ modF,
χ(−1)=1

aχLp(1, χ).

In the above, note that aχ0
= 0 as

F−1∑
a=0

g(a) = 0. From Remark 4, statement (3)

and [16], Corollary 8, we note that Lp(1, g) 6= 0 unless g ≡ 0. Thus, if we assume

Lp(1, f) = 0, then we only have the following cases by Theorem 5.
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(1) If F 6= pk, then f(0) = 0 and therefore f(a) = 0 (as g ≡ 0) whenever (a, F ) = 1.

Therefore f ≡ 0.

(2) F = pk, then we have for all (a, F ) = 1

f(0)

ϕ(F )
+ f(a) = 0 ⇒ f(a) = −

f(0)

(p− 1)pk−1
.

By the example mentioned in Remark 4, statement (2), we have Lp(1, f) ≡ 0. In

fact, this proof also shows that f is the only nonzero even function of period pk

satisfying the conditions of the theorem and such that Lp(s, f) ≡ 0. �

P r o o f of Theorem 3. We first claim that at most one of the elements of the set

Sf := {γp(a, F ) : 1 6 a 6 F, (a, F ) = 1}

is algebraic. To prove this, for any two equivalence classes [a], [b] with [b] 6= [−a], we

can construct a periodic function f of period F as follows:

f(n) =





1 if n ≡ ±a modF,

−1 if n ≡ ±b modF,

0 otherwise.

Note that Lp(s, f) 6≡ 0. Now we can apply Theorem 2 to conclude that Lp(1, f) is

nonzero and hence by Corollary 1, Lp(1, f) is transcendental. However, we note that

Lp(1, f) = 2(γp(a, F )− γp(b, F )). This proves the claim.

It remains to consider Sf ∪ {γp}. Suppose γp and γp(a, F ) is algebraic. Then by

Theorem 7 and Corollary 1 we have

(18) Fγp(a, F ) = γp.

We first construct a periodic function f of period F as follows:

f(n) =





−2 if n ≡ 0 modF,

1 if n ≡ ±a modF,

0 otherwise.

From (18) and Corollary 4 we have Lp(1, f) = +2 logp F/F . Now construct another

periodic function g as follows:

g(n) =





1 if (n, F ) = 1,

−ϕ(F ) if n ≡ 0 modF,

0 otherwise.
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By Corollaries 3 and 4 we have

Lp(1, g) =
ϕ(F )

F

∑

r|F

logp r

r − 1
+

ϕ(F )

F
logp F.

Now consider the arithmetic function h(n) := ϕ(F )f(n) − 2g(n). Note that

Lp(1, h) = −2
ϕ(F )

F

∑

r|F

logp r

r − 1
.

But we also note that h is of Dirichlet type and therefore Lp(1, h) is a Q-linear com-

bination of p-adic logarithm of units (since Lp(1, χ) also satisfies the same property).

Hence by Theorem 5, we obtain a contradiction unless Lp(1, h) ≡ 0, which is not

possible as F 6= pk. This proves the theorem. �

6. The p-adic analogue of Euler-Briggs constant

Now we define the p-adic analogue of the Generalised Euler-Briggs constant. In the

p-adic context, we need the condition (pF, PΩ) = 1. We denote 1Ω(n) : N → {0, 1} as

1Ω(n) =

{
1 if (n, PΩ) = 1,

0 otherwise.

We begin by recalling another theorem of Diamond from [7].

Theorem 8 (Diamond). Suppose we have non negative rational integers a, b, M

with M > 1. Let R be an open set in Cp with a + MZp ⊂ R and f : R → Cp be

locally holomorphic. If we define the sum

S(k, b) :=
1

bpk

Mbpk−1∑

n=0,
n≡a modM

f(n),

then L = lim
k→∞

S(k, b) exists and is independent of the choice of b.

The above theorem ensures the existence of the limit in the following definition:

Definition 7. Let Ω be a finite set of primes not containing non negative inte-

gers p, a, F such that F is co-prime to PΩ and 0 6 a < F − 1. If vp(a) < vp(F ), we

set

γp(Ω, a, F ) = − lim
k→∞

1

PΩFpk

FPΩpk−1∑

n=0,
n≡a modF,
(n,PΩ)=1

logp n.
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When vp(a) > vp(F ), we write F = pkF ∗ with (p, F ∗) = 1 and set φ = ϕ(F ∗),

where ϕ denotes the Euler Phi function. We define

γp(Ω, a, F ) =
pφ

pφ − 1

pφ−1∑

n=0,
vp(a+nF )<φ+k

γp(Ω, a+ nF, pφF ).

We immediately have the following proposition:

Proposition 4. Assuming the same notations and conditions as mentioned above,

we obtain

γp(Ω, a, F ) =
d

ds
(s− 1)Lp(s, f)

∣∣
s=1

,

where f : N → {0, 1} is the arithmetic function f(n) = 1a,F (n)1Ω(n).

P r o o f. Assume Ω to be a finite set of primes not containing the prime divisors

of pF . We first evaluate (d/ds)(s− 1)Lp(s, f)
∣∣
s=1

. We have

1a,F (n)1Ω(n) =
∑

d|PΩ

µ(d)10,d(n)1a,F (n) =
∑

d|PΩ

µ(d)1ad,Fd(n),

where ad is the representative of the congruences a modF , 0 mod d in (Z/FdZ)∗ in

the set {0, . . . , Fd− 1}. Therefore we have

Lp(s, f) =
∑

d|PΩ

µ(d)Lp(s, 1ad,Fd)

=
∑

d|PΩ

µ(d)
〈d〉1−s

d
Lp(s, 1ad−1

F ,F
) =

∑

d|PΩ

µ(d)
〈d〉1−s

d
Hp(s, ad−1

F , F ).

We obtain the following expression (19) with the help of Proposition 1 and Corol-

lary 2:

(19)
d

ds
(s− 1)Lp(s, f)

∣∣
s=1

= −
1

F

∑

d|PΩ

µ(d)

d
logp d+

∑

d|PΩ

µ(d)

d
γp(ad−1

F , F ).

It remains to show that the above value is the same as γ(Ω, a, F ). We have 3 cases.
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(1) When p | F , vp(a) < vp(F ). From Definition 7 we note that

(20) γp(Ω, a, F ) = − lim
k→∞

1

PΩFpk

FPΩpk−1∑

n=0,
n≡a modF

∑

d|(n,PΩ)

µ(d) logp n

= −
∑

d|PΩ

µ(d)

d
lim
k→∞

d

PΩFpk

FPΩpk−1∑

n=0,
n≡a modF,
n≡0 mod d

logp n

= −
1

F

∑

d|PΩ

µ(d)

d
logp d+

∑

d|PΩ

µ(d)

d
γp(ad−1

F , F ).

(2) When p ∤ F , substituting (20) to the terms in Definition 7, we have

(21) γp(Ω, a, F ) =
pφ

pφ − 1

×

pφ−1∑

n=0,
vp(a+nF )<φ

(
−

1

pφF

∑

d|PΩ

µ(d)

d
logp d+

∑

d|PΩ

µ(d)

d
γp((a+ nF )d−1

pφF , p
φF )

)
.

Note that there is exactly one n such that vp(a+ nF ) > φ. We can prove that

there is at most one such n by noting that if 0 6 n1 < n2 6 pφ − 1, then

φ > vp((n2 − n1)F ) = vp(a+ n2F − a− n1F )

> min{vp(a+ n2F ), vp(a+ n1F )}.

The existence of n is also guaranteed by the same reason, as no two terms a+n1F

and a+n2F can lie in the same equivalence class. For each d | PΩ we note that

the elements of the set {(a+ nF )d−1
pφF : 0 6 n 6 pφ−1, vp(a+nF ) < φ} sat-

isfy the congruence y ≡ ad−1 modF , y 6≡ 0 mod pφ. With these observations,

we can rewrite (21) as follows:

γp(Ω, a, F ) = −
1

F

∑

d|PΩ

µ(d)

d
logp d

+
∑

d|PΩ

µ(d)

d

pφ

pφ − 1

pφ−1∑

n=0,

vp(ad−1
F+nF )<φ

γp(ad−1
F + nF, pφF ).

For each d | PΩ, note that the second summand is γp(ad−1
F , F ) from Defini-

tion 4 and the above expression coincides with (19).
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(3) When pk||(a, F ), then we reduce the question to the case when p ∤ (a, F ) (one

of the above cases) as

γp(Ω, a, F ) =
1

pk
γp(Ω, a

′, F ′) and Lp(s, f) =
1

pk
Lp(s, f

′),

where f ′(n) = 1a′,F ′(n)1Ω(n) with a′ = p−ka, F ′ = p−kF . �

With the above definition, we now write γp(Ω, a, F ) in terms of γp and linear forms

of p-adic logarithms of algebraic numbers. This statement is the p-adic analogue

of [9], Lemma 8.

Corollary 5. With the same conditions on Ω and F , we have

γp(Ω, a, F ) =
1

ϕ(F )

∑

χ modF,
χ6=χ0, χ even

(χ(a))−1Lp(1, χ)
∏

p1∈Ω

(
1−

χ(p1)

p1

)

+
δΩ
F

(
γp +

∑

p1|F

log p1
p1 − 1

+
∑

p1∈Ω

log p1
p1 − 1

)
.

P r o o f. Let f be the arithmetic function defined in Proposition 4. From the

orthogonality relations of the characters modF , we note that

1a,F (n) =
1

ϕ(F )

∑

χ modF

χ(a)−1χ(n).

Now since the sum runs over the co-prime residue classes of PΩ, we have

f(n) = 1a,F (n)1Ω(n) =
1

ϕ(F )

∑

χ modF

χ(a)−1χ(n)1Ω(n).

Evaluating Lp(s, f),

Lp(s, f) =
1

ϕ(F )

∑

χ modF

χ(a)−1Lp(s, χ1Ω)

as χ1Ω is a periodic function of period PΩF . Now, by the same argument mentioned

in Corollary 3, we have

Lp(s, χ1Ω) =
∏

p1∈Ω

(
1−

χ(p1)〈p1〉1−s

p1

)
Lp(s, χ),

Lp(s, f) =
1

ϕ(F )

×

(
Lp(s, χ0)

∏

r∈Ω

(
1−

〈r〉1−s

r

)
+

∑

χ modF,
χ6=χ0

(χ(a))−1Lp(s, χ)
∏

r∈Ω

(
1−

χ(r)〈r〉1−s

r

))
,
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where r runs over the primes in Ω. Again by the same reasoning we also have

Lp(s, χ0) =
∏

r|F

(
1−

〈r〉1−s

r

)
H(s, 0, 1).

Noting that Lp(s, χ) exists at s = 1 for χ 6= χ0 and applying Corollary 3 for the

first sum and Lp(s, χ) ≡ 0 when χ is odd by Remark 4, statement (2), we have the

result. �

We end the section with the proof of Theorem 4.

P r o o f of Theorem 4. We first note that for a fixed period F > 1 co-prime

to PΩ, and a non-principal even Dirichlet character χ modF , we have

Lp(1, χ) ∈ Q〈γp(Ω, a, F ) : 1 6 a 6 F, (a, F ) = 1〉.

This is indeed true from Corollary 5 and the orthogonality relations of Dirichlet

characters, as

Lp(1, χ)
∏

p1∈Ω

(
1−

χ(p1)

p1

)
=

F∑

a=1,
(a,F )=1

χ(a)γp(Ω, a, F ).

The remaining part of the proof can be carried out along the same lines as [3],

Theorem 3. Indeed, we note that as r varies over the primes P , the elements

{Lp(1, χ) : r ∈ P , χ mod r, χ is non principal, even}

are linearly independent over Q. Therefore

dimQ VQ,N >
∑

r6N,
r∈P

(r − 1

2
− 1
)
=

N2

4 logN
+O

( N

logN

)
.

This proves the theorem. �
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