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Abstract. Let T be a weak torsion class of left R-modules and n a positive integer. A left
R-module M is called (7, n)-injective if Ext’(C, M) = 0 for each (7, n + 1)-presented left
R-module C; a right R-module M is called (T ,n)-flat if TorZ (M, C) = 0 for each (T, n+1)-
presented left R-module C'; a left R-module M is called (T, n)-projective if Ext (M, N) =0
for each (7,n)-injective left R-module N; the ring R is called strongly (7 ,n)-coherent if
whenever 0 - K — P — C' — 0 is exact, where C is (7,n + 1)-presented and P is finitely
generated projective, then K is (7, n)-projective; the ring R is called (7, n)-semihereditary
if whenever 0 - K — P — C — 0 is exact, where C is (7,n + 1)-presented and P is
finitely generated projective, then pd(K) < n — 1. Using the concepts of (T, n)-injectivity
and (7, n)-flatness of modules, we present some characterizations of strongly (7, n)-coherent
rings, (7, n)-semihereditary rings and (7, n)-regular rings.
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1. INTRODUCTION

Throughout this paper, R is an associative ring with identity and all modules
considered are unitary, n is a positive integer. The symbol R-Mod denotes the
class of all left R-modules. For any R-module M, M = Hom(M,Q/Z) will be the
character module of M. Given a class £ of R-modules, we will denote by £+ =
{M: BExty(L,M) =0, L € L} the right orthogonal class of £, and by £ = {M:
Exth(M,L) =0, L € L} the left orthogonal class of £.
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Recall that a left R-module M is FP-injective (see [7], [11]) or absolutely pure
(see [10]) if ExtR(A, M) = 0 for every finitely presented left R-module A; a right
R-module M is flat if Torf” (M, A) = 0 for every finitely presented left R-module A4;
a ring R is left coherent (see [1]) if every finitely generated left ideal of R is
finitely presented, or equivalently, if every finitely generated submodule of a projec-
tive left R-module is finitely presented, if every finitely presented left R-module is
2-presented; a ring R is left semihereditary if every finitely generated left ideal of R is
projective, or equivalently, if every finitely generated submodule of a projective left
R-module is projective. FP-injective modules, flat modules, coherent rings, semi-
hereditary rings and their generalizations have been studied extensively by many
authors. For example, in 1994, Costa introduced the concept of left n-coherent
rings in [4]. Following [4], a ring R is called left n-coherent if every n-presented left
R-module is (n+ 1)-presented, where a left R-module A is called n-presented if there
exists an exact sequence of left R-modules F,, -+ F,,_1 — ... > F — Fp - M — 0
in which every F; is finitely generated free.

In 1996, Chen and Ding introduced the concepts of n-FP-injective modules and
n-flat modules in [3]. Following [3], a left R-module M is called n-FP-injective
if Extx(A, M) = 0 for every n-presented left R-module A, a right R-module M
is called n-flat if Torf (M, A) = 0 for every n-presented left R-module A. Using
the two concepts, they characterized n-coherent rings. In 2015, we introduced the
concepts of weakly n-FP-injective modules and weakly n-flat modules in [15]. Fol-
lowing [15], a left R-module M is called weakly n-FP-injective if Extf(A, M) = 0
for every (n + 1)-presented left R-module A, a right R-module M is called weakly
n-flat if Tor®(M, A) = 0 for every (n + 1)-presented left R-module A. Using the two
concepts, we characterized n-coherent rings in [15], Theorem 2.19. We shall denote
by (FP),Z (or W(FP),TI) the class of all n-FP-injective (or weakly n-FP-injective)
left R-modules, and denote by F,, (or WF,,) the class of all n-flat (or weakly n-flat)
right R-modules.

We recall: A subclass T of left R-modules is called a weak torsion class (see [16])
if it is closed under homomorphic images and extensions. Let 7 be a weak tor-
sion class of left R-modules and n a positive integer. Then a left R-module M is
called T -finitely generated if there exists a finitely generated submodule N such that
M/N € T; aleft R-module A is called (T,n)-presented if there exists an exact se-
quence of left R-modules 0 - K,,_1 — F,,_1 — ... = Fy — Fy — M — 0 such that
Fy, ..., F,_1 are finitely generated free and K, _; is T-finitely generated. In [16],
we extended the concepts of n-FP-injective modules and weakly n-FP-injective
modules to (7, n)-injective modules. According to [16] a left R-module M is called
(T, n)-injective if Exty(C, M) = 0 for each (T,n + 1)-presented left R-module C
and we extended the concepts of n-flat modules and weakly n-flat modules to
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(T,n)-flat modules. According to [16], a right R-module M is called (7,n)-flat if
TorZ(M,C) = 0 for each (T, n+ 1)-presented left R-module C; and we extended the
concepts of n-coherent rings to (7,n)-coherent rings. According to [16], a ring R is
called (7T, n)-coherent if every (7T,n + 1)-presented module is (n + 1)-presented. By
using the concepts of (7, n)-injective modules and (7, n)-flat modules, we charac-
terized (T, n)-coherent rings.

In this paper, we shall introduce the concepts of strongly (7, n)-coherent rings,
(T, n)-semihereditary rings and (7, n)-regular rings. Using the concepts of (7, n)-
injectivity and (7, n)-flatness of modules, we shall give a series of characterizations
and properties of strongly (7,n)-coherent rings, (7,n)-semihereditary rings and
(T, n)-regular rings.

2. STRONGLY (7,7n)-COHERENT RINGS

Definition 2.1. Let 7 be a weak torsion class of left R-modules and n a positive
integer. A left R-module M is called (7, n)-projective if Exty (M, N) = 0 for each
(T, n)-injective left R-module N.

We shall denote by 7,Z (or 7,P) the class of all (7,n)-injective (or (7,n)-
projective) left R-modules, and by T, F the class of all (T, n)-flat right R-modules.

Definition 2.2. Let 7 be a weak torsion class of left R-modules and n a positive
integer. Then ring R is called strongly (T,n)-coherent if whenever 0 - K — P —
C — 0is exact, where C'is (T, n+1)-presented and P is finitely generated projective,
then K is (T,n)-projective.

Let F be a class of R-modules and M an R-module. Following [5], we say that
a homomorphism ¢: M — F, where F' € F, is an F-preenvelope of M if for any
morphism f: M — F’ with F/ € F there is a g: FF — F’ such that gp = f.
An F-preenvelope ¢: M — F is said to be an F-envelope if every endomorphism
g: F — I such that gy = ¢ is an isomorphism. Dually, we have the definitions of
an F-precover and an F-cover. JF-envelopes (F-covers) may not exist in general,
but if they exist, they are unique up to isomorphism.

A pair (A, B) of classes of R-modules is called a cotorsion theory (see [5]) if
At = B and 1B = A. A cotorsion theory (A, B) is called perfect (see [6]) if every
R-module has a B-envelope and an A-cover. A cotorsion theory (A, B) is called
complete (see [5], Definition 7.1.6 and [12], Lemma 1.13) if for any R-module M
there are exact sequences 0 - M — B —+ A — 0 with A € A and B € B, and
0—-B — A - M — 0with A’ € Aand B’ € B. A cotorsion theory (A, B) is called
hereditary (see [6], Definition 1.1) if whenever 0 — A" — A — A” — 0 is exact with
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A, A" € A, then A’ is also in A. By [6], Proposition 1.2, a cotorsion theory (A, B) is
hereditary if and only if whenever 0 -+ B’ —+ B — B” — 0 is exact with B’, B € B,
then B” is also in B.

Theorem 2.3. The following statements are equivalent for the ring R:

1) R is strongly (T, n)-coherent.

2) (Y(T.Z), T.T) is a hereditary cotorsion theory.

3) R is (T,n)-coherent and (T, F, (T, F)1) is a hereditary cotorsion theory.

4) Extz(C,M) = 0 for any i > n, any (T,n + 1)-presented module C" and any
(T, n)-injective left R-module M.

(5) Extx™(C, M) = 0 for any (T,n + 1)-presented module C' and any (T,n)-
injective left R-module M.

(6) R is (T,n)-coherent and Torl*(N,C) = 0 for any i > n, any (T, n+1)-presented
module C and any (T,n)-flat right R-module N.

(7) R is (T,n)-coherent and Tor)},|(N,C) = 0 for any (T,n + 1)-presented mod-
ule C' and any (T,n)-flat right R-module N.

(8) If N is a (T, n)-injective left R-module and Ny is a (T ,n)-injective submodule
of N, then N/N; is (T,n)-injective.

(9) For any (T ,n)-injective left R-module N, E(N)/N is (T, n)-injective.

(
(
(
(

Proof. (2) = (3). If M is a (T, n)-injective left R-module, M is an FP-injective
submodule of M, then M; is (T, n)-injective, and so M/M; is (T, n)-injective by [6],
Proposition 1.2 since (*(7,Z),7,Z) is a hereditary cotorsion theory. Thus, R is
(T,n)-coherent by [16], Theorem 5.6. Moreover, by [16], Theorem 4.11, state-
ment (2), (7,F, (ToF)*) is a cotorsion theory. Now let 0 — A" — A — A" — 0
be an exact sequence of right R-modules with A, A” € 7, F. Then we get an exact
sequence of left R-modules 0 — (A”)* — AT — (A’)* — 0. Since AT and (A”)*
are (7 ,n)-injective by [16], Theorem 4.8, (A")* is also (7, n)-injective by (2), and
hence A’ is (T,n)-flat. Therefore (7, F, (7,F)") is a hereditary cotorsion theory.

(3) = (2). Let 0 » A" - A — A” — 0 be an exact sequence of left R-modules
with A, A" (T,n)-injective. Then we get an exact sequence of right R-modules
0— (A)" - At — (A)" — 0. Since R is (T,n)-coherent, AT and (A’)" are
(T,n)-flat by [16], Theorem 5.3, statement (8), and hence (A”)" is also (7, n)-flat
as (ToF, (TnF)7t) is hereditary. And so, A” is (T, n)-injective by [16], Theorem 5.3,
statement (8) again, and (2) follows.

(2) = (4). Let C be a (T,n + 1)-presented left R-module with a finite
n-presentation F, n, F.1 e N J RN LN o o, ¢ — 0.
Write K,,_o = Ker(d,_2). Then K, 5 €+ (T,Z), and so, for any i > n and any
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(T, n)-injective left R-module M, we have Exts(C, M) = Exty " (K, _o, M) = 0
by [6], Proposition 1.2.

(4) = (5) and (6) = (7) are obvious.

(5) = (2). Let 0 > A’ - A — A” — 0 be an exact sequence of left R-modules
with A, A’ (T, n)-injective. For any (7,n + 1)-presented left R-module C' we have

an exact sequence

=
=

0 = Ext}(C, A) — Exth(C, A”) — Extz ™ (C, A') = 0.

So Ext’s(C, A”) = 0, and thus A" is (T, n)-injective.

(3),(4) = (6). By (3), Ris (T,n)-coherent. Let N be a (T, n)-flat right R-module.
Then Nt is (T,n)-injective. By (4), Exti(C,N*) = 0 for any i > n and any
(T,n + 1)-presented left R-module C, and so, by the isomorphism Torf (N,O)t =
Ext’(C, N*) we have that Tor! (N, C) = 0 for any i > n and any (7, n+1)-presented
left R-module C.

(7) = (3). Assume (7). Then it is clear that R is (7,n)-coherent. Now
let 0 - A — A — A” — 0 be an exact sequence of right R-modules with
A, A" € T, F. Then for any (T,n + 1)-presented left R-module C we get an ex-
act sequence 0 = Tory, {(A”,C) — Torf(A',C) — TorZ(A,C) = 0, which shows
that Tor*(A’,C) = 0. So, A is also (T,n)-flat, and therefore (7,F, (T,F)"') is
a hereditary cotorsion theory.

(1) = (5). Let C be a (T,n + 1)-presented left R-module and M be a (T,n)-
injective left R-module. Then there exists an exact sequence 0 - K — P — C — 0
with P finitely generated projective. By (1), Extz(K, M) = 0. And then from the
exact sequence of

0 = Ext}h (K, M) — Ext’y™(C, M) — Ext%™ (P, M) =0

we have Ext}s"™' (C, M) = 0.
(5) = (8). For any (7,n + 1)-presented left R-module C, the exact sequence
0 — Ny — N — N/N; — 0 induces the exactness of the sequence

0 = Ext®(C, N) — Ext(C, N/N;) — Ext)t(C, Ny) = 0.

This yields that Ext(C, N/Ny) = 0, as desired.
(8) = (9) is obvious.
(9) = (1). Let C' be a (T,n+1)-presented left R-module. If0 - K - P - C — 0

is an exact sequence of left R-modules, where P is finitely generated projective, then
for any (7,n)-injective module N, E(N)/N is (T,n)-injective by (9). From the
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exactness of the two sequences

0 = Exth(P,N) — Exth(K, N) — Ext};"(C,N) — Ext};H (P, N) = 0
0 = Ext}4(C, E(N)) — Ext}s(C, E(N)/N) — Ext%™(C, N) — Ext ' (C, E(N)) =0

we have Ext}(K,N) = Ext%™(C,N) = Ext}(C,E(N)/N) = 0. Thus, K is
(T, n)-projective, as required. O

Corollary 2.4. Let T = R-Mod. Then the following statements are equivalent
for the ring R:
(1) R is strongly (T, n)-coherent.
(2) R is (T,n)-coherent.
(3) R is left n-coherent.

Proof. (1) = (2). It follows from Theorem 2.3, statement (3).

(2) = (3). It follows from [16], Example 5.2, statement (1).

(3) = (1). Let 0 - K - P — C — 0 be exact, where C is (T,n + 1)-
presented and P is finitely generated projective. Then by (3), K is n-presented,
so Exty(K,N) = 0 for any n-FP-injective left R-modules. This yields that R is
strongly (7, n)-coherent. O

Corollary 2.5. The following statements are equivalent for the ring R:

(1) R is left n-coherent.

(2) (*((FP),I),(FP),I) is a hereditary cotorsion theory.

(3) Exth(C, M)=0 for anyi > n, any n-presented module C' and any n-FP-injective
left R-module M.

(4) Ext)s™(C, M) = 0 for any n-presented module C' and any n-FP-injective left
R-module M.

(5) If N is an n-FP-injective left R-module and N is an n-FP-injective submodule
of N, then N/N; is n-FP-injective.

(6) For any n-FP-injective left R-module N, E(N)/N is n-FP-injective.

Corollary 2.6. Let T = {0}. Then R is strongly (T,n)-coherent if and only if
every weakly n-FP-injective left R-module is (n + 1)-FP-injective.

Proof. It follows from Theorem 2.3 (5) and [16], Example 4.2, (2). O

Corollary 2.7. The following statements are equivalent for the ring R:
(1) (*W(FP),I),W(FP),I) is a hereditary cotorsion theory.
(2) WF,, WF,)?") is a hereditary cotorsion theory.

662



(3) Exto(C, M) =0 for any i > n, any (n+ 1)-presented module C' and any weakly
n-FP-injective left R-module M.

(4) Exty™(C,M) = 0 for any (n + 1)-presented module C' and any weakly
n-FP-injective left R-module M.

(5) Torf(N,C) =0 for any i > n, any (n + 1)-presented module C' and any weakly
n-flat right R-module N.

(6) Torf,,(N,C) = 0 for any (n + 1)-presented module C' and any weakly n-flat
right R-module N.

(7) If N is a weakly n-FP-injective left R-module and N is a weakly n-FP-injective
submodule of N, then N/N; is weakly n-FP-injective.

(8) For any weakly n-FP-injective left R-module N and E(N)/N is weakly
n-FP-injective.

Let F be a class of left R-modules. As usual, we write 1= F={M: Ext}(M, F)=0,
FeF},and Ft» = {M: Ext}{(F,M) =0, F € F}.

Definition 2.8. Let n be a positive integer. A pair (£,C) of classes of R-modules
is called an n-cotorsion theory if L+» = C and +»C = L. An n-cotorsion theory (£, C)
is called hereditary if whenever 0 — L' — L — L" — 0 is exact with L,L" € L,

then L' is also in L.

It is easy to see that the pair (7, P, T,Z) is an n-cotorsion theory.

Theorem 2.9. Let (£,C) be an n-cotorsion theory. Then the following statements
are equivalent:
(1) (£,C) is hereditary.
(2) If 0 > L' - P — L" — 0 is exact with P projective and L"” € L, then L' is
also in L.
xt™ (L, C) = 0 for any non-negative integer i and any L € L an eC.
3) Exty™(L,C) =0 fi dany L€ L and C €C
(4) Extp™(L,0) =0 forany L € £ and C € C .
(6) If 0 » C" = C — C" — 0 is exact with C',C € C, then C" is also in C.
(6) If 0 > C'" - E — C" — 0 is exact with C' € C and F injective, then C" is
also in C.

(7) If C € C, then E(C)/C €C.

Proof. (1) = (2), (3) = (4) and (5) = (6) = (7) are obvious.

(2) = (3). We only need to prove the case, where ¢ > 1. Let Ly = L. Then
by (2) we have exact sequences 0 — Ly — P, — Ly_1 — 0, k = 1,2,...,4,
where each Lp € L and P, is projective. So we have that Ext%"’i(L,C) =
Extt Ly, 0) = ... = Exth(L;,C) = 0.
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(4) = (1). Let 0 » L' - L — L" — 0 be exact with L,L” € £. Then for
any C € C, by (4) we have an exact sequence 0 = Exty(L,C) — Exti(L',C) —
Ext%"’l([/”, C) =0, so Extk(L',C) =0, and thus L’ € L.

(4) = (5). Let L € L. Then by (4) we have an exact sequence 0 = Ext»(L,C) —
Exth(L,C") — Ext% (L, C") = 0, so Ext}(L,C") = 0, and hence C" € C.

(7) = (4). Let L € L and C € C. Then by (7), E(C)/C € C, and so

Exti(L, E(C)/C) = 0.
Thus, by the exactness of
0 = Exth(L, E(C)/C) — Ext};t (L, C) — Exts™ (L, B(C) = 0,

we get that Ext" (L, C) = 0. O

By Theorems 2.3 and 2.9, we have the following result.

Corollary 2.10. Let R be a strongly (T, n)-coherent if and only if (T, P, T,Z) is
a hereditary n-cotorsion theory.

Definition 2.11.
(1) The (T,n)-injective dimension of a module rM is defined by

ToI—dim(gM)=inf{k: Ext’s"*(C, M)=0 for every (T, n+1)-presented module C'}.
(2) The (T,n)-injective global dimension of a ring R is defined by
ToZ — GLD(R) = sup{TnZ — dim(M): M is a left R-module}.

Theorem 2.12. Let R be a strongly (T,n)-coherent ring, M a left R-module

and k a non-negative integer. Then the following statements are equivalent:

(1) ToZ — dim(gM) < k.

(2) Exty* (O, M) = 0 for any (T,n + 1)-presented module C' and any non-
negative integer .

(3) Ext%™(C, M) = 0 for any (T, n + 1)-presented module C.

(4) If the sequence 0 — M =5 E NN Er_4 dk—_i E, — 0 is exact with
Eo,...,Ex_1 (T,n)-injective, then Ej is also (T,n)-injective.

(5) There exists an exact sequence of left R-modules 0 - M — FEy — ... —
Ey_1 — Eyx — 0 such that Ey, ..., Ex_1, Ey are (T,n)-injective.
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Proof. (1) = (2). Use induction on k. If & = 0, then (2) holds by The-
orem 2.3, statement (4). So let k& > 0. Assume that Ext®™" 't/(C,N) = 0
for any (7,n + 1)-presented module C, any non-negative integer ! and any left
R-module N with 7,7 — dim(N) < k — 1. Then there exists a positive integer
r < k such that Ext%,"™"(C, M) = 0 for any (7T,n + 1)-presented module C, which
implies that Ext,™" ! (C, E(M)/M) = 0 for any (T, n + 1)-presented module C. So
ToZ —dim(E(M)/M) < r —1, and hence 7,7 — dim(E(M)/M) < k—1. By hypoth-
esis, we have Ext% ™' (C, E(M)/M) = 0 for any (T,n + 1)-presented module C
and any non-negative integer [, it yields that Ext%JrkH(C, M) = 0. Therefore state-
ment (2) holds by induction axioms.

(2) = (3) = (1) and (4) = (5) are obvious.

(3) = (4). Since R is strongly (7, n)-coherent and Ey, ..., Ey_1 is (T, n)-injective,
by Theorem 2.3, statement (4) we have Ext’;"*(C, M) = Ext)}*1(C,im(dp)) =
Ext™2(0,im(dy)) = ... = Ext}(C,im(dy_1)) = Exts(C, Ey) for any (T,n + 1)-
presented module C. So statement (4) follows from statement (3).

(5) = (3). Tt follows from the above isomorphism Ext;t*(C, M) = Ext’(C, Ej).

]

Definition 2.13.

(1) The (T,n)-flat dimension of a module My, is defined by
TnF—dim(Mp)=inf{k: Tor,ﬁ_,€ (M,C)=0 for every (T,n+1)-presented module C'}.
(2) The (T,n)-weak global dimension of a ring R is defined by
T, — WD(R) = sup{TpF —dim(M): M is a right R-module}.
Theorem 2.14. Let M be a right R-module. Then
ToF —dim(M) = T,Z — dim(M ™).
Proof. By the isomorphism Torerk(M, )t = ExtytH(C, M. O

Theorem 2.15. Let R be a strongly (T, n)-coherent ring, M a right R-module
and k a non-negative integer. Then the following statements are equivalent:
(1) TpF — dim(Mg) < k.
(2) Torg_HH_l(M, C) = 0 for any (T,n + 1)-presented module C' and any non-
negative integer .
(3) Torlt,,(M,C) =0 for any (T,n + 1)-presented module C.

k—1

€ d .
(4) If the sequence 0 — Fy, — Fj_1 — ... LN Fy S, £ oy M 5 0 is exact
with Fy, ..., Fy_1 (T,n)-flat, then F} is also (T,n)-flat.
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(5) There exists an exact sequence of right R-modules 0 — Fj, =5 F4 dk’—_§ ...
o, Fy , Ey Dy M — 0 such that Fy,...,Fy_1, Fy are (T,n)-flat.

Proof. (1) = (2). Let C be a (T,n + 1)-presented module and | be any
non-negative integer. By (1), there exists a non-negative integer r < k such that
Torg_w(M, C) = 0. And so, by the isomorphism Tor§+T(M, C)t 2 Exth(C,M™),
we have Ext’,""(C, M*) = 0. Since R is strongly (7 ,n)-coherent, by Theorem 2.12
we have Exts**!(C, M*) = 0, and then Tory,, ,(M,C) = 0 by the isomorphism
Tor,!y (M, C)F = Extip™(C, MY).

(2) = (3) = (1) and (4) = (5) are obvious.

(3) = (4). Since R is strongly (7, n)-coherent and Fy,..., Fyr_1 is (T,n)-flat,
by Theorem 2.3, statement (6) we have Tor’, (M,C) = Torf,, ,(Ker(dy),C) =
Tor§+k_2(Ker(d1), C) = ... = Torf(Ker(dy_1),C) = Tor®(F},, C). So statement (4)
follows from statement (3).

(5) = (3). It follows from the above isomorphism Torf, , (M, C) = Torf(Fy, O).

(I

Lemma 2.16. Let R be a strongly (T,n)-coherent ring. Then every (T,n + 1)-
presented module C' is m-presented for any positive integer m.

Proof. If m < n, then it is clear that the result holds. Assume that every
(T, n+1)-presented module is m-presented for some m > n . Then for any (7,n+1)-
presented module C' and any FP-injective module N we have Ext;t'(C,N) = 0
by Theorem 2.3, statement (4) because R is strongly (7,n)-coherent. Let 0 —
Ky ni1— Fpnpni1— ... F — Fyp = C — 0 be an exact sequence of left
R-modules with Fy, ..., F,,_,_1 finitely generated free left R-modules and K,,_,_1
n-presented. Then EX‘C%H(Km_n_l, N) Ext}f{“(C’, N)=0,s0 Kpp—p—1is (n+1)-
presented by [16], Lemma 5.5, and hence C is (m + 1)-presented. Therefore this
lemma holds by induction axioms. O

Theorem 2.17. Let R be a left strongly (T,n)-coherent ring and M a left
R-module. Then

ToZ — dim(M) = T, F — dim(M™).

Proof. Let k be a positive integer and C be a (7,n + 1)-presented module.
Since R is left strongly (7, n)-coherent, by Lemma 2.16, C' is (n+k+2)-presented. So,
by [3], Lemma 2.7, statement (2), we have Tor’, ., (M*,C) = Extx "1 (C, M)*.
Consequently, 7,Z — dim(M) = T, F — dim(M*) by Theorems 2.12 and 2.15. O
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Corollary 2.18. Let R be a strongly (T, n)-coherent ring. Then
T. — WD(R) = T7,Z — GLD(R).

Proof. It follows from Theorems 2.14 and 2.17. O

3. (T,n)-SEMIHEREDITARY RINGS

Recall that a ring R is called left semihereditary if every finitely generated left ideal
of R is projective, or equivalently, if every finitely generated submodule of a projective
right R-module is projective. It is easy to see that a ring R is left semihereditary
if and only if the projective dimension of every finitely presented left R-module is
less than or equal to 1. The concept of semihereditary rings has been generalized by
many authors. For example, a commutative ring R is called a (n,d)-ring (see [4])
if every n-presented R-module has the projective dimension at most d; a ring R is
called a left (n, d)-ring (see [13]) if every n-presented left R-module has the projective
dimension at most d; a ring R is called a left n-hereditary ring (see [14]) if it is a left
(n,1)-ring; a ring R is called a left n-regular ring (see [14]) if it is a left (n, 0)-ring.

Definition 3.1. A ring R is called left weakly n-hereditary if it is a left
(n,n)-ring.

Clearly, left n-hereditary ring is left weakly n-hereditary. A ring R is left semi-
hereditary if and only if R is left 1-hereditary if and only if R is left weakly
1-hereditary.

Example 3.2. Let R be a non-coherent commutative ring of weak dimension
one. Then Rx] is a (2,2)-ring but not a (2,1)-ring by [4], Example 6.5, and so R][x]
is a weakly 2-hereditary ring which is not 2-hereditary.

Next, we generalize the concept of left n-regular rings.

Definition 3.3. A ring R is called left weakly n-regular if it is a left (n,n — 1)-

ring.

Clearly, R is regular if and only if it is left weakly 1-regular. Left n-regular
ring is left weakly n-regular. If n > 2, then left n-hereditary ring is left weakly
n-regular. Since left (2,2)-rings need not be left (2,1)-rings by Example 3.2, left
weakly 2-hereditary rings need not be left weakly 2-regular.

Example 3.4. Let A be an arbitrary Priifer domain (i.e. (1,1)-domain) and
let R be the trivial ring extension of A by its quotient field. Then by [8], Exam-
ple 3.4, R is a commutative (2,1)-ring which is not a (2,0)-ring. So, in general, left
weakly 2-regular rings need not be left 2-regular.
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Definition 3.5. Let 7 be a weak torsion class of left R-modules and n a positive
integer. Then the ring R is called (7, n)-semihereditary if pd(C) < n for each
(T,n + 1)-presented module C.

Example 3.6. Let T = R — Mod. Then R is (7, n)-semihereditary if and only
if it is left weakly n-hereditary.

Example 3.7. Let 7 = {0}. Then R is (7, n)-semihereditary if and only if it is
left weakly (n + 1)-regular.

Theorem 3.8. Let T be a weak torsion class of left R-modules and n a positive
integer. Then the following statements are equivalent for the ring R:

(1) R is a left (T, n)-semihereditary ring.

(2) If0 - K — P — C — 0 is exact, where C is (T,n + 1)-presented, P is finitely
generated projective, then pd(K) < n — 1.

(3) R is (T,n)-coherent and every submodule of a (T,n)-flat right R-module is
(T, n)-flat.

4) R is (T,n)-coherent and every right ideal is (T, n)-flat.

5) R is (T,n)-coherent and every finitely generated right ideal is (T ,n)-flat.

6) Every quotient module of a (T,n)-injective left R-module is (T, n)-injective.

(4)
()
(6)
(7) Every quotient module of an injective left R-module is (T, n)-injective.
(8) Every left R-module has a monic (T, n)-injective cover.
(9) Every right R-module has an epic (T,n)-flat envelope.
(10) For every left R-module A, the sum of an arbitrary family of (T,n)-injective
submodules of A is (T, n)-injective.
(11) Every torsionless right R-module is (T ,n)-flat.
(12) R is strongly (T,n)-coherent and T,Z — GLD(R) < 1.
(13) R is strongly (T, n)-coherent and T, — WD(R) < 1.

Proof. (1) < (2), (3) = (4) = (5) and (6) = (7) are trivial.

(2) = (3). Assume (2). Then R is clearly (7,n)-coherent by [16], Lemma 5.5.
Let A be a submodule of a (T, n)-flat right R-module B and let C be a (T,n + 1)-
presented left R-module. Then there exists an exact sequence of left R-modules
0— K — P — C — 0, where P is finitely generated projective. By (1), pd(K) <
n — 1 and so fd(K) < n — 1. Then the exactness of 0 = Torl, (B/A,P) —
Tor§+1(B/A, C) — Tor?(B/A, K) = 0 implies that Tor§+1(B/A, C)=0. Thus, from
the exactness of the sequence 0 = Torg_H(B/A, C) — Tor?(A,C) — Tor®(B,C) =0
we have Torf(A,C) = 0, that is, A is (T, n)-flat.

(5) = (2). Let C' be a (T,n+1)-presented left R-module. If0 - K - P - C — 0
is an exact sequence of left R-modules, where P is finitely generated projective.
Since R is (7, n)-coherent, K is n-presented. For any finitely generated right ideal I
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of R we have an exact sequence 0 — Torg_H(R/I,C) — Tor®*(I,C) = 0 since T
is (7,n)-flat. So Toer(R/I,C) = 0, and hence we obtain an exact sequence
0 = Torf,,(R/1,C) — Tor®(R/I,K) — 0. Thus, Torf(R/I,K) = 0. Let K
have a finite n-presentation F, d—) .o — 2) Fi i> Fy = K — 0. Then
Ker(d,_») is finitely presented and Tor?(R/I,Ker(d,_») = 0, so Ker(d,_s) is pro-
jective. Therefore pd(K) < n — 1.

(2) = (6). Let M be a (T,n)-injective left R-module and N be a submodule
of M. Then for any (7,n + 1)-presented left R-module C, there exists an exact
sequence of left R-modules 0 - K — P — C — 0, where P is finitely generated
projective and pd(K) < n—1 by (2). And so the exact sequence 0 = Ext'y (K, N) —
Ext’(C, N) — Ext’y™ (P, N) = 0 implies that Ext’s"'(C, N) = 0. Thus, the exact
sequence 0 = Exth(C, M) — Ext}(C,M/N) — Ext’;"'(C,N) = 0 implies that
Ext'y(C, M/N) = 0. Consequently, M/N is (T, n)-injective.

(7) = (2). Let C be a (T,n + 1)-presented left R-module and there is an ex-
act sequence of left R-modules 0 - K — P — C — 0, where P is finitely
generated projective. Then for any left R-module M, by hypothesis, E(M)/M is
(T, n)-injective, and so Extr(C, E(M)/M) = 0. Thus, the exactness of the se-
quence 0 = Ext(C, E(M)/M) — Ext;"(C, M) — Ext;"(C, E(M)) = 0 implies
that Ext);™(C, M) = 0. Hence, the exactness of the sequence 0 = Ext7(P, M) —
Ext(K, M) — Ext)yt(C, M) = 0 implies that Ext (K, M) = 0, as required.

(3) < (9). It follows from [2], Theorem 2 and [16], Theorem 5.3, statement (5).

(3),(6) = (8). Since R is (T, n)-coherent by (3) for any left R-module M there is
a (T,n)-injective cover f: E — M by [16], Corollary 5.8. Note that im(f) is (T, n)-
injective by (6), and f: E — M is a (T, n)-injective precover, so for the inclusion
map ¢: im(f) — M there is a homomorphism ¢: im(f) — FE such that i = fg.
Hence f = f(gf). Observing that f: F — M is a (T,n)-injective cover and ¢ f is an
endomorphism of F, gf is an automorphisms of E, and thus f: F — M is a monic
(T, n)-injective cover.

(8) = (6). Let M be a (T, n)-injective left R-module and N be a submodule of M.
By (8), M/N has a monic (T, n)-injective cover f: E — M/N. Let m: M — M/N
be the natural epimorphism. Then there exists a homomorphism g: M — FE such
that 7 = fg. Thus, f is an isomorphism, and therefore M /N = FE is (T, n)-injective.

(6) = (10). Let A be a left R-module and {A,: v € I'} be an arbitrary family of
(T, n)-injective submodules of A. Since the direct sum of (7, n)-injective modules
is (T, n)-injective and ) A, is a homomorphic image of ®,crA,, by (6), > A, is
(T, n)-injective. el el

(10) = (7). Let E be an injective left R-module and K < E. Take Ey; = Es = E,
N=E1®FEy, D={(z,—x): z € K}. Define f1: E1 — N/D by z1 — (21,0) + D,
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fo: Ey = N/D by x3 — (0,22) + D and write E; = f;(E;), i = 1,2. Then E; = E;
is injective, i = 1,2, and so N/D = E; + Es is (T, n)-injective. By the injectivity
of E;, (N/D)/E; is isomorphic to a summand of N/D and thus it is (7, n)-injective.
Now, we define f: E — (N/D)/E1; e — fa(e) + Ej, then f is an epimorphism with
Ker(f) = K, and hence E/K = (N/D)/E; is (T, n)-injective.

(3) = (11). Let M be a torsionless right R-module. Then there exists an ex-
act sequence 0 — M — [[Rg. Since R is (T,n)-coherent, by [16], Theorem 5.3,
statement (4), [[ Rg is (T, n)-flat. By hypothesis, every submodule of a (7, n)-flat
R-module is (7, n)-flat, so M is (T, n)-flat.

(11) = (3). Assume (11). Then [[ Rg is (T, n)-flat, and thus R is (7, n)-coherent
by [16], Theorem 5.3, statement (4). Moreover, every right ideal of R is torsionless
and so (7, n)-flat.

(2) = (12). Let 0 - K — P — C — 0 be exact with C (7,n + 1)-presented
and P finitely generated projective. Then by (2), pd(K) < » — 1, and so K is
(T,n)-projective, which shows that R is strongly (7, n)-coherent. Now let M be
any left R-module. Then for any (7,n + 1)-presented module C' we have an exact
sequence 0 - K — P — C — 0 of left R-modules, where P is finitely generated
projective. By (2), pd(K) < n — 1. Thus, the exact sequence 0 = Exty (K, M) —
Ext;?'l(C, M) — Ext%"'l(P, M) = 0 implies that EXt%J'_l(C, M) = 0. This yields
that 7,Z — GLD(R) < 1 by Definition 2.11.

(12) = (13). It follows from Theorem 2.12 and the isomorphism

Torf, |(M,C)" = Ext)yH(C, M™).

(13) = (3). Assume (13). Then R is clearly (7,n)-coherent. Let A be a sub-
module of a (7,n)-flat right R-module B and let C be a (7,n + 1)-presented
left R-module. Since R is strongly (7,n)-coherent and 7,-WD(R)< 1, by Theo-
rem 2.15 we have Tory ;(B/A,C) = 0. Then, from the exactness of the sequence
0= Tor§+1(B/A,C) — Torf(A,C) — Tor®(B,C) = 0 we have Tor?(A,C) = 0,
which shows that A is 7,-flat. O

Corollary 3.9. The following statements are equivalent for the ring R:
(1) R is a left weakly n-hereditary ring.
(2) If 0 > K - P —- C — 0 is exact, where C is n-presented, P is finitely
generated projective, then pd(K) < n — 1.
R is left n-coherent and every submodule of an n-flat right R-module is n-flat.
R is left n-coherent and every right ideal is n-flat.
R is left n-coherent and every finitely generated right ideal is n-flat.
Every quotient module of an n-FP-injective left R-module is n-FP-injective.



(7
8
(
1

) Every quotient module of an injective left R-module is n-FP-injective.
)
9) Every right R-module has an epic n-flat envelope.
)

Every left R-module has a monic n-FP-injective cover.

(10) For every left R-module A, the sum of an arbitrary family of n-FP-injective
submodules of A is n-FP-injective.

(11) Every torsionless right R-module is n-flat.

(12) R is left n-coherent and (FP),Z — GLD(R) < 1.

(13) R is left n-coherent and n — WD(R) < 1.

Proof. It follows from Theorem 3.8 and Corollary 2.4. O

Let n = 1, then by Corollary 3.9, we can obtain a series of characterizations of
left semihereditary rings.

Corollary 3.10. The following statements are equivalent for the ring R:

(1) R is a left semihereditary ring.

(2) If 0 - K — P — C — 0 is exact, where C is finitely presented, P is finitely

generated projective, then K is projective.

(3
(4
(5
(6
(
(
(
1

) R is left coherent and every submodule of a flat right R-module is flat.
)
)

)
7) Every quotient module of an injective left R-module is FP-injective.
)

)

)

R is left coherent and every right ideal is flat.
R is left coherent and every finitely generated right ideal is flat.
Every quotient module of an FP-injective left R-module is FP-injective.

8
9
(10) For every left R-module A, the sum of an arbitrary family of FP-injective sub-

Every left R-module has a monic FP-injective cover.
Every right R-module has an epic flat envelope.

modules of A is FP-injective.
(11) Every torsionless right R-module is flat.
(12) R is left coherent and FPZ — GLD(R) < 1.
(13) R is left coherent and WD(R) < 1.

Corollary 3.11. The following statements are equivalent for the ring R:
(1) R is a left weakly (n + 1)-regular ring.
(2) If0 - K - P - C — 0 is exact, where C is (n+1)-presented, P is finitely
generated projective, then pd(K) < n — 1.
(3) Every submodule of a weakly n-flat right R-module is weakly n-flat.
(4) Every right ideal is weakly n-flat.
(5) Every finitely generated right ideal is weakly n-flat.
(6) Every quotient module of a weakly n-FP-injective left R-module is weakly
n-FP-injective.
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(7
8
(
1

) Every quotient module of an injective left R-module is weakly n-FP-injective.
)
9) Every right R-module has an epic weakly n-flat envelope.
)

Every left R-module has a monic weakly n-FP-injective cover.

(10) For every left R-module A, the sum of an arbitrary family of weakly n-FP-
injective submodules of A is weakly n-FP-injective.

(11) Every torsionless right R-module is weakly n-flat.

(12) Every weakly n-FP-injective left R-module is (n + 1)-FP-injective and

W(FP), T - GLD(R) < 1.

(13) Every weakly n-FP-injective left R-module is (n + 1)-FP-injective and W,, —
WD(R) < 1.

Proof. It follows from Theorem 3.8 and Corollary 2.6. (]

4. (T,n)-REGULAR RINGS

Definition 4.1. Let T be a weak torsion class of left R-modules and n a positive
integer. Then the ring R is called (T, n)-regular if pd(C) < n—1 for each (T, n+1)-
presented module C.

Example 4.2. Let 7 = R — Mod. Then R is (7, n)-regular if and only if it is
left weakly n-regular.

Example 4.3. Let 7 = {0}. Then R is (7,n)-regular if and only if it is a left
(n+1,n — 1)-ring.

Theorem 4.4. Let T be a weak torsion class of left R-modules and n a positive

integer. Then the following conditions are equivalent for R:

(1) R is (T,n)-regular.

(2) Every left R-module is (T, n)-injective.

(3) Every right R-module is (T, n)-flat.

(4) Every cotorsion right R-module is (T, n)-flat.

(5) Every right R-module in (7, F)* is injective.

(6) Every left R-module in +(7,,Z) is projective.

(7) R is (T,n)-semihereditary and rR is (T, n)-injective.

(8) R is strongly (T,n)-coherent and every left R-module in *+(T,Z) is (T,n)-

injective.
(9) R is strongly (T, n)-coherent and every right R-module in (7, F)~* is (T, n)-flat.
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Proof. (1) & (2); (3) = (4, (5) (2) = (6); (1),(2) = (7); and (2),(7) = (8)
are clear.

(2) = (3). It follows from the isomorphism Tor(M,C)* = Ext’(C, M ™).

(4) = (2). Let M be any left R-module. Since M™ is pure injective by [5],
Proposition 5.3.7, M is a cotorsion by [5], Lemma 5.3.23, and so M is (T,n)-flat
by (4). Hence, by [16], Theorem 4.8, M+* is (T, n)-injective. Note that M is a pure
submodule of M**. By [16], Proposition 4.9, statement (1), M is (7, n)-injective.

(5) = (3). It follows from the fact that (7,F,(7,F)") is a cotorsion theory
(see [16], Theorem 4.11, statement (2)).

(6) = (2). It follows from the fact that (+(7,Z),7,Z) is a cotorsion theory
(see [16], Theorem 4.11, statement (1)).

(7) = (2) Let M be any left R-module. Then there exists an exact sequence F' —
M — 0 with F free. Since gR is (T, n)-injective, by [16], Proposition 4.6, F'is (T, n)-
injective. Since R is (7 ,n)-semihereditary, by Theorem 3.8, statement (6), M is
(T, n)-injective.

(8) = (2). Let M be any left R-module. By [16], Theorem 4.11, statement (1),
there exists an exact sequence 0 — K — F — M — 0 with F €t (7,7) and
K € T,Z. Then F € T,Z by (8). Note that R is strongly (7,n)-coherent, by
Theorem 2.3, statement (8), we have that M € 7,Z.

(3),(8) = (9). It is obvious.

(9) = (3). Let E € (T,F)*. Then for any right R-module M, by [16], Theo-
rem 4.11, statement (2), (7, F, (ToF)") is a perfect cotorsion theory, so it is a com-
plete cotorsion theory, and hence there exists an exact sequence 0 - M — F —
L — 0, where F € (T,F)* and L € T,F. By (9), F is (T,n)-flat. Since R is
strongly (7, n)-coherent, by Theorem 2.3, statement (3), (7,,F, (T, F)") is a hered-
itary cotorsion theory, and thus, M is (7, n)-flat. O

Corollary 4.5. Let n be a positive integer. Then the following conditions are
equivalent for R:
(1) R is left weakly n-regular.
2
3
4

(
(
(
(5
(
(
(
(

Every left R-module is n-FP-injective.

Every right R-module is n-flat.

Every cotorsion right R-module is n-flat.

Every right R-module in F;- is injective.

6) Every left R-module in *~((FP),ZI) is projective.

7) R is left weakly n-hereditary and rR is n-FP-injective.

8) R is left n-coherent and every left R-module in +((FP), I) is n-FP-injective.
L

)
)
)
)
)
)
)
)

9) R is left n-coherent and every right R-module in (F,)— is n-flat.
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Recall that a left R-module N is said to be FP-projective (see [9]) if Exty (N, M)=0
for any FP-injective left R-module M.

Corollary 4.6. The following conditions are equivalent for a ring R:
1
2
3
4

(1) R is regular.

(2)

(3)

(4)

(5) Every cotorsion right R-module is injective.
(6)

(7)

(8)

Every left R-module is FP-injective.
Every right R-module is flat.
Every cotorsion right R-module is flat.

6
7
8

Every FP-projective left R-module is projective.
R is left semihereditary and rR is FP-injective.
R is left coherent and every FP-projective left R-module is FP-injective.
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