STRONGLY (\mathcal{T}, n)-COHERENT RINGS, (\mathcal{T}, n)-SEMIHEREDITARY RINGS AND (\mathcal{T}, n)-REGULAR RINGS

Zhanmin Zhu, Jiaxing

Received August 13, 2018. Published online July 7, 2020.

Abstract

Let \mathcal{T} be a weak torsion class of left R-modules and n a positive integer. A left R-module M is called (\mathcal{T}, n)-injective if $\operatorname{Ext}_{R}^{n}(C, M)=0$ for each ($\left.\mathcal{T}, n+1\right)$-presented left R-module C; a right R-module M is called (\mathcal{T}, n)-flat if $\operatorname{Tor}_{n}^{R}(M, C)=0$ for each $(\mathcal{T}, n+1)$ presented left R-module C; a left R-module M is called (\mathcal{T}, n)-projective if $\operatorname{Ext}_{R}^{n}(M, N)=0$ for each (\mathcal{T}, n)-injective left R-module N; the ring R is called strongly (\mathcal{T}, n)-coherent if whenever $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ is exact, where C is $(\mathcal{T}, n+1)$-presented and P is finitely generated projective, then K is (\mathcal{T}, n)-projective; the ring R is called ($\mathcal{T}, n)$-semihereditary if whenever $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ is exact, where C is $(\mathcal{T}, n+1)$-presented and P is finitely generated projective, then $\operatorname{pd}(K) \leqslant n-1$. Using the concepts of (\mathcal{T}, n)-injectivity and (\mathcal{T}, n)-flatness of modules, we present some characterizations of strongly (\mathcal{T}, n)-coherent rings, (\mathcal{T}, n)-semihereditary rings and (\mathcal{T}, n)-regular rings.

Keywords: (\mathcal{T}, n)-injective module; (\mathcal{T}, n)-flat module; strongly (\mathcal{T}, n)-coherent ring; (\mathcal{T}, n)-semihereditary ring; (\mathcal{T}, n)-regular ring

MSC 2020: 16D40, 16D50, 16E60, 16P70

1. Introduction

Throughout this paper, R is an associative ring with identity and all modules considered are unitary, n is a positive integer. The symbol R-Mod denotes the class of all left R-modules. For any R-module $M, M^{+}=\operatorname{Hom}(M, \mathbb{Q} / \mathbb{Z})$ will be the character module of M. Given a class \mathcal{L} of R-modules, we will denote by $\mathcal{L}^{\perp}=$ $\left\{M: \operatorname{Ext}_{R}^{1}(L, M)=0, L \in \mathcal{L}\right\}$ the right orthogonal class of \mathcal{L}, and by ${ }^{\perp} \mathcal{L}=\{M$: $\left.\operatorname{Ext}_{R}^{1}(M, L)=0, L \in \mathcal{L}\right\}$ the left orthogonal class of \mathcal{L}.

The research has been supported by the Natural Science Foundation of Zhejiang Province, China (LY18A010018).

Recall that a left R-module M is $F P$-injective (see [7], [11]) or absolutely pure (see [10]) if $\operatorname{Ext}_{R}^{1}(A, M)=0$ for every finitely presented left R-module A; a right R-module M is flat if $\operatorname{Tor}_{1}^{R}(M, A)=0$ for every finitely presented left R-module A; a ring R is left coherent (see [1]) if every finitely generated left ideal of R is finitely presented, or equivalently, if every finitely generated submodule of a projective left R-module is finitely presented, if every finitely presented left R-module is 2-presented; a ring R is left semihereditary if every finitely generated left ideal of R is projective, or equivalently, if every finitely generated submodule of a projective left R-module is projective. FP-injective modules, flat modules, coherent rings, semihereditary rings and their generalizations have been studied extensively by many authors. For example, in 1994, Costa introduced the concept of left n-coherent rings in [4]. Following [4], a ring R is called left n-coherent if every n-presented left R-module is $(n+1)$-presented, where a left R-module A is called n-presented if there exists an exact sequence of left R-modules $F_{n} \rightarrow F_{n-1} \rightarrow \ldots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ in which every F_{i} is finitely generated free.

In 1996, Chen and Ding introduced the concepts of n-FP-injective modules and n-flat modules in [3]. Following [3], a left R-module M is called n-FP-injective if $\operatorname{Ext}_{R}^{n}(A, M)=0$ for every n-presented left R-module A, a right R-module M is called n-flat if $\operatorname{Tor}_{n}^{R}(M, A)=0$ for every n-presented left R-module A. Using the two concepts, they characterized n-coherent rings. In 2015, we introduced the concepts of weakly n-FP-injective modules and weakly n-flat modules in [15]. Following [15], a left R-module M is called weakly n-FP-injective if $\operatorname{Ext}_{R}^{n}(A, M)=0$ for every $(n+1)$-presented left R-module A, a right R-module M is called weakly n-flat if $\operatorname{Tor}_{n}^{R}(M, A)=0$ for every $(n+1)$-presented left R-module A. Using the two concepts, we characterized n-coherent rings in [15], Theorem 2.19. We shall denote by $(\mathcal{F P})_{n} \mathcal{I}$ (or $\left.\mathcal{W}(\mathcal{F P})_{n} \mathcal{I}\right)$ the class of all n-FP-injective (or weakly n-FP-injective) left R-modules, and denote by \mathcal{F}_{n} (or $\mathcal{W} \mathcal{F}_{n}$) the class of all n-flat (or weakly n-flat) right R-modules.

We recall: A subclass \mathcal{T} of left R-modules is called a weak torsion class (see [16]) if it is closed under homomorphic images and extensions. Let \mathcal{T} be a weak torsion class of left R-modules and n a positive integer. Then a left R-module M is called \mathcal{T}-finitely generated if there exists a finitely generated submodule N such that $M / N \in \mathcal{T}$; a left R-module A is called (\mathcal{T}, n)-presented if there exists an exact sequence of left R-modules $0 \rightarrow K_{n-1} \rightarrow F_{n-1} \rightarrow \ldots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ such that F_{0}, \ldots, F_{n-1} are finitely generated free and K_{n-1} is \mathcal{T}-finitely generated. In [16], we extended the concepts of n-FP-injective modules and weakly n-FP-injective modules to (\mathcal{T}, n)-injective modules. According to [16] a left R-module M is called (\mathcal{T}, n)-injective if $\operatorname{Ext}_{R}^{n}(C, M)=0$ for each $(\mathcal{T}, n+1)$-presented left R-module C and we extended the concepts of n-flat modules and weakly n-flat modules to
(\mathcal{T}, n)-flat modules. According to [16], a right R-module M is called (\mathcal{T}, n)-flat if $\operatorname{Tor}_{n}^{R}(M, C)=0$ for each $(\mathcal{T}, n+1)$-presented left R-module C; and we extended the concepts of n-coherent rings to (\mathcal{T}, n)-coherent rings. According to [16], a ring R is called (\mathcal{T}, n)-coherent if every ($\mathcal{T}, n+1$)-presented module is $(n+1)$-presented. By using the concepts of (\mathcal{T}, n)-injective modules and (\mathcal{T}, n)-flat modules, we characterized (\mathcal{T}, n)-coherent rings.

In this paper, we shall introduce the concepts of strongly (\mathcal{T}, n)-coherent rings, (\mathcal{T}, n)-semihereditary rings and (\mathcal{T}, n)-regular rings. Using the concepts of (\mathcal{T}, n) injectivity and (\mathcal{T}, n)-flatness of modules, we shall give a series of characterizations and properties of strongly (\mathcal{T}, n)-coherent rings, (\mathcal{T}, n)-semihereditary rings and (\mathcal{T}, n)-regular rings.

2. Strongly (\mathcal{T}, n)-Coherent Rings

Definition 2.1. Let \mathcal{T} be a weak torsion class of left R-modules and n a positive integer. A left R-module M is called (\mathcal{T}, n)-projective if $\operatorname{Ext}_{R}^{n}(M, N)=0$ for each (\mathcal{T}, n)-injective left R-module N.

We shall denote by $\mathcal{T}_{n} \mathcal{I}$ (or $\mathcal{T}_{n} \mathcal{P}$) the class of all (\mathcal{T}, n)-injective (or (\mathcal{T}, n) projective) left R-modules, and by $\mathcal{T}_{n} \mathcal{F}$ the class of all (\mathcal{T}, n)-flat right R-modules.

Definition 2.2. Let \mathcal{T} be a weak torsion class of left R-modules and n a positive integer. Then ring R is called strongly (\mathcal{T}, n)-coherent if whenever $0 \rightarrow K \rightarrow P \rightarrow$ $C \rightarrow 0$ is exact, where C is $(\mathcal{T}, n+1)$-presented and P is finitely generated projective, then K is (\mathcal{T}, n)-projective.

Let \mathcal{F} be a class of R-modules and M an R-module. Following [5], we say that a homomorphism $\varphi: M \rightarrow F$, where $F \in \mathcal{F}$, is an \mathcal{F}-preenvelope of M if for any morphism $f: M \rightarrow F^{\prime}$ with $F^{\prime} \in \mathcal{F}$ there is a $g: F \rightarrow F^{\prime}$ such that $g \varphi=f$. An \mathcal{F}-preenvelope $\varphi: M \rightarrow F$ is said to be an \mathcal{F}-envelope if every endomorphism $g: F \rightarrow F$ such that $g \varphi=\varphi$ is an isomorphism. Dually, we have the definitions of an \mathcal{F}-precover and an \mathcal{F}-cover. \mathcal{F}-envelopes (\mathcal{F}-covers) may not exist in general, but if they exist, they are unique up to isomorphism.

A pair $(\mathcal{A}, \mathcal{B})$ of classes of R-modules is called a cotorsion theory (see [5]) if $\mathcal{A}^{\perp}=\mathcal{B}$ and ${ }^{\perp} \mathcal{B}=\mathcal{A}$. A cotorsion theory $(\mathcal{A}, \mathcal{B})$ is called perfect (see [6]) if every R-module has a \mathcal{B}-envelope and an \mathcal{A}-cover. A cotorsion theory $(\mathcal{A}, \mathcal{B})$ is called complete (see [5], Definition 7.1.6 and [12], Lemma 1.13) if for any R-module M there are exact sequences $0 \rightarrow M \rightarrow B \rightarrow A \rightarrow 0$ with $A \in \mathcal{A}$ and $B \in \mathcal{B}$, and $0 \rightarrow B^{\prime} \rightarrow A^{\prime} \rightarrow M \rightarrow 0$ with $A^{\prime} \in \mathcal{A}$ and $B^{\prime} \in \mathcal{B}$. A cotorsion theory $(\mathcal{A}, \mathcal{B})$ is called hereditary (see [6], Definition 1.1) if whenever $0 \rightarrow A^{\prime} \rightarrow A \rightarrow A^{\prime \prime} \rightarrow 0$ is exact with
$A, A^{\prime \prime} \in \mathcal{A}$, then A^{\prime} is also in \mathcal{A}. By [6], Proposition 1.2 , a cotorsion theory $(\mathcal{A}, \mathcal{B})$ is hereditary if and only if whenever $0 \rightarrow B^{\prime} \rightarrow B \rightarrow B^{\prime \prime} \rightarrow 0$ is exact with $B^{\prime}, B \in \mathcal{B}$, then $B^{\prime \prime}$ is also in \mathcal{B}.

Theorem 2.3. The following statements are equivalent for the ring R :
(1) R is strongly (\mathcal{T}, n)-coherent.
(2) $\left({ }^{\perp}\left(\mathcal{T}_{n} \mathcal{I}\right), \mathcal{T}_{n} \mathcal{I}\right)$ is a hereditary cotorsion theory.
(3) R is (\mathcal{T}, n)-coherent and $\left(\mathcal{T}_{n} \mathcal{F},\left(\mathcal{T}_{n} \mathcal{F}\right)^{\perp}\right)$ is a hereditary cotorsion theory.
(4) $\operatorname{Ext}_{R}^{i}(C, M)=0$ for any $i \geqslant n$, any $(\mathcal{T}, n+1)$-presented module C and any (\mathcal{T}, n)-injective left R-module M.
(5) $\operatorname{Ext}_{R}^{n+1}(C, M)=0$ for any $(\mathcal{T}, n+1)$-presented module C and any (\mathcal{T}, n) injective left R-module M.
(6) R is (\mathcal{T}, n)-coherent and $\operatorname{Tor}_{i}^{R}(N, C)=0$ for any $i \geqslant n$, any $(\mathcal{T}, n+1)$-presented module C and any (\mathcal{T}, n)-flat right R-module N.
(7) R is (\mathcal{T}, n)-coherent and $\operatorname{Tor}_{n+1}^{R}(N, C)=0$ for any $(\mathcal{T}, n+1)$-presented module C and any (\mathcal{T}, n)-flat right R-module N.
(8) If N is a (\mathcal{T}, n)-injective left R-module and N_{1} is a ($\left.\mathcal{T}, n\right)$-injective submodule of N, then N / N_{1} is (\mathcal{T}, n)-injective.
(9) For any (\mathcal{T}, n)-injective left R-module $N, E(N) / N$ is (\mathcal{T}, n)-injective.

Proof. $(2) \Rightarrow(3)$. If M is a (\mathcal{T}, n)-injective left R-module, M_{1} is an FP-injective submodule of M, then M_{1} is (\mathcal{T}, n)-injective, and so M / M_{1} is (\mathcal{T}, n)-injective by [6], Proposition 1.2 since $\left({ }^{\perp}\left(\mathcal{T}_{n} \mathcal{I}\right), \mathcal{T}_{n} \mathcal{I}\right)$ is a hereditary cotorsion theory. Thus, R is (\mathcal{T}, n)-coherent by [16], Theorem 5.6. Moreover, by [16], Theorem 4.11, statement (2), $\left(\mathcal{T}_{n} \mathcal{F},\left(\mathcal{T}_{n} \mathcal{F}\right)^{\perp}\right)$ is a cotorsion theory. Now let $0 \rightarrow A^{\prime} \rightarrow A \rightarrow A^{\prime \prime} \rightarrow 0$ be an exact sequence of right R-modules with $A, A^{\prime \prime} \in \mathcal{T}_{n} \mathcal{F}$. Then we get an exact sequence of left R-modules $0 \rightarrow\left(A^{\prime \prime}\right)^{+} \rightarrow A^{+} \rightarrow\left(A^{\prime}\right)^{+} \rightarrow 0$. Since A^{+}and $\left(A^{\prime \prime}\right)^{+}$ are (\mathcal{T}, n)-injective by [16], Theorem $4.8,\left(A^{\prime}\right)^{+}$is also ($\left.\mathcal{T}, n\right)$-injective by (2), and hence A^{\prime} is (\mathcal{T}, n)-flat. Therefore $\left(\mathcal{T}_{n} \mathcal{F},\left(\mathcal{T}_{n} \mathcal{F}\right)^{\perp}\right)$ is a hereditary cotorsion theory.
(3) $\Rightarrow(2)$. Let $0 \rightarrow A^{\prime} \rightarrow A \rightarrow A^{\prime \prime} \rightarrow 0$ be an exact sequence of left R-modules with $A, A^{\prime}(\mathcal{T}, n)$-injective. Then we get an exact sequence of right R-modules $0 \rightarrow\left(A^{\prime \prime}\right)^{+} \rightarrow A^{+} \rightarrow\left(A^{\prime}\right)^{+} \rightarrow 0$. Since R is (\mathcal{T}, n)-coherent, A^{+}and $\left(A^{\prime}\right)^{+}$are (\mathcal{T}, n)-flat by [16], Theorem 5.3, statement (8), and hence $\left(A^{\prime \prime}\right)^{+}$is also (\mathcal{T}, n)-flat as $\left(\mathcal{T}_{n} \mathcal{F},\left(\mathcal{T}_{n} \mathcal{F}\right)^{\perp}\right)$ is hereditary. And so, $A^{\prime \prime}$ is ($\left.\mathcal{T}, n\right)$-injective by [16], Theorem 5.3, statement (8) again, and (2) follows.
(2) \Rightarrow (4). Let C be a $(\mathcal{T}, n+1)$-presented left R-module with a finite n-presentation $F_{n} \xrightarrow{d_{n}} F_{n-1} \xrightarrow{d_{n-1}} \ldots \longrightarrow F_{2} \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} C \longrightarrow 0$. Write $K_{n-2}=\operatorname{Ker}\left(d_{n-2}\right)$. Then $K_{n-2} \in^{\perp}\left(\mathcal{T}_{n} \mathcal{I}\right)$, and so, for any $i \geqslant n$ and any
(\mathcal{T}, n)-injective left R-module M, we have $\operatorname{Ext}_{R}^{i}(C, M) \cong \operatorname{Ext}_{R}^{i-n+1}\left(K_{n-2}, M\right)=0$ by [6], Proposition 1.2.
$(4) \Rightarrow(5)$ and $(6) \Rightarrow(7)$ are obvious.
(5) $\Rightarrow(2)$. Let $0 \rightarrow A^{\prime} \rightarrow A \rightarrow A^{\prime \prime} \rightarrow 0$ be an exact sequence of left R-modules with $A, A^{\prime}(\mathcal{T}, n)$-injective. For any $(\mathcal{T}, n+1)$-presented left R-module C we have an exact sequence

$$
0=\operatorname{Ext}_{R}^{n}(C, A) \rightarrow \operatorname{Ext}_{R}^{n}\left(C, A^{\prime \prime}\right) \rightarrow \operatorname{Ext}_{R}^{n+1}\left(C, A^{\prime}\right)=0
$$

So $\operatorname{Ext}_{R}^{n}\left(C, A^{\prime \prime}\right)=0$, and thus $A^{\prime \prime}$ is (\mathcal{T}, n)-injective.
$(3),(4) \Rightarrow(6) . \mathrm{By}(3), R$ is (\mathcal{T}, n)-coherent. Let N be a (\mathcal{T}, n)-flat right R-module. Then N^{+}is (\mathcal{T}, n)-injective. By (4), $\operatorname{Ext}_{R}^{i}\left(C, N^{+}\right)=0$ for any $i \geqslant n$ and any $(\mathcal{T}, n+1)$-presented left R-module C, and so, by the isomorphism $\operatorname{Tor}_{i}^{R}(N, C)^{+} \cong$ $\operatorname{Ext}_{R}^{i}\left(C, N^{+}\right)$we have that $\operatorname{Tor}_{i}^{R}(N, C)=0$ for any $i \geqslant n$ and any $(\mathcal{T}, n+1)$-presented left R-module C.
(7) \Rightarrow (3). Assume (7). Then it is clear that R is (\mathcal{T}, n)-coherent. Now let $0 \rightarrow A^{\prime} \rightarrow A \rightarrow A^{\prime \prime} \rightarrow 0$ be an exact sequence of right R-modules with $A, A^{\prime \prime} \in \mathcal{T}_{n} \mathcal{F}$. Then for any $(\mathcal{T}, n+1)$-presented left R-module C we get an exact sequence $0=\operatorname{Tor}_{n+1}^{R}\left(A^{\prime \prime}, C\right) \rightarrow \operatorname{Tor}_{n}^{R}\left(A^{\prime}, C\right) \rightarrow \operatorname{Tor}_{n}^{R}(A, C)=0$, which shows that $\operatorname{Tor}_{n}^{R}\left(A^{\prime}, C\right)=0$. So, A^{\prime} is also (\mathcal{T}, n)-flat, and therefore $\left(\mathcal{T}_{n} \mathcal{F},\left(\mathcal{T}_{n} \mathcal{F}\right)^{\perp}\right)$ is a hereditary cotorsion theory.
(1) $\Rightarrow(5)$. Let C be a $(\mathcal{T}, n+1)$-presented left R-module and M be a (\mathcal{T}, n) injective left R-module. Then there exists an exact sequence $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ with P finitely generated projective. By (1), $\operatorname{Ext}_{R}^{n}(K, M)=0$. And then from the exact sequence of

$$
0=\operatorname{Ext}_{R}^{n}(K, M) \rightarrow \operatorname{Ext}_{R}^{n+1}(C, M) \rightarrow \operatorname{Ext}_{R}^{n+1}(P, M)=0
$$

we have $\operatorname{Ext}_{R}^{n+1}(C, M)=0$.
(5) \Rightarrow (8). For any $(\mathcal{T}, n+1)$-presented left R-module C, the exact sequence $0 \rightarrow N_{1} \rightarrow N \rightarrow N / N_{1} \rightarrow 0$ induces the exactness of the sequence

$$
0=\operatorname{Ext}_{R}^{n}(C, N) \rightarrow \operatorname{Ext}_{R}^{n}\left(C, N / N_{1}\right) \rightarrow \operatorname{Ext}_{R}^{n+1}\left(C, N_{1}\right)=0
$$

This yields that $\operatorname{Ext}_{R}^{n}\left(C, N / N_{1}\right)=0$, as desired.
$(8) \Rightarrow(9)$ is obvious.
(9) $\Rightarrow(1)$. Let C be a $(\mathcal{T}, n+1)$-presented left R-module. If $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ is an exact sequence of left R-modules, where P is finitely generated projective, then for any (\mathcal{T}, n)-injective module $N, E(N) / N$ is (\mathcal{T}, n)-injective by (9). From the
exactness of the two sequences
$0=\operatorname{Ext}_{R}^{n}(P, N) \rightarrow \operatorname{Ext}_{R}^{n}(K, N) \rightarrow \operatorname{Ext}_{R}^{n+1}(C, N) \rightarrow \operatorname{Ext}_{R}^{n+1}(P, N)=0$
$0=\operatorname{Ext}_{R}^{n}(C, E(N)) \rightarrow \operatorname{Ext}_{R}^{n}(C, E(N) / N) \rightarrow \operatorname{Ext}_{R}^{n+1}(C, N) \rightarrow \operatorname{Ext}_{R}^{n+1}(C, E(N))=0$
we have $\operatorname{Ext}_{R}^{n}(K, N) \cong \operatorname{Ext}_{R}^{n+1}(C, N) \cong \operatorname{Ext}_{R}^{n}(C, E(N) / N)=0$. Thus, K is (\mathcal{T}, n)-projective, as required.

Corollary 2.4. Let $\mathcal{T}=R$-Mod. Then the following statements are equivalent for the ring R :
(1) R is strongly (\mathcal{T}, n)-coherent.
(2) R is (\mathcal{T}, n)-coherent.
(3) R is left n-coherent.

Proof. (1) $\Rightarrow(2)$. It follows from Theorem 2.3, statement (3).
$(2) \Rightarrow(3)$. It follows from [16], Example 5.2, statement (1).
$(3) \Rightarrow(1)$. Let $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ be exact, where C is $(\mathcal{T}, n+1)$ presented and P is finitely generated projective. Then by (3), K is n-presented, so $\operatorname{Ext}_{R}^{n}(K, N)=0$ for any n-FP-injective left R-modules. This yields that R is strongly (\mathcal{T}, n)-coherent.

Corollary 2.5. The following statements are equivalent for the ring R :
(1) R is left n-coherent.
(2) $\left({ }^{\perp}\left((\mathcal{F P})_{n} \mathcal{I}\right),(\mathcal{F P})_{n} \mathcal{I}\right)$ is a hereditary cotorsion theory.
(3) $\operatorname{Ext}_{R}^{i}(C, M)=0$ for any $i \geqslant n$, any n-presented module C and any n-FP-injective left R-module M.
(4) $\operatorname{Ext}_{R}^{n+1}(C, M)=0$ for any n-presented module C and any n-FP-injective left R-module M.
(5) If N is an n-FP-injective left R-module and N_{1} is an n - $F P$-injective submodule of N, then N / N_{1} is n-FP-injective.
(6) For any n-FP-injective left R-module $N, E(N) / N$ is n-FP-injective.

Corollary 2.6. Let $\mathcal{T}=\{0\}$. Then R is strongly (\mathcal{T}, n)-coherent if and only if every weakly n - $F P$-injective left R-module is $(n+1)$ - $F P$-injective.

Proof. It follows from Theorem 2.3 (5) and [16], Example 4.2, (2).

Corollary 2.7. The following statements are equivalent for the ring R :
(1) $\left({ }^{\perp}\left(\mathcal{W}(\mathcal{F P})_{n} \mathcal{I}\right), \mathcal{W}(\mathcal{F P})_{n} \mathcal{I}\right)$ is a hereditary cotorsion theory.
(2) $\left(\mathcal{W} \mathcal{F}_{n},\left(\mathcal{W F}_{n}\right)^{\perp}\right)$ is a hereditary cotorsion theory.
(3) $\operatorname{Ext}_{R}^{i}(C, M)=0$ for any $i \geqslant n$, any $(n+1)$-presented module C and any weakly n-FP-injective left R-module M.
(4) $\operatorname{Ext}_{R}^{n+1}(C, M)=0$ for any $(n+1)$-presented module C and any weakly n-FP-injective left R-module M.
(5) $\operatorname{Tor}_{i}^{R}(N, C)=0$ for any $i \geqslant n$, any $(n+1)$-presented module C and any weakly n-flat right R-module N.
(6) $\operatorname{Tor}_{n+1}^{R}(N, C)=0$ for any $(n+1)$-presented module C and any weakly n-flat right R-module N.
(7) If N is a weakly n-FP-injective left R-module and N_{1} is a weakly n-FP-injective submodule of N, then N / N_{1} is weakly n-FP-injective.
(8) For any weakly n-FP-injective left R-module N and $E(N) / N$ is weakly n-FP-injective.

Let \mathcal{F} be a class of left R-modules. As usual, we write ${ }^{\perp_{n}} \mathcal{F}=\left\{M: \operatorname{Ext}_{R}^{n}(M, F)=0\right.$, $F \in \mathcal{F}\}$, and $\mathcal{F}^{\perp_{n}}=\left\{M: \operatorname{Ext}_{R}^{n}(F, M)=0, F \in \mathcal{F}\right\}$.

Definition 2.8. Let n be a positive integer. A pair $(\mathcal{L}, \mathcal{C})$ of classes of R-modules is called an n-cotorsion theory if $\mathcal{L}^{\perp_{n}}=\mathcal{C}$ and ${ }^{\perp_{n}} \mathcal{C}=\mathcal{L}$. An n-cotorsion theory $(\mathcal{L}, \mathcal{C})$ is called hereditary if whenever $0 \rightarrow L^{\prime} \rightarrow L \rightarrow L^{\prime \prime} \rightarrow 0$ is exact with $L, L^{\prime \prime} \in \mathcal{L}$, then L^{\prime} is also in \mathcal{L}.

It is easy to see that the pair $\left(\mathcal{T}_{n} \mathcal{P}, \mathcal{T}_{n} \mathcal{I}\right)$ is an n-cotorsion theory.

Theorem 2.9. Let $(\mathcal{L}, \mathcal{C})$ be an n-cotorsion theory. Then the following statements are equivalent:
(1) $(\mathcal{L}, \mathcal{C})$ is hereditary.
(2) If $0 \rightarrow L^{\prime} \rightarrow P \rightarrow L^{\prime \prime} \rightarrow 0$ is exact with P projective and $L^{\prime \prime} \in \mathcal{L}$, then L^{\prime} is also in \mathcal{L}.
(3) $\operatorname{Ext}_{R}^{n+i}(L, C)=0$ for any non-negative integer i and any $L \in \mathcal{L}$ and $C \in \mathcal{C}$.
(4) $\operatorname{Ext}_{R}^{n+1}(L, C)=0$ for any $L \in \mathcal{L}$ and $C \in \mathcal{C}$.
(5) If $0 \rightarrow C^{\prime} \rightarrow C \rightarrow C^{\prime \prime} \rightarrow 0$ is exact with $C^{\prime}, C \in \mathcal{C}$, then $C^{\prime \prime}$ is also in \mathcal{C}.
(6) If $0 \rightarrow C^{\prime} \rightarrow E \rightarrow C^{\prime \prime} \rightarrow 0$ is exact with $C^{\prime} \in \mathcal{C}$ and E injective, then $C^{\prime \prime}$ is also in \mathcal{C}.
(7) If $C \in \mathcal{C}$, then $E(C) / C \in \mathcal{C}$.

Proof. $(1) \Rightarrow(2),(3) \Rightarrow(4)$ and $(5) \Rightarrow(6) \Rightarrow(7)$ are obvious.
$(2) \Rightarrow(3)$. We only need to prove the case, where $i \geqslant 1$. Let $L_{0}=L$. Then by (2) we have exact sequences $0 \rightarrow L_{k} \rightarrow P_{k} \rightarrow L_{k-1} \rightarrow 0, k=1,2, \ldots, i$, where each $L_{k} \in \mathcal{L}$ and P_{k} is projective. So we have that $\operatorname{Ext}_{R}^{n+i}(L, C) \cong$ $\operatorname{Ext}_{R}^{n+i-1}\left(L_{1}, C\right) \cong \ldots \cong \operatorname{Ext}_{R}^{n}\left(L_{i}, C\right)=0$.
(4) \Rightarrow (1). Let $0 \rightarrow L^{\prime} \rightarrow L \rightarrow L^{\prime \prime} \rightarrow 0$ be exact with $L, L^{\prime \prime} \in \mathcal{L}$. Then for any $C \in \mathcal{C}$, by (4) we have an exact sequence $0=\operatorname{Ext}_{R}^{n}(L, C) \rightarrow \operatorname{Ext}_{R}^{n}\left(L^{\prime}, C\right) \rightarrow$ $\operatorname{Ext}_{R}^{n+1}\left(L^{\prime \prime}, C\right)=0$, so $\operatorname{Ext}_{R}^{n}\left(L^{\prime}, C\right)=0$, and thus $L^{\prime} \in \mathcal{L}$.
$(4) \Rightarrow(5)$. Let $L \in \mathcal{L}$. Then by (4) we have an exact sequence $0=\operatorname{Ext}_{R}^{n}(L, C) \rightarrow$ $\operatorname{Ext}_{R}^{n}\left(L, C^{\prime \prime}\right) \rightarrow \operatorname{Ext}_{R}^{n+1}\left(L, C^{\prime}\right)=0$, so $\operatorname{Ext}_{R}^{n}\left(L, C^{\prime \prime}\right)=0$, and hence $C^{\prime \prime} \in \mathcal{C}$.
(7) $\Rightarrow(4)$. Let $L \in \mathcal{L}$ and $C \in \mathcal{C}$. Then by (7), $E(C) / C \in \mathcal{C}$, and so

$$
\operatorname{Ext}_{R}^{n}(L, E(C) / C)=0
$$

Thus, by the exactness of

$$
0=\operatorname{Ext}_{R}^{n}(L, E(C) / C) \rightarrow \operatorname{Ext}_{R}^{n+1}(L, C) \rightarrow \operatorname{Ext}_{R}^{n+1}(L, E(C)=0
$$

we get that $\operatorname{Ext}_{R}^{n+1}(L, C)=0$.
By Theorems 2.3 and 2.9, we have the following result.

Corollary 2.10. Let R be a strongly (\mathcal{T}, n)-coherent if and only if $\left(\mathcal{T}_{n} \mathcal{P}, \mathcal{T}_{n} \mathcal{I}\right)$ is a hereditary n-cotorsion theory.

Definition 2.11.

(1) The (\mathcal{T}, n)-injective dimension of a module ${ }_{R} M$ is defined by
$\mathcal{T}_{n} \mathcal{I}-\operatorname{dim}\left({ }_{R} M\right)=\inf \left\{k: \operatorname{Ext}_{R}^{n+k}(C, M)=0\right.$ for every $(\mathcal{T}, n+1)$-presented module $\left.C\right\}$.
(2) The ($\mathcal{T}, n)$-injective global dimension of a ring R is defined by

$$
\mathcal{T}_{n} \mathcal{I}-\operatorname{GLD}(R)=\sup \left\{\mathcal{T}_{n} \mathcal{I}-\operatorname{dim}(M): M \text { is a left } R \text {-module }\right\}
$$

Theorem 2.12. Let R be a strongly (\mathcal{T}, n)-coherent ring, M a left R-module and k a non-negative integer. Then the following statements are equivalent:
(1) $\mathcal{T}_{n} \mathcal{I}-\operatorname{dim}\left({ }_{R} M\right) \leqslant k$.
(2) $\operatorname{Ext}_{R}^{n+k+l}(C, M)=0$ for any $(\mathcal{T}, n+1)$-presented module C and any nonnegative integer l.
(3) $\operatorname{Ext}_{R}^{n+k}(C, M)=0$ for any $(\mathcal{T}, n+1)$-presented module C.
(4) If the sequence $0 \longrightarrow M \xrightarrow{\varepsilon} E_{0} \xrightarrow{d_{0}} \ldots \longrightarrow E_{k-1} \xrightarrow{d_{k-1}} E_{k} \longrightarrow 0$ is exact with $E_{0}, \ldots, E_{k-1}(\mathcal{T}, n)$-injective, then E_{k} is also (\mathcal{T}, n)-injective.
(5) There exists an exact sequence of left R-modules $0 \rightarrow M \rightarrow E_{0} \rightarrow \ldots \rightarrow$ $E_{k-1} \rightarrow E_{k} \rightarrow 0$ such that $E_{0}, \ldots, E_{k-1}, E_{k}$ are (\mathcal{T}, n)-injective.

Proof. (1) $\Rightarrow(2)$. Use induction on k. If $k=0$, then (2) holds by Theorem 2.3, statement (4). So let $k>0$. Assume that $\operatorname{Ext}_{R}^{n+k-1+l}(C, N)=0$ for any $(\mathcal{T}, n+1)$-presented module C, any non-negative integer l and any left R-module N with $\mathcal{T}_{n} \mathcal{I}-\operatorname{dim}(N) \leqslant k-1$. Then there exists a positive integer $r \leqslant k$ such that $\operatorname{Ext}_{R}^{n+r}(C, M)=0$ for any $(\mathcal{T}, n+1)$-presented module C, which implies that $\operatorname{Ext}_{R}^{n+r-1}(C, E(M) / M)=0$ for any $(\mathcal{T}, n+1)$-presented module C. So $\mathcal{T}_{n} \mathcal{I}-\operatorname{dim}(E(M) / M) \leqslant r-1$, and hence $\mathcal{T}_{n} \mathcal{I}-\operatorname{dim}(E(M) / M) \leqslant k-1$. By hypothesis, we have $\operatorname{Ext}_{R}^{n+k-1+l}(C, E(M) / M)=0$ for any $(\mathcal{T}, n+1)$-presented module C and any non-negative integer l, it yields that $\operatorname{Ext}_{R}^{n+k+l}(C, M)=0$. Therefore statement (2) holds by induction axioms.
$(2) \Rightarrow(3) \Rightarrow(1)$ and $(4) \Rightarrow(5)$ are obvious.
$(3) \Rightarrow(4)$. Since R is strongly (\mathcal{T}, n)-coherent and E_{0}, \ldots, E_{k-1} is ($\left.\mathcal{T}, n\right)$-injective, by Theorem 2.3, statement (4) we have $\operatorname{Ext}_{R}^{n+k}(C, M) \cong \operatorname{Ext}_{R}^{n+k-1}\left(C, \operatorname{im}\left(d_{0}\right)\right) \cong$ $\operatorname{Ext}_{R}^{n+k-2}\left(C, \operatorname{im}\left(d_{1}\right)\right) \cong \ldots \cong \operatorname{Ext}_{R}^{n}\left(C, \operatorname{im}\left(d_{k-1}\right)\right)=\operatorname{Ext}_{R}^{n}\left(C, E_{k}\right)$ for any $(\mathcal{T}, n+1)$ presented module C. So statement (4) follows from statement (3).
$(5) \Rightarrow(3)$. It follows from the above isomorphism $\operatorname{Ext}_{R}^{n+k}(C, M) \cong \operatorname{Ext}_{R}^{n}\left(C, E_{k}\right)$.

Definition 2.13.

(1) The (\mathcal{T}, n)-flat dimension of a module M_{R} is defined by $\mathcal{T}_{n} \mathcal{F}-\operatorname{dim}\left(M_{R}\right)=\inf \left\{k: \operatorname{Tor}_{n+k}^{R}(M, C)=0\right.$ for every $(\mathcal{T}, n+1)$-presented module $\left.C\right\}$.
(2) The (\mathcal{T}, n)-weak global dimension of a ring R is defined by

$$
\mathcal{T}_{n}-\mathrm{WD}(R)=\sup \left\{\mathcal{T}_{n} \mathcal{F}-\operatorname{dim}(M): M \text { is a right } R \text {-module }\right\}
$$

Theorem 2.14. Let M be a right R-module. Then

$$
\mathcal{T}_{n} \mathcal{F}-\operatorname{dim}(M)=\mathcal{T}_{n} \mathcal{I}-\operatorname{dim}\left(M^{+}\right)
$$

Proof. By the isomorphism $\operatorname{Tor}_{n+k}^{R}(M, C)^{+} \cong \operatorname{Ext}_{R}^{n+k}\left(C, M^{+}\right)$.
Theorem 2.15. Let R be a strongly (\mathcal{T}, n)-coherent ring, M a right R-module and k a non-negative integer. Then the following statements are equivalent:
(1) $\mathcal{T}_{n} \mathcal{F}-\operatorname{dim}\left(M_{R}\right) \leqslant k$.
(2) $\operatorname{Tor}_{n+k+l}^{R}(M, C)=0$ for any $(\mathcal{T}, n+1)$-presented module C and any nonnegative integer l.
(3) $\operatorname{Tor}_{n+k}^{R}(M, C)=0$ for any $(\mathcal{T}, n+1)$-presented module C.
(4) If the sequence $0 \longrightarrow F_{k} \xrightarrow{\varepsilon} F_{k-1} \xrightarrow{d_{k-1}} \ldots \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} M \longrightarrow 0$ is exact with $F_{0}, \ldots, F_{k-1}(\mathcal{T}, n)$-flat, then F_{k} is also (\mathcal{T}, n)-flat.
(5) There exists an exact sequence of right R-modules $0 \longrightarrow F_{k} \xrightarrow{\varepsilon} F_{k-1} \xrightarrow{d_{k-1}} \ldots$ $\xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} M \longrightarrow 0$ such that $F_{0}, \ldots, F_{k-1}, F_{k}$ are (\mathcal{T}, n)-flat.

Proof. (1) \Rightarrow (2). Let C be a $(\mathcal{T}, n+1)$-presented module and l be any non-negative integer. By (1), there exists a non-negative integer $r \leqslant k$ such that $\operatorname{Tor}_{n+r}^{R}(M, C)=0$. And so, by the isomorphism $\operatorname{Tor}_{n+r}^{R}(M, C)^{+} \cong \operatorname{Ext}_{R}^{n+r}\left(C, M^{+}\right)$, we have $\operatorname{Ext}_{R}^{n+r}\left(C, M^{+}\right)=0$. Since R is strongly (\mathcal{T}, n)-coherent, by Theorem 2.12 we have $\operatorname{Ext}_{R}^{n+k+l}\left(C, M^{+}\right)=0$, and then $\operatorname{Tor}_{n+k+l}^{R}(M, C)=0$ by the isomorphism $\operatorname{Tor}_{n+k+l}^{R}(M, C)^{+} \cong \operatorname{Ext}_{R}^{n+k+l}\left(C, M^{+}\right)$.
$(2) \Rightarrow(3) \Rightarrow(1)$ and $(4) \Rightarrow(5)$ are obvious.
$(3) \Rightarrow(4)$. Since R is strongly (\mathcal{T}, n)-coherent and F_{0}, \ldots, F_{k-1} is (\mathcal{T}, n)-flat, by Theorem 2.3, statement (6) we have $\operatorname{Tor}_{n+k}^{R}(M, C) \cong \operatorname{Tor}_{n+k-1}^{R}\left(\operatorname{Ker}\left(d_{0}\right), C\right) \cong$ $\operatorname{Tor}_{n+k-2}^{R}\left(\operatorname{Ker}\left(d_{1}\right), C\right) \cong \ldots \cong \operatorname{Tor}_{n}^{R}\left(\operatorname{Ker}\left(d_{k-1}\right), C\right)=\operatorname{Tor}_{n}^{R}\left(F_{k}, C\right)$. So statement (4) follows from statement (3).
$(5) \Rightarrow(3)$. It follows from the above isomorphism $\operatorname{Tor}_{n+k}^{R}(M, C) \cong \operatorname{Tor}_{n}^{R}\left(F_{k}, C\right)$.

Lemma 2.16. Let R be a strongly (\mathcal{T}, n)-coherent ring. Then every $(\mathcal{T}, n+1)$ presented module C is m-presented for any positive integer m.

Proof. If $m<n$, then it is clear that the result holds. Assume that every $(\mathcal{T}, n+1)$-presented module is m-presented for some $m \geqslant n$. Then for any $(\mathcal{T}, n+1)$ presented module C and any FP-injective module N we have $\operatorname{Ext}_{R}^{m+1}(C, N)=0$ by Theorem 2.3, statement (4) because R is strongly (\mathcal{T}, n)-coherent. Let $0 \rightarrow$ $K_{m-n-1} \rightarrow F_{m-n-1} \rightarrow \ldots \rightarrow F_{1} \rightarrow F_{0} \rightarrow C \rightarrow 0$ be an exact sequence of left R-modules with F_{0}, \ldots, F_{m-n-1} finitely generated free left R-modules and K_{m-n-1} n-presented. Then $\operatorname{Ext}_{R}^{n+1}\left(K_{m-n-1}, N\right) \cong \operatorname{Ext}_{R}^{m+1}(C, N)=0$, so K_{m-n-1} is $(n+1)$ presented by [16], Lemma 5.5, and hence C is $(m+1)$-presented. Therefore this lemma holds by induction axioms.

Theorem 2.17. Let R be a left strongly (\mathcal{T}, n)-coherent ring and M a left R-module. Then

$$
\mathcal{T}_{n} \mathcal{I}-\operatorname{dim}(M)=\mathcal{T}_{n} \mathcal{F}-\operatorname{dim}\left(M^{+}\right)
$$

Proof. Let k be a positive integer and C be a ($\mathcal{T}, n+1$)-presented module. Since R is left strongly (\mathcal{T}, n)-coherent, by Lemma 2.16, C is $(n+k+2)$-presented. So, by [3], Lemma 2.7, statement (2), we have $\operatorname{Tor}_{n+k+1}^{R}\left(M^{+}, C\right) \cong \operatorname{Ext}_{R}^{n+k+1}(C, M)^{+}$. Consequently, $\mathcal{T}_{n} \mathcal{I}-\operatorname{dim}(M)=\mathcal{T}_{n} \mathcal{F}-\operatorname{dim}\left(M^{+}\right)$by Theorems 2.12 and 2.15.

Corollary 2.18. Let R be a strongly (\mathcal{T}, n)-coherent ring. Then

$$
\mathcal{T}_{n}-\mathrm{WD}(R)=\mathcal{T}_{n} \mathcal{I}-\operatorname{GLD}(R)
$$

Proof. It follows from Theorems 2.14 and 2.17.

3. (\mathcal{T}, n)-SEMIHEREDITARY RINGS

Recall that a ring R is called left semihereditary if every finitely generated left ideal of R is projective, or equivalently, if every finitely generated submodule of a projective right R-module is projective. It is easy to see that a ring R is left semihereditary if and only if the projective dimension of every finitely presented left R-module is less than or equal to 1 . The concept of semihereditary rings has been generalized by many authors. For example, a commutative ring R is called a (n, d)-ring (see [4]) if every n-presented R-module has the projective dimension at most d; a ring R is called a left (n, d)-ring (see [13]) if every n-presented left R-module has the projective dimension at most d; a ring R is called a left n-hereditary ring (see [14]) if it is a left ($n, 1$)-ring; a ring R is called a left n-regular ring (see [14]) if it is a left ($n, 0$)-ring.

Definition 3.1. A ring R is called left weakly n-hereditary if it is a left (n, n)-ring.

Clearly, left n-hereditary ring is left weakly n-hereditary. A ring R is left semihereditary if and only if R is left 1-hereditary if and only if R is left weakly 1-hereditary.

Example 3.2. Let R be a non-coherent commutative ring of weak dimension one. Then $R[x]$ is a $(2,2)$-ring but not a $(2,1)$-ring by [4], Example 6.5 , and so $R[x]$ is a weakly 2 -hereditary ring which is not 2 -hereditary.

Next, we generalize the concept of left n-regular rings.
Definition 3.3. A ring R is called left weakly n-regular if it is a left $(n, n-1)$ ring.

Clearly, R is regular if and only if it is left weakly 1 -regular. Left n-regular ring is left weakly n-regular. If $n \geqslant 2$, then left n-hereditary ring is left weakly n-regular. Since left (2,2)-rings need not be left (2,1)-rings by Example 3.2, left weakly 2 -hereditary rings need not be left weakly 2 -regular.

Example 3.4. Let A be an arbitrary Prüfer domain (i.e. (1,1)-domain) and let R be the trivial ring extension of A by its quotient field. Then by [8], Example $3.4, R$ is a commutative (2,1)-ring which is not a (2,0)-ring. So, in general, left weakly 2 -regular rings need not be left 2 -regular.

Definition 3.5. Let \mathcal{T} be a weak torsion class of left R-modules and n a positive integer. Then the ring R is called (\mathcal{T}, n)-semihereditary if $\operatorname{pd}(C) \leqslant n$ for each ($\mathcal{T}, n+1$)-presented module C.

Example 3.6. Let $\mathcal{T}=R$ - Mod. Then R is (\mathcal{T}, n)-semihereditary if and only if it is left weakly n-hereditary.

Example 3.7. Let $\mathcal{T}=\{0\}$. Then R is (\mathcal{T}, n)-semihereditary if and only if it is left weakly $(n+1)$-regular.

Theorem 3.8. Let \mathcal{T} be a weak torsion class of left R-modules and n a positive integer. Then the following statements are equivalent for the ring R :
(1) R is a left (\mathcal{T}, n)-semihereditary ring.
(2) If $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ is exact, where C is $(\mathcal{T}, n+1)$-presented, P is finitely generated projective, then $\operatorname{pd}(K) \leqslant n-1$.
(3) R is (\mathcal{T}, n)-coherent and every submodule of a (\mathcal{T}, n)-flat right R-module is (\mathcal{T}, n)-flat.
(4) R is ($\mathcal{T}, n)$-coherent and every right ideal is ($\mathcal{T}, n)$-flat.
(5) R is (\mathcal{T}, n)-coherent and every finitely generated right ideal is ($\mathcal{T}, n)$-flat.
(6) Every quotient module of a (\mathcal{T}, n)-injective left R-module is (\mathcal{T}, n)-injective.
(7) Every quotient module of an injective left R-module is (\mathcal{T}, n)-injective.
(8) Every left R-module has a monic (\mathcal{T}, n)-injective cover.
(9) Every right R-module has an epic (\mathcal{T}, n)-flat envelope.
(10) For every left R-module A, the sum of an arbitrary family of (\mathcal{T}, n)-injective submodules of A is ($\mathcal{T}, n)$-injective.
(11) Every torsionless right R-module is (\mathcal{T}, n)-flat.
(12) R is strongly (\mathcal{T}, n)-coherent and $\mathcal{T}_{n} \mathcal{I}-\operatorname{GLD}(R) \leqslant 1$.
(13) R is strongly (\mathcal{T}, n)-coherent and $\mathcal{T}_{n}-\mathrm{WD}(R) \leqslant 1$.

Proof. $(1) \Leftrightarrow(2),(3) \Rightarrow(4) \Rightarrow(5)$ and $(6) \Rightarrow(7)$ are trivial.
$(2) \Rightarrow(3)$. Assume (2). Then R is clearly (\mathcal{T}, n)-coherent by [16], Lemma 5.5. Let A be a submodule of a (\mathcal{T}, n)-flat right R-module B and let C be a ($\mathcal{T}, n+1$)presented left R-module. Then there exists an exact sequence of left R-modules $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$, where P is finitely generated projective. By (1), $\operatorname{pd}(K) \leqslant$ $n-1$ and so $f d(K) \leqslant n-1$. Then the exactness of $0=\operatorname{Tor}_{n+1}^{R}(B / A, P) \rightarrow$ $\operatorname{Tor}_{n+1}^{R}(B / A, C) \rightarrow \operatorname{Tor}_{n}^{R}(B / A, K)=0$ implies that $\operatorname{Tor}_{n+1}^{R}(B / A, C)=0$. Thus, from the exactness of the sequence $0=\operatorname{Tor}_{n+1}^{R}(B / A, C) \rightarrow \operatorname{Tor}_{n}^{R}(A, C) \rightarrow \operatorname{Tor}_{n}^{R}(B, C)=0$ we have $\operatorname{Tor}_{n}^{R}(A, C)=0$, that is, A is (\mathcal{T}, n)-flat.
(5) $\Rightarrow(2)$. Let C be a $(\mathcal{T}, n+1)$-presented left R-module. If $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ is an exact sequence of left R-modules, where P is finitely generated projective. Since R is (\mathcal{T}, n)-coherent, K is n-presented. For any finitely generated right ideal I
of R we have an exact sequence $0 \rightarrow \operatorname{Tor}_{n+1}^{R}(R / I, C) \rightarrow \operatorname{Tor}_{n}^{R}(I, C)=0$ since I is (\mathcal{T}, n)-flat. So $\operatorname{Tor}_{n+1}^{R}(R / I, C)=0$, and hence we obtain an exact sequence $0=\operatorname{Tor}_{n+1}^{R}(R / I, C) \rightarrow \operatorname{Tor}_{n}^{R}(R / I, K) \rightarrow 0$. Thus, $\operatorname{Tor}_{n}^{R}(R / I, K)=0$. Let K have a finite n-presentation $F_{n} \xrightarrow{d_{n}} \ldots \longrightarrow F_{2} \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{\varepsilon} K \longrightarrow 0$. Then $\operatorname{Ker}\left(d_{n-2}\right)$ is finitely presented and $\operatorname{Tor}_{1}^{R}\left(R / I, \operatorname{Ker}\left(d_{n-2}\right)=0\right.$, so $\operatorname{Ker}\left(d_{n-2}\right)$ is projective. Therefore $\operatorname{pd}(K) \leqslant n-1$.
(2) $\Rightarrow(6)$. Let M be a (\mathcal{T}, n)-injective left R-module and N be a submodule of M. Then for any $(\mathcal{T}, n+1)$-presented left R-module C, there exists an exact sequence of left R-modules $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$, where P is finitely generated projective and $\operatorname{pd}(K) \leqslant n-1$ by (2). And so the exact sequence $0=\operatorname{Ext}_{R}^{n}(K, N) \rightarrow$ $\operatorname{Ext}_{R}^{n+1}(C, N) \rightarrow \operatorname{Ext}_{R}^{n+1}(P, N)=0$ implies that $\operatorname{Ext}_{R}^{n+1}(C, N)=0$. Thus, the exact sequence $0=\operatorname{Ext}_{R}^{n}(C, M) \rightarrow \operatorname{Ext}_{R}^{n}(C, M / N) \rightarrow \operatorname{Ext}_{R}^{n+1}(C, N)=0$ implies that $\operatorname{Ext}_{R}^{n}(C, M / N)=0$. Consequently, M / N is (\mathcal{T}, n)-injective.
(7) $\Rightarrow(2)$. Let C be a $(\mathcal{T}, n+1)$-presented left R-module and there is an exact sequence of left R-modules $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$, where P is finitely generated projective. Then for any left R-module M, by hypothesis, $E(M) / M$ is (\mathcal{T}, n)-injective, and so $\operatorname{Ext}_{R}^{n}(C, E(M) / M)=0$. Thus, the exactness of the sequence $0=\operatorname{Ext}_{R}^{n}(C, E(M) / M) \rightarrow \operatorname{Ext}_{R}^{n+1}(C, M) \rightarrow \operatorname{Ext}_{R}^{n+1}(C, E(M))=0$ implies that $\operatorname{Ext}_{R}^{n+1}(C, M)=0$. Hence, the exactness of the sequence $0=\operatorname{Ext}_{R}^{n}(P, M) \rightarrow$ $\operatorname{Ext}_{R}^{n}(K, M) \rightarrow \operatorname{Ext}_{R}^{n+1}(C, M)=0$ implies that $\operatorname{Ext}_{R}^{n}(K, M)=0$, as required.
$(3) \Leftrightarrow(9)$. It follows from [2], Theorem 2 and [16], Theorem 5.3, statement (5).
$(3),(6) \Rightarrow(8)$. Since R is (\mathcal{T}, n)-coherent by (3) for any left R-module M there is a (\mathcal{T}, n)-injective cover $f: E \rightarrow M$ by [16], Corollary 5.8. Note that $\operatorname{im}(f)$ is (\mathcal{T}, n) injective by (6), and $f: E \rightarrow M$ is a (\mathcal{T}, n)-injective precover, so for the inclusion $\operatorname{map} i: \operatorname{im}(f) \rightarrow M$ there is a homomorphism $g: \operatorname{im}(f) \rightarrow E$ such that $i=f g$. Hence $f=f(g f)$. Observing that $f: E \rightarrow M$ is a (\mathcal{T}, n)-injective cover and $g f$ is an endomorphism of $E, g f$ is an automorphisms of E, and thus $f: E \rightarrow M$ is a monic (\mathcal{T}, n)-injective cover.
(8) $\Rightarrow(6)$. Let M be a (\mathcal{T}, n)-injective left R-module and N be a submodule of M. By (8), M / N has a monic (\mathcal{T}, n)-injective cover $f: E \rightarrow M / N$. Let $\pi: M \rightarrow M / N$ be the natural epimorphism. Then there exists a homomorphism $g: M \rightarrow E$ such that $\pi=f g$. Thus, f is an isomorphism, and therefore $M / N \cong E$ is (\mathcal{T}, n)-injective.
$(6) \Rightarrow(10)$. Let A be a left R-module and $\left\{A_{\gamma}: \gamma \in \Gamma\right\}$ be an arbitrary family of (\mathcal{T}, n)-injective submodules of A. Since the direct sum of (\mathcal{T}, n)-injective modules is (\mathcal{T}, n)-injective and $\sum_{\gamma \in \Gamma} A_{\gamma}$ is a homomorphic image of $\oplus_{\gamma \in \Gamma} A_{\gamma}$, by (6), $\sum_{\gamma \in \Gamma} A_{\gamma}$ is (\mathcal{T}, n)-injective.
$(10) \Rightarrow(7)$. Let E be an injective left R-module and $K \leqslant E$. Take $E_{1}=E_{2}=E$, $N=E_{1} \oplus E_{2}, D=\{(x,-x): x \in K\}$. Define $f_{1}: E_{1} \rightarrow N / D$ by $x_{1} \mapsto\left(x_{1}, 0\right)+D$,
$f_{2}: E_{2} \rightarrow N / D$ by $x_{2} \mapsto\left(0, x_{2}\right)+D$ and write $\bar{E}_{i}=f_{i}\left(E_{i}\right), i=1,2$. Then $\bar{E}_{i} \cong E_{i}$ is injective, $i=1,2$, and so $N / D=\bar{E}_{1}+\bar{E}_{2}$ is (\mathcal{T}, n)-injective. By the injectivity of $\bar{E}_{i},(N / D) / \bar{E}_{i}$ is isomorphic to a summand of N / D and thus it is (\mathcal{T}, n)-injective. Now, we define $f: E \rightarrow(N / D) / \bar{E}_{1} ; e \mapsto f_{2}(e)+\bar{E}_{1}$, then f is an epimorphism with $\operatorname{Ker}(f)=K$, and hence $E / K \cong(N / D) / \bar{E}_{1}$ is (\mathcal{T}, n)-injective.
$(3) \Rightarrow(11)$. Let M be a torsionless right R-module. Then there exists an exact sequence $0 \rightarrow M \rightarrow \prod R_{R}$. Since R is (\mathcal{T}, n)-coherent, by [16], Theorem 5.3, statement (4), ΠR_{R} is (\mathcal{T}, n)-flat. By hypothesis, every submodule of a (\mathcal{T}, n)-flat R-module is (\mathcal{T}, n)-flat, so M is (\mathcal{T}, n)-flat.
$(11) \Rightarrow(3)$. Assume (11). Then $\prod R_{R}$ is (\mathcal{T}, n)-flat, and thus R is (\mathcal{T}, n)-coherent by [16], Theorem 5.3, statement (4). Moreover, every right ideal of R is torsionless and so (\mathcal{T}, n)-flat.
(2) \Rightarrow (12). Let $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ be exact with $C(\mathcal{T}, n+1)$-presented and P finitely generated projective. Then by $(2), \operatorname{pd}(K) \leqslant n-1$, and so K is (\mathcal{T}, n)-projective, which shows that R is strongly (\mathcal{T}, n)-coherent. Now let M be any left R-module. Then for any ($\mathcal{T}, n+1$)-presented module C we have an exact sequence $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ of left R-modules, where P is finitely generated projective. By $(2), \operatorname{pd}(K) \leqslant n-1$. Thus, the exact sequence $0=\operatorname{Ext}_{R}^{n}(K, M) \rightarrow$ $\operatorname{Ext}_{R}^{n+1}(C, M) \rightarrow \operatorname{Ext}_{R}^{n+1}(P, M)=0$ implies that $\operatorname{Ext}_{R}^{n+1}(C, M)=0$. This yields that $\mathcal{T}_{n} \mathcal{I}-\operatorname{GLD}(R) \leqslant 1$ by Definition 2.11.
$(12) \Rightarrow(13)$. It follows from Theorem 2.12 and the isomorphism

$$
\operatorname{Tor}_{n+1}^{R}(M, C)^{+} \cong \operatorname{Ext}_{R}^{n+1}\left(C, M^{+}\right)
$$

(13) $\Rightarrow(3)$. Assume (13). Then R is clearly (\mathcal{T}, n)-coherent. Let A be a submodule of a (\mathcal{T}, n)-flat right R-module B and let C be a $(\mathcal{T}, n+1)$-presented left R-module. Since R is strongly (\mathcal{T}, n)-coherent and $\mathcal{T}_{n}-\mathrm{WD}(\mathrm{R}) \leqslant 1$, by Theorem 2.15 we have $\operatorname{Tor}_{n+1}^{R}(B / A, C)=0$. Then, from the exactness of the sequence $0=\operatorname{Tor}_{n+1}^{R}(B / A, C) \rightarrow \operatorname{Tor}_{n}^{R}(A, C) \rightarrow \operatorname{Tor}_{n}^{R}(B, C)=0$ we have $\operatorname{Tor}_{n}^{R}(A, C)=0$, which shows that A is \mathcal{T}_{n}-flat.

Corollary 3.9. The following statements are equivalent for the ring R :
(1) R is a left weakly n-hereditary ring.
(2) If $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ is exact, where C is n-presented, P is finitely generated projective, then $\operatorname{pd}(K) \leqslant n-1$.
(3) R is left n-coherent and every submodule of an n-flat right R-module is n-flat.
(4) R is left n-coherent and every right ideal is n-flat.
(5) R is left n-coherent and every finitely generated right ideal is n-flat.
(6) Every quotient module of an n-FP-injective left R-module is n - $F P$-injective.
(7) Every quotient module of an injective left R-module is n - $F P$-injective.
(8) Every left R-module has a monic n-FP-injective cover.
(9) Every right R-module has an epic n-flat envelope.
(10) For every left R-module A, the sum of an arbitrary family of n-FP-injective submodules of A is n - $F P$-injective.
(11) Every torsionless right R-module is n-flat.
(12) R is left n-coherent and $(\mathcal{F P})_{n} \mathcal{I}-\operatorname{GLD}(R) \leqslant 1$.
(13) R is left n-coherent and $n-\mathrm{WD}(R) \leqslant 1$.

Proof. It follows from Theorem 3.8 and Corollary 2.4.
Let $n=1$, then by Corollary 3.9, we can obtain a series of characterizations of left semihereditary rings.

Corollary 3.10. The following statements are equivalent for the ring R :
(1) R is a left semihereditary ring.
(2) If $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ is exact, where C is finitely presented, P is finitely generated projective, then K is projective.
(3) R is left coherent and every submodule of a flat right R-module is flat.
(4) R is left coherent and every right ideal is flat.
(5) R is left coherent and every finitely generated right ideal is flat.
(6) Every quotient module of an FP-injective left R-module is FP-injective.
(7) Every quotient module of an injective left R-module is $F P$-injective.
(8) Every left R-module has a monic $F P$-injective cover.
(9) Every right R-module has an epic flat envelope.
(10) For every left R-module A, the sum of an arbitrary family of FP-injective submodules of A is FP-injective.
(11) Every torsionless right R-module is flat.
(12) R is left coherent and $\mathcal{F P \mathcal { P }}-\operatorname{GLD}(R) \leqslant 1$.
(13) R is left coherent and $\mathrm{WD}(R) \leqslant 1$.

Corollary 3.11. The following statements are equivalent for the ring R :
(1) R is a left weakly $(n+1)$-regular ring.
(2) If $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ is exact, where C is ($n+1$)-presented, P is finitely generated projective, then $\operatorname{pd}(K) \leqslant n-1$.
(3) Every submodule of a weakly n-flat right R-module is weakly n-flat.
(4) Every right ideal is weakly n-flat.
(5) Every finitely generated right ideal is weakly n-flat.
(6) Every quotient module of a weakly n - $F P$-injective left R-module is weakly n-FP-injective.
(7) Every quotient module of an injective left R-module is weakly n - $F P$-injective.
(8) Every left R-module has a monic weakly n - $F P$-injective cover.
(9) Every right R-module has an epic weakly n-flat envelope.
(10) For every left R-module A, the sum of an arbitrary family of weakly n-FPinjective submodules of A is weakly n-FP-injective.
(11) Every torsionless right R-module is weakly n-flat.
(12) Every weakly n-FP-injective left R-module is $(n+1)$-FP-injective and

$$
\mathcal{W}(\mathcal{F P})_{n} \mathcal{I}-\operatorname{GLD}(R) \leqslant 1 .
$$

(13) Every weakly n-FP-injective left R-module is $(n+1)$ - $F P$-injective and $\mathcal{W}_{n}-$ $\mathrm{WD}(R) \leqslant 1$.

Proof. It follows from Theorem 3.8 and Corollary 2.6.

4. (\mathcal{T}, n)-REGULAR RINGS

Definition 4.1. Let \mathcal{T} be a weak torsion class of left R-modules and n a positive integer. Then the ring R is called (\mathcal{T}, n)-regular if $\operatorname{pd}(C) \leqslant n-1$ for each ($\mathcal{T}, n+1)$ presented module C.

Example 4.2. Let $\mathcal{T}=R$ - Mod. Then R is (\mathcal{T}, n)-regular if and only if it is left weakly n-regular.

Example 4.3. Let $\mathcal{T}=\{0\}$. Then R is (\mathcal{T}, n)-regular if and only if it is a left ($n+1, n-1$)-ring.

Theorem 4.4. Let \mathcal{T} be a weak torsion class of left R-modules and n a positive integer. Then the following conditions are equivalent for R :
(1) R is (\mathcal{T}, n)-regular.
(2) Every left R-module is (\mathcal{T}, n)-injective.
(3) Every right R-module is (\mathcal{T}, n)-flat.
(4) Every cotorsion right R-module is (\mathcal{T}, n)-flat.
(5) Every right R-module in $\left(\mathcal{T}_{n} \mathcal{F}\right)^{\perp}$ is injective.
(6) Every left R-module in ${ }^{\perp}\left(\mathcal{T}_{n} \mathcal{I}\right)$ is projective.
(7) R is (\mathcal{T}, n)-semihereditary and ${ }_{R} R$ is (\mathcal{T}, n)-injective.
(8) R is strongly (\mathcal{T}, n)-coherent and every left R-module in ${ }^{\perp}\left(\mathcal{T}_{n} \mathcal{I}\right)$ is (\mathcal{T}, n) injective.
(9) R is strongly (\mathcal{T}, n)-coherent and every right R-module in $\left(\mathcal{T}_{n} \mathcal{F}\right)^{\perp}$ is (\mathcal{T}, n)-flat.

Proof. (1) $\Leftrightarrow(2) ;(3) \Rightarrow(4),(5) ;(2) \Rightarrow(6) ;(1),(2) \Rightarrow(7) ;$ and $(2),(7) \Rightarrow(8)$ are clear.
$(2) \Rightarrow(3)$. It follows from the isomorphism $\operatorname{Tor}_{n}^{R}(M, C)^{+} \cong \operatorname{Ext}_{R}^{n}\left(C, M^{+}\right)$.
$(4) \Rightarrow(2)$. Let M be any left R-module. Since M^{+}is pure injective by [5], Proposition 5.3.7, M^{+}is a cotorsion by [5], Lemma 5.3.23, and so M^{+}is (\mathcal{T}, n)-flat by (4). Hence, by [16], Theorem 4.8, M^{++}is (\mathcal{T}, n)-injective. Note that M is a pure submodule of M^{++}. By [16], Proposition 4.9, statement (1), M is (\mathcal{T}, n)-injective.
$(5) \Rightarrow(3)$. It follows from the fact that $\left(\mathcal{T}_{n} \mathcal{F},\left(\mathcal{T}_{n} \mathcal{F}\right)^{\perp}\right)$ is a cotorsion theory (see [16], Theorem 4.11, statement (2)).
$(6) \Rightarrow(2)$. It follows from the fact that $\left(\perp\left(\mathcal{T}_{n} \mathcal{I}\right), \mathcal{T}_{n} \mathcal{I}\right)$ is a cotorsion theory (see [16], Theorem 4.11, statement (1)).
$(7) \Rightarrow(2)$ Let M be any left R-module. Then there exists an exact sequence $F \rightarrow$ $M \rightarrow 0$ with F free. Since ${ }_{R} R$ is (\mathcal{T}, n)-injective, by [16], Proposition 4.6, F is (\mathcal{T}, n) injective. Since R is (\mathcal{T}, n)-semihereditary, by Theorem 3.8 , statement (6), M is (\mathcal{T}, n)-injective.
(8) $\Rightarrow(2)$. Let M be any left R-module. By [16], Theorem 4.11, statement (1), there exists an exact sequence $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$ with $F \in^{\perp}\left(\mathcal{T}_{n} \mathcal{I}\right)$ and $K \in \mathcal{T}_{n} \mathcal{I}$. Then $F \in \mathcal{T}_{n} \mathcal{I}$ by (8). Note that R is strongly (\mathcal{T}, n)-coherent, by Theorem 2.3, statement (8), we have that $M \in \mathcal{T}_{n} \mathcal{I}$.
(3), $(8) \Rightarrow(9)$. It is obvious.
(9) $\Rightarrow(3)$. Let $E \in\left(\mathcal{T}_{n} \mathcal{F}\right)^{\perp}$. Then for any right R-module M, by [16], Theorem 4.11, statement $(2),\left(\mathcal{T}_{n} \mathcal{F},\left(\mathcal{T}_{n} \mathcal{F}\right)^{\perp}\right)$ is a perfect cotorsion theory, so it is a complete cotorsion theory, and hence there exists an exact sequence $0 \rightarrow M \rightarrow F \rightarrow$ $L \rightarrow 0$, where $F \in\left(\mathcal{T}_{n} \mathcal{F}\right)^{\perp}$ and $L \in \mathcal{T}_{n} \mathcal{F}$. By (9), F is (\mathcal{T}, n)-flat. Since R is strongly (\mathcal{T}, n)-coherent, by Theorem 2.3 , statement $(3),\left(\mathcal{T}_{n} \mathcal{F},\left(\mathcal{T}_{n} \mathcal{F}\right)^{\perp}\right)$ is a hereditary cotorsion theory, and thus, M is (\mathcal{T}, n)-flat.

Corollary 4.5. Let n be a positive integer. Then the following conditions are equivalent for R :
(1) R is left weakly n-regular.
(2) Every left R-module is n - $F P$-injective.
(3) Every right R-module is n-flat.
(4) Every cotorsion right R-module is n-flat.
(5) Every right R-module in \mathcal{F}_{n}^{\perp} is injective.
(6) Every left R-module in $\perp^{\perp}\left((\mathcal{F P})_{n} \mathcal{I}\right)$ is projective.
(7) R is left weakly n-hereditary and ${ }_{R} R$ is n-FP-injective.
(8) R is left n-coherent and every left R-module in ${ }^{\perp}\left((\mathcal{F P})_{n} \mathcal{I}\right)$ is n-FP-injective.
(9) R is left n-coherent and every right R-module in $\left(\mathcal{F}_{n}\right)^{\perp}$ is n-flat.

Recall that a left R-module N is said to be $F P$-projective (see [9]) if $\operatorname{Ext}_{R}^{1}(N, M)=0$ for any FP-injective left R-module M.

Corollary 4.6. The following conditions are equivalent for a ring R :
(1) R is regular.
(2) Every left R-module is $F P$-injective.
(3) Every right R-module is flat.
(4) Every cotorsion right R-module is flat.
(5) Every cotorsion right R-module is injective.
(6) Every FP-projective left R-module is projective.
(7) R is left semihereditary and ${ }_{R} R$ is $F P$-injective.
(8) R is left coherent and every $F P$-projective left R-module is $F P$-injective.

Acknowledgements. The author wishes to thank the referee for a careful reading of the article and giving a detailed report.

References

[1] S. U. Chase: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473.
zbl MR doi
[2] J. Chen, N. Ding: A note on existence of envelopes and covers. Bull. Aust. Math. Soc. 54 (1996), 383-390.
zbl MR doi
[3] J. Chen, N. Ding: On n-coherent rings. Commun. Algebra 24 (1996), 3211-3216.
[4] D. L. Costa: Parameterizing families of non-Noetherian rings. Commun. Algebra 22 (1994), 3997-4011.
zbl MR doi
[5] E. E. Enochs, O. M. G. Jenda: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin, 2000.
zbl MR doi
[6] E.E.Enochs, O.M. G. Jenda, J. A. López-Ramos: The existence of Gorenstein flat covers. Math. Scand. 94 (2004), 46-62.
zbl MR doi
[7] S. Jain: Flat and FP-injectivity. Proc. Am. Math. Soc. 41 (1973), 437-442.
zbl MR doi
[8] S.-E. Kabbaj, N. Mahdou: Trivial extensions defined by coherent-like conditions. Commun. Algebra 32 (2004), 3937-3953.
[9] L. Mao, N. Ding: FP-projective dimensions. Commun. Algebra 33 (2005), 1153-1170.
[10] C. Megibben: Absolutely pure modules. Proc. Am. Math. Soc. 26 (1970), 561-566.
[11] B. Stenström: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329.
zbl MR doi
zbl MR doi

12] J. Trlifaj: Cover, Envelopes, and Cotorsion Theories. Lecture Notes for the Workshop "Homological Methods in Module Theory" Cortona, September 10-16, 2000.
[13] D. Zhou: On n-coherent rings and (n, d)-rings. Commun. Algebra 32 (2004), 2425-2441. Zbl MR doi
[14] Z. Zhu: On n-coherent rings, n-hereditary rings and n-regular rings. Bull. Iran. Math. Soc. 37 (2011), 251-267.
zbl MR
[15] Z. Zhu: Some results on (n, d)-injective modules, (n, d)-flat modules and n-coherent rings. Comment. Math. Univ. Carol. 56 (2015), 505-513.
[16] Z. Zhu: Coherence relative to a weak torsion class. Czech. Math. J. 68 (2018), 455-474. zbl MR doi
Author's address: Zhanmin Zhu, Jiaxing University, 56 South Yuexiu Road, Nanhu, Jiaxing, 314001 Zhejiang, P.R. China, e-mail: zhuzhanminzjxu@hotmail.com.

