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Abstract. We prove boundedness and continuity for solutions to the Dirichlet problem
for the equation

−div(a(x,∇u)) = h(x, u) + µ, in Ω ⊂ R
N
,

where the left-hand side is a Leray-Lions operator from W
1,p
0
(Ω) into W−1,p′

(Ω) with

1 < p < N , h(x, s) is a Carathéodory function which grows like |s|p−1 and µ is a finite
Radon measure. We prove that renormalized solutions, though not globally bounded, are
Hölder-continuous far from the support of µ.
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1. Introduction

In this note, we prove that solutions to the Dirichlet problem for nonlinear elliptic

equations having measure datum are locally Hölder-continuous. For the sake of

concreteness, consider the following simple linear problem:

(1.1)

{

−λ∆u = f(x)(1 + u) + µ in Ω;

u = 0 on ∂Ω.

Here Ω ⊂ R
N is an open and bounded set, f ∈ Lm(Ω) (with m > N/2) is small

enough (in a sense to be determined) and µ is a Radon measure having finite total
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variation and a support which does not include the whole domain. Our motivation to

study this kind of problems comes from searching nonregular solutions to equations

with a gradient term having “natural” growth which, by means of the Cole-Hopf

change of unknown, are reduced to (1.1) (see Abdellaoui, Dall’Aglio and Peral [2]

and Abdel Hamid and Bidaut-Veron [1]). In fact, we apply the results of this paper

to obtain nonregular solutions to an equation involving the 1-Laplacian and a total

variation term in Abdellaoui, Dall’Aglio and Segura de León, see [3].

Two features of problem (1.1) deserve a comment. The first point to note is that

we have to restrict the size of f in order to get existence of a solution, even if µ = 0

and f(x) ≡ f0 is a constant. Indeed, taking u as a test function and applying

Poincaré’s inequality, we may perform the following calculation:

λ

∫

Ω

|∇u|2 = f0

∫

Ω

|u|2 + f0

∫

Ω

u 6
f0
λ1

∫

Ω

|∇u|2 + f0

∫

Ω

u,

where λ1 is the first eigenvalue of the Laplacian. So, an estimate in the energy space

is only possible if f0 < λλ1. Observe that this bound on f0 depends on the coercivity

of the principal part.

In order to deal with a general Radon measure µ, we consider the notion of renor-

malized solution introduced by Dal Maso, Murat, Orsina and Prignet in [8]. We

point out the related concept of entropy solution introduced by Benilan et al. in [4]

for proving the existence and uniqueness of the result for L1-data and extended

by Boccardo, Gallouët and Orsina in [5] to measures which do not charge the sets

of zero capacity. The existence of a renormalized solution to problem (1.1) under

a smallness assumption on f has been proved in Grenon [10] and Abdel Hamid and

Bidaut-Veron [1].

A classical result by Stampacchia (see [12]) shows that if µ is actually a function

belonging to Lm(Ω) for some m > N/2, then the solution is bounded and continuous

but if not, it is unbounded in general. Actually, the simple case where h(x, s) ≡ 0

in (2.1) below shows that we cannot hope to prove global boundedness of solutions,

but nevertheless we prove boundedness and continuity of the solution in a zone far

away from the support of µ. Heuristically, the idea is that the local boundedness of

the solution only depends on the local summability of the datum µ. In the special

case where p = 2 and f(x) = 0, a similar result was proved by Boccardo and Leonori

in [6].

Our setting is more general than problem (1.1) and includes nonlinear operators

of p-Laplacian type, so it is similar to the one studied by Grenon in [10]. The

only change is our restriction on the growth of function h(x, s); we always assume

the critical exponent p − 1 because of our interest in equations which appear as

a consequence of the Cole-Hopf transformation. In her paper, Grenon proves the
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existence of a renormalized solution under a hypothesis of smallness of f . Our main

result is that every renormalized solution is Hölder-continuous outside of the support

of the measure µ. We point out that we only analyze the case 1 < p < N since for

p > N every renormalized solution is actually a weak solution and so it is globally

bounded and Hölder-continuous.

This paper is organized as follows. The next section is devoted to introducing our

notation and precise hypotheses. Section 3 deals with the definition of renormalized

solutions, while Section 4 contains the results on regularity.

2. Preliminaries and assumptions

We begin by introducing our notation. From now on, Ω is an open bounded set

in R
N with N > 2 and |E| denotes the Lebesgue measure of E ⊂ Ω. Symbol Lq(Ω)

stands for the usual Lebesgue space and q′ denotes the conjugate of q : q′ = q/(q − 1).

We will denote byW 1,q
0 (Ω) the usual Sobolev space of measurable functions having

weak derivatives in Lq(Ω) and zero trace on ∂Ω. Finally, if 1 6 q < N , we will denote

by q∗ = Nq/(N − q) its Sobolev conjugate exponent.

Let us state our hypotheses more precisely. We will consider the following problem:

(2.1)

{

− div(a(x,∇u)) = h(x, u) + µ in Ω;

u = 0 on ∂Ω.

Function

a(x, ξ) : Ω× R
N → R

N

satisfies the Carathéodory conditions and there exist constants λ > 0 and ν > 0 such

that

a(x, ξ) · ξ > λ|ξ|p,(2.2)

|a(x, ξ)| 6 ν|ξ|p−1,(2.3)

(a(x, ξ)− a(x, η)) · (ξ − η) > 0(2.4)

for all ξ, η ∈ R
N with ξ 6= η and for almost all x ∈ Ω.

Function

h(x, s) : Ω× R → R

also satisfies the Carathéodory conditions and there exists a nonnegative function

f ∈ Lm(Ω), for some m > N/p, such that

(2.5) |h(x, s)| 6 f(x)(1 + |s|p−1)
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for all s ∈ R and for almost all x ∈ Ω. As far as the datum µ is concerned, we assume

that

(2.6) µ is a Radon measure with bounded total variation.

Throughout this paper, we will use two auxiliary real functions: given k > 0, we

define

Tk(s) =

{

s if |s| 6 k;

k
s

|s|
if |s| > k;

Gk(s) = s− Tk(s).

3. Renormalized solutions

In this Section, we define a renormalized solution to problem (2.1); we refer to [8]

for a detailed study of renormalized solutions and several equivalent definitions.

Definition 3.1. Given the measure µ, we decompose it as µ = µ0 + µ+
s − µ−

s ,

where µ0 is absolutely continuous with respect to the p-capacity, while µ
+
s and µ−

s

are two nonnegative measures which are concentrated on two disjoint subsets of zero

p-capacity.

A measurable function u : Ω → R is a renormalized solution to problem (2.1) if

the following conditions hold:

(1) Function u is finite almost everywhere and Tk(u) ∈ W 1,p
0 (Ω) for all k > 0. (As

a consequence, a generalized gradient ∇u can be defined, see [4], Lemma 2.1.)

(2) The gradient satisfies |∇u|p−1 ∈ Lq(Ω) for every q < N/(N − 1).

(3) |u|p−1 ∈ Ls(Ω) for every s < N/(N − p). In particular, by assumption (2.5),

this implies that the function h(x, u) belongs to L1(Ω).

(4) For every S ∈ W 1,∞(R) such that S′ has compact support in R (consequently S

is constant for |s| large and so the limits S(+∞) = lim
s→+∞

S(s) and S(−∞) =

lim
s→−∞

S(s) exist) we have

∫

Ω

S′(u)ϕa(x,∇u) · ∇u+

∫

Ω

S(u)a(x,∇u) · ∇ϕ

=

∫

Ω

h(x, u)S(u)ϕ+

∫

Ω

S(u)ϕdµ0 + S(+∞)

∫

Ω

ϕdµ+
s − S(−∞)

∫

Ω

ϕdµ−

s

for all ϕ ∈ W 1,r(Ω) ∩ L∞(Ω), with r > N , such that S(u)ϕ ∈ W 1,p
0 (Ω).

In [1] and [10] it was proved that under a smallness assumption on f there exists

a renormalized solution to problem (2.1). In particular, the next theorem can be

found in [1]:
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Theorem 3.2. Assume that hypotheses (2.2)–(2.6) are true and that

1

λ
< λ1(f) := inf

{

∫

Ω
|∇w|p

∫

Ω f |w|p
: w ∈ W 1,p

0 (Ω),

∫

Ω

f |w|p 6= 0

}

.

Then there exists a renormalized solution u to problem (2.1).

4. Regularity away from the support of µ

In the next results we aim to prove that a renormalized solution of problem (2.1) is

“regular enough” (in particular, it is bounded) far from the set where the measure µ

is concentrated. We start by proving that it belongs to all Lq spaces.

We recall that a measure µ is said to be concentrated on a set A if µ(E) = µ(E∩A)

for every measurable set E.

Proposition 4.1. Assume that hypotheses (2.2)–(2.6) are true and that the mea-

sure µ is concentrated on a set A ⊂ Ω.

Then for every open set U ⊂ Ω having positive distance from A, and for every

q < ∞, |u|q ∈ W 1,p(U). It follows that u ∈ Lq(U) for every q < ∞.

In order to prove Proposition 4.1, we need an iteration lemma inspired in the

Brezis-Kato approach (see [7]), which allows to improve the summability of a renor-

malized solution of problem (2.1):

Lemma 4.2. Under the same hypotheses as in Proposition 4.1 assume that

U and V are two open bounded sets in R
N such that U ⊂ V ⊂ R

N \A. Define

M =
N

(N − p)m′
> 1

and assume that there exist θ > (p− 1)/Mp and k ∈ N such that

(1 + |u|)θM
k

∈ W 1,p(V ∩ Ω).

Then

(1 + |u|)θM
k+1

∈ W 1,p(U ∩ Ω).
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P r o o f. First of all, by standard inclusions between Lebesgue spaces, we can

always assume that f satisfies the assumption

f ∈ Lm(Ω) with
N

p
< m 6

N

p− 1
.

Let ϕ be a function in C∞

0 (V ) such that 0 6 ϕ 6 1 in V , ϕ ≡ 1 in U . For α > 0 (to

be chosen later) let us take w = ϕp[(1 + |TLu|)
α(p−1) − 1] signu as a test function in

the definition of renormalized solution. We obtain

(4.1) α(p− 1)λ

∫

V ∩Ω

(1 + |TL(u)|)
α(p−1)−1|∇TL(u)|

pϕp

6 pν

∫

V ∩Ω

ϕp−1|∇u|p−1|∇ϕ|(1 + |TL(u)|)
α(p−1)

+

∫

V ∩Ω

f(1 + |u|)p−1(1 + |TL(u)|)
α(p−1)ϕp.

Note that the measure µ disappears due to the presence of ϕ. By the monotone

convergence theorem it is easy to pass to the limit for L → ∞ in all the integrals

in (4.1), thus we obtain

(4.2) α(p− 1)λ

∫

V ∩Ω

(1 + |u|)α(p−1)−1|∇u|pϕp

6 pν

∫

V ∩Ω

ϕp−1|∇u|p−1|∇ϕ|(1 + |u|)α(p−1)

+

∫

V ∩Ω

f(1 + |u|)(p−1)(α+1)ϕp.

We only have to check that the last two integrals in (4.2) are finite. Let us

start with the last one, which is finite if
∫

V ∩Ω f(1 + |u|)(p−1)(α+1) is finite. By

the assumptions, we know that f ∈ Lm(Ω) and, using Sobolev’s inequality, that

1 + |u| ∈ Lp∗θMk

(V ∩Ω). Therefore the integral is finite if we choose α such that

1

m
+

(α + 1)(p− 1)

p∗θMk
= 1,

that is,

(4.3) α =
p

p− 1
θMk+1 − 1.

We point out that α > 0 due to our assumption

θ >
p− 1

Mp
>

p− 1

Mk+1p
.
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We now need to check that with this choice of α, the second integral in (4.2) is finite,

that is, we have to make sure that
∫

V ∩Ω |∇u|p−1(1 + |u|)α(p−1) < ∞. Indeed, using

Young’s inequality,

∫

V ∩Ω

|∇u|p−1(1 + |u|)α(p−1) =

∫

V ∩Ω

|∇u|p−1(1 + |u|)pθM
k+1

−p+1

=

∫

V ∩Ω

|∇u|p−1(1 + |u|)(θM
k
−1)(p−1)(1 + |u|)θM

k(pM−p+1)

6

∫

V ∩Ω

|∇u|p(1 + |u|)(θM
k
−1)p +

∫

V ∩Ω

(1 + |u|)θpM
k(pM−p+1)

=
1

(θMk)p

∫

V ∩Ω

|∇(1 + |u|)θM
k

|p +

∫

V ∩Ω

(1 + |u|)θpM
k(pM−p+1).

Using the assumption on u, Sobolev’s inequality and the fact that

θpMk(pM − p+ 1) 6 θp∗Mk

due to the assumption m 6 N/(p− 1), we obtain that the last two integrals are

finite. The Lemma is thus proved. �

P r o o f of Proposition 4.1. In order to apply Lemma 4.2, we need a startpoint,

that is, we need to verify that the assumption of Lemma 4.2 is valid for k = 0. In

other words, we need to show that there exists a number θ > (p− 1)/Mp such that

(1+ |u|)θ is in W 1,p far from the support of µ. To this aim, assume that V is an open

set such that U ⊂ V ⊂ R
N \ A. Let us again consider a cut-off function ϕ which

vanishes outside V and is 1 on U .

Multiplying the equation by ϕp[(1 + |TL(u)|)
α(p−1) − 1] signu and letting L go to

infinity, we obtain

(4.4) α(p− 1)λ

∫

V ∩Ω

(1 + |u|)α(p−1)−1|∇u|pϕp

6 pν

∫

V ∩Ω

ϕp−1|∇u|p−1|∇ϕ|(1 + |u|)α(p−1)

+

∫

V ∩Ω

f(1 + |u|)(α+1)(p−1)ϕp.

We choose α such that

(4.5) 0 < α <
N

m′(N − p)
− 1.

With this choice, the last integral in (4.4) is finite since up−1 ∈ Ls(Ω) for every

s < N/(N − p). As far as the second integral is concerned, by the definition of
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renormalized solution we know that |∇u|p−1 ∈ Lr(Ω) for every r < N/(N − 1).

Therefore ∫

V ∩Ω

ϕp−1|∇u|p−1|∇ϕ|(1 + |u|)α(p−1) < ∞

as long as
N − 1

N
+

α(N − p)

N
< 1,

which corresponds to

α <
1

N − p
.

It is easy to see that under the condition m 6 N/(p− 1), which can be assumed

without loss of generality, one has

N

m′(N − p)
− 1 6

1

N − p
,

therefore all the integrals in (4.4) are finite for every α as in (4.5). From there it

easily follows that (1 + |u|)θ ∈ W 1,p(U) for every θ such that

θ <
N(p− 1)

m′p(N − p)
=

M(p− 1)

p
.

In order to apply Lemma 4.2 it is enough to choose θ satisfying

p− 1

Mp
< θ <

M(p− 1)

p
,

which is possible since M > 1. So, we have completed the proof of Proposition 4.1.

�

In order to prove the following two results, we need to use some Caccioppoli

estimate techniques. To obtain the estimates up to the boundary of Ω, it is convenient

to extend the renormalized solution u to be zero outside of Ω. We therefore define

ũ(x) =

{

u(x) if x ∈ Ω;

0 if x ∈ R
N \ Ω.

Theorem 4.3. Assume that hypotheses (2.2)–(2.6) are true and that µ is con-

centrated on a set A ⊂ Ω. Let u be a renormalized solution of problem (2.1).

Then for every open set U ⊂ Ω having positive distance from A,

u ∈ L∞(U).
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P r o o f. Our aim is to see that for every x0 far from the support of µ there exists

a ball centered at x0 in which ũ is bounded. To this end, we get a Caccioppoli type

inequality that allows us to deduce a L∞

loc-estimate far from the support of µ.

From now on, B̺ ⊂ BR stand for concentric open balls; we will always assume

that BR has positive distance from A. In addition, if u is the renormalized solution

and k > 0, we will write

A(k, ̺) = {x ∈ B̺ : |ũ(x)| > k}.

Fix R > 0 such that |BR| is small enough (it will be determined later). Let

ϕ ∈ C∞

0 (BR) satisfy 0 6 ϕ 6 1. Given k > 0, since we know that u ∈ W 1,p(BR ∩Ω),

we may choose TL(Gk(u))ϕ
p as a test function in (2.1) and then let L go to ∞. We

obtain

(4.6) λ

∫

Ω

ϕp|∇Gk(u)|
p

6 pν

∫

Ω

ϕp−1|Gk(u)||∇Gk(u)|
p−1|∇ϕ|+

∫

Ω

f(1 + |u|)p−1|Gk(u)|ϕ
p.

We analyze the right-hand side of (4.6). By applying Young’s inequality, we get

(4.7) pν

∫

Ω

ϕp−1|Gk(u)||∇Gk(u)|
p−1|∇ϕ|

6 ε

∫

Ω

ϕp|∇Gk(u)|
p + C(ε)

∫

Ω

|Gk(u)|
p|∇ϕ|p.

Observe that if we choose ε = λ/2, the first term can be absorbed by the left-hand

side of (4.6).

The last term on the right-hand side of (4.6) is estimated as follows:

(4.8)

∫

Ω

f(1 + |u|)p−1|Gk(u)|ϕ
p 6

∫

Ω

f [2p−1((1 + k)p−1 + |Gk(u)|
p−1)]|Gk(u)|ϕ

p

= 2p−1

∫

Ω

f(1 + k)p−1|Gk(u)|ϕ
p + 2p−1

∫

Ω

f |Gk(u)|
pϕp

6 2p−1 p− 1

p

∫

A(k,R)

f(1 + k)pϕp + 2p−1
(

1 +
1

p

)

∫

Ω

f |Gk(u)|
pϕp,

where in the last step we have applied Young’s inequality. Hence, on account of (4.7)

and (4.8), it follows from (4.6) that

(4.9)

∫

Ω

ϕp|∇Gk(u)|
p

6 C

∫

Ω

|Gk(u)|
p|∇ϕ|p + C

∫

A(k,R)

f(1 + k)pϕp + C

∫

Ω

f |Gk(u)|
pϕp
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for a constant C > 0. The next step is to estimate the last term on the right-hand

side. We apply Hölder’s and Sobolev’s inequalities to deduce

∫

Ω

f |Gk(u)|
pϕp 6 ‖f‖m|A(k,R)|1/m

′
−p/p∗

[
∫

Ω

|Gk(u)|
p∗

ϕp∗

]p/p∗

6 ‖f‖m|BR|
1/m′

−p/p∗

SN,p

∫

Ω

|∇(Gk(u)ϕ)|
p

= ‖f‖m|BR|
1/m′

−p/p∗

SN,p2
p−1

[
∫

Ω

ϕp|∇Gk(u)|
p +

∫

Ω

|Gk(u)|
p|∇ϕ|p

]

.

Choosing R such that C‖f‖m|BR|
1/m′

−p/p∗

SN,p2
p−1 6 1

2 , where C is the same

constant occurring in (4.9), this first term can be absorbed by the left-hand side

of (4.9). Thus, (4.9) becomes

(4.10)

∫

Ω

ϕp|∇Gk(u)|
p
6 C

∫

Ω

|Gk(u)|
p|∇ϕ|p + C

∫

A(k,R)

f(1 + k)pϕp

for a different constant C > 0.

Now, take 0 < ̺ < R, consider B̺ a ball centered at the same point as BR and

choose ϕ ∈ C∞

0 (BR) satisfying ϕ(x) = 1 for all x ∈ B̺ and |∇ϕ| 6 2/(R− ̺). Then

we deduce from (4.10) that

(4.11)

∫

B̺

|∇Gk(ũ)|
p 6

C

(R− ̺)p

∫

BR

|Gk(ũ)|
p + C(1 + k)p

∫

A(k,R)

f

6
C

(R− ̺)p

∫

BR

|Gk(ũ)|
p + C(1 + k)p‖f‖m|A(k,R)|1/m

′

,

which is the desired Caccioppoli type inequality. Since m > N/p, it yields

1

m′
> 1−

p

N
,

so (4.11) is similar to the estimate found in [9], Theorem 7.1. Now we may follow

the same arguments of [9], Chapter 7, to infer that ũ ∈ L∞(BR/2).

Let U be an open set U ⊂ Ω having positive distance from A. We have seen that

for every x ∈ U there exists r > 0 (depending on x) such that ũ ∈ L∞(Br(x)). The

compactness of U implies the desired conclusion. �

Remark 4.4. If we assume h(x, s) = f(x)sp−1 (where f is a nonnegative func-

tion belonging to Lm(Ω) for some m > N/p) and µ > 0, then we may apply [11],

Theorem 2.4, to obtain a pointwise estimate of the solution. It is easy to check that

this estimate is bounded far from the support of µ. Therefore in this case we may

deduce Theorem 4.3 above from [11], Theorem 2.4. The authors thank the referee

for bringing [11] to their attention.
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It is now straightforward to prove that the renormalized solution is actually con-

tinuous outside the support of µ.

Theorem 4.5. Assume that hypotheses (2.2)–(2.6) are true and that µ is con-

centrated on a closed set A ⊂ Ω. Let u be a renormalized solution of problem (2.1).

Then u is Hölder-continuous in Ω \A.

P r o o f. Let B̺ ⋐ BR be a pair of concentric balls having positive distance

from A. We have proved in Theorem 4.3 that u is bounded in Ω ∩ BR. It follows

that (4.11) can be rewritten as

∫

B̺

|∇Gk(ũ)|
p 6

C

(R − ̺)p

∫

BR

|Gk(ũ)|
p + C(1 + ‖ũ‖L∞(BR))

p‖f‖m|A(k,R)|1/m
′

for all k < ‖ũ‖L∞(BR). Therefore it is possible to apply Theorem 7.6 of [9] to obtain

that ũ is Hölder-continuous far from A. �

Remark 4.6. We point out that the smallness assumption on f , which is needed

in the existence result, is not used in the proof of the summability/boundedness/con-

tinuity of the renormalized solution.
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