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Abstract. We give several different g-analogues of the following two congruences of
Z.-W. Sun:
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k=0

where p is an odd prime, r is a positive integer, and (%) is the Jacobi symbol. The proofs
of them require the use of some curious g¢-series identities, two of which are related to
Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the
latter author and Zeng in 2012.
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1. INTRODUCTION
Among other things, Sun in [14], (1.7) and (1.8) proved the congruences
p" 1)/2
2k
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(pr"-1)/2
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(2%) (mod p?),
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where p is an odd prime, r is a positive integer, and (7) is the Jacobi symbol.
Recently, the latter author and Liu in [6], Theorem 1.2 gave the following g-analogue
of (1.1): for odd n,

(02 (o i .
(1.3) > W = (—¢)"")/% (mod @,,(q)?).
k=0 ’

Here and in what follows, (a;q), = (1—a)(1—aq)...(1—ag" ') and ®,(q) is the nth
cyclotomic polynomial in q.

The first aim of this paper is to give g-analogues of (1.1) and (1.2) as follows.

Theorem 1.1. Let n be a positive odd integer. Then

(n—1)/2

(@ ") 2Y 2Lin+1)/4)? 2
14 = —)q n mOd (bn q :
-y = (@)= 0 (n> ( (@)°)
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(¢; 4*)wg™” 3\ (n2_1)/12 ,
15 =1|—q n mOd (bn q :
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where | x| denotes the largest integer not exceeding x.

It is easy to see that the congruences (1.4) and (1.5) reduce to (1.1) and (1.2),
respectively, when ¢ — 1 and n = p".
Recall that the g-binomial coefficients m are defined by

n n M if0<k<n,
= = ¢ (GDr(G Dnr
q 0 otherwise.
Moreover, the g-integer is defined as [n] = [n]y = (1 — ¢™)/(1 — q). The second

aim of this paper is to give the following result, which in the case n = p" confirms
a conjecture of the latter author and Zeng, see [8], Conjecture 5.13.

Theorem 1.2. Let n be a positive integer. Then

(16) o [“jﬁ"“} " T = qfn] (mod @, (¢)").

k=0
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Note that, exactly similarly to the proof of Theorem 5.3 in [8], we can show that
n—1 2 2
2n+ k[ [n—1
1.7 (n=k)? | =0 (mod [n]).
(17) > S (mod [n])

Therefore, combining the congruences (1.6) and (1.7), we see that the congru-
ence (1.6) also holds modulo [n]®,(q). We refer the reader to [7] and references
therein for other congruences on sums involving g-binomial coefficients.

Suggested by the referee, we would like to make the following conjecture.

Conjecture 1.3. The congruence (1.6) still holds modulo [n]®,(q)?.

The paper is organized as follows. In the next section, we give a new proof of
a curious g-series identity of Liu, see [12] and also provide two similar identities. We
prove Theorems 1.1 and 1.2 in Sections 3 and 4, respectively. Finally in Section 5,
motivated by the recent work of the latter author and Zudilin, see [9], we give param-
eter generalizations of (1.3)—(1.5) and show more complicated g-analogues of (1.1)
and (1.2).

2. A CURIOUS ¢-SERIES IDENTITY OF J.-C. L1U

Liu in [12], (2.3) presented the following g-series identity:

n

(2.1) 3 (= 1)kq(3) {2" - ’1 (= Dk = (—1)E) g+l D/212,

k
k=0

which will be used in our proof of (1.4). We give a new proof (2.1) here for two
reasons. Firstly, Liu’s proof of (1.4) is a little complicated and cannot be generalized
to prove similar identities. Secondly, we want the paper to be more self-contained.

Proof of (2.1). By the g-binomial theorem (see, for example, [1], page 36,
Theorem 3.3), we have

(z;q)n = kZ:(—l)’“q(g) []Z] ", (x;lq)N = kf% {N +: - 1} ¥,
and so
e (SO ) (S - s -
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Equating the coefficients of ™ ~* on both sides of (2.2), we obtain
n—a
+a 2n — k 2 2
-1 k (g) n _ N —a
kz=(:)( )"a P R X

which can be written as

(2.3) En:(—l)’“q(’;) [2"]; k] [ 2n — 2k ] _

= n—k+a

With the help of (2.3), we are now able to prove (2.1). By Slater’s Bailey pair C(1)
in [13], we have

an/éj 2 2n
(=¢;Q)n = (—1)Fq* *’“[ }
k= Tn/2] n + 2k

It follows that

k=0
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Interchanging the summation order on the right-hand side of (2.4) and using (2.3),

we get
" ko (5) 2n — k n/2) Cn? 4
CEIEED Y e ] i (O D D i
k=0 j=—In/2]

Since the jth and (1 — j)th terms on the right-hand side of (2.5) cancel each other
for j =1,...,|n/2], only the term corresponding to j = —|n/2] on the right-hand
side of (2.5) survives. This proves (2.1). O

Similarly, we can show that

" w1y [2n — k ik 2
I 3 D M= i
k=0 k="[n/2]
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There are many more identities similar to (2.1) and (2.6). For example, using the

identities (see [10], Proposition 2)

[n/2] T o
k=—[n/2] n
[n/2] , om
L+ q") ()= > (—1)Fg* +k[ +2/Jv
k=—|n/2| "
we can prove that
- 2n — k . (/2] L
(2.7) Z [ ](—q;qQ)n_kq(2) = Z (_1)kqn —2k :
h=0 k=—[n/2]
S 2n — k . n/2] o
Z [ ](1 + qn_k)(—qQ;qQ)n—k—lq(2) = Z (_1)kqn —2k +k,
e k=—n/2]

where (—¢%;¢%)_1 = 1/2.

3. PROOF OF THEOREM 1.1

It is easy to see that
(1 _ qn—2j+1)(1 _ qn+2j—1) + (1 q23 1)2qn 25+1 __ (1 —q )

1—¢" =0 (mod ®,(q)), and so

(1 _ qn—2j+1)(1 _ qn+2j—1) = _(1 _ q2j—1)2qn—2j+1 (mod (bn(Q)Q)-

Therefore,

k
(3-1) (qlin§q2)k(qn+1 H _ n 2j+1 (1 _qn+2j71)
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It follows that
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N

k=0
12 (MY (2
= (—1)(" 1)/2(§)q( /12 (mod @n(q)Q).

The last equality holds because of the identity (see [2], [3], [4])

IR e e (~D)Ln/31gnr=D/5, i % 2 (mod 3),
’ prt ¢ k 0, if n =2 (mod 3).

The proof of (1.5) then follows from the quadratic reciprocity law

(7) =0 3)

Similarly, we have

(n—1)/2
"Z (4; ¢*)ug”
= (5 P)k(—a P
(n—1)/2 o1k
—(n? g - -
= Z (_1)(n71)/27kqn( +3)/4+2(2){ . } (_q2;q2)(n—1)/2—k
2
k=0 q
2 >
= (2) 0 (mod @ (a)?).

The last equality follows from (2.1) by replacing n with (n—1)/2 and ¢ with ¢ — ¢>.

4. PROOF OF THEOREM 1.2

We can easily prove the congruence

(@ Qr(@" 5 )k = (¢:9)7 (mod ®,,(q)?)
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similar to (3.1). It follows that

2 2 n —n
[n—i—k} {”— 1} @M@ T DR snk—ke—k = @™ FF (mod @, (¢)?)

k k (¢:9)}
and so
n—1 2 2 n—1
_ n+k|"[n—-1 _ _
> k)z[ i } [ i } =3¢ =" ] = gln] (mod @, (q)?)
k=0 k=0
as desired.

5. CONCLUDING REMARKS

Very recently, the latter author and Zudilin in [9] developed a creative micro-
scoping method to prove g-supercongruences by adding a parameter a (see also [5]).
Along the same lines, we can generalize (1.3)—(1.5) as follows: for any positive odd
integer n modulo (1 — ag™)(a — ¢"):

(n—1)/2 R
(5.1) S (ag; ¢*)(a/a; 4*)rg"” _ (g
= (@a)a e
(n=1)/2
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(a*:q*)r (g% a*)n n

k=0

It is easy to see that, letting a — 1 in (5.1)—(5.3), we recover (1.3)—(1.5), respectively.

Moreover, there are other different g-analogues of (1.1) and (1.2). For example,

applying the identities (2.6)—(2.8) (replacing n with (n — 1)/2 and ¢ with ¢?), we
have the following more complicated g-analogues of (1.1) modulo ®,,(q)?:
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Similarly, applying the invariant of (3.2) (see, for example, [11], (1.5))

Ln/2) Tk [n/3)
3 (—1)kgl ){ L ]— > (FD)EgrRI,
k=0 k=—|(n+1)/3)

which follows readily from Franklin’s involution on partitions into distinct parts (see

the
ulo

proof of [1], Theorem 1.6), we have the following ¢-analogue of (1.2): mod-
P, (q)%,

(n=1)/2 ) L(n—=1)/3]
Z (79°)x E(_1)(n71)/2q(17n2)/4 Z (_1)kq3k2+k.

= (@55 %)k T

There are also parameter generalizations of the above four congruences, which are

omitted here.
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