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Abstract. Let a, I , J be ideals of a Noetherian local ring (R,m, k). Let M and N be
finitely generated R-modules. We give a generalized version of the Duality Theorem for
Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the
behavior of the endomorphism rings of Ht

I,J(M) and D(Ht
I,J (M)), where t is the smallest

integer such that the local cohomology with respect to a pair of ideals is nonzero and
D(−) := HomR(−, ER(k)) is the Matlis dual functor. We show that if R is a d-dimensional

complete Cohen-Macaulay ring and Hi
I,J (R) = 0 for all i 6= t, the natural homomorphism

R → HomR(H
t
I,J(KR),H

t
I,J (KR)) is an isomorphism, where KR denotes the canonical

module of R. Also, we discuss the depth and Cohen-Macaulayness of the Matlis dual of the
top local cohomology modules with respect to a pair of ideals.
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1. Introduction

Throughout this paper, (R,m, k) denotes a commutative Noetherian local ring

with its residue field k := R/m. Let a, I, J be ideals of R, and let M and N be two

finitely generated R-modules. For i ∈ N, consider Hi
a(M), the ith local cohomology

module of M with respect to a (see [3], [10], [14]). This concept is an important

tool in algebraic geometry and commutative algebra and has been studied by several

authors.

Moreover, we will denote the Matlis dual functor D(−) := HomR(−, E), where

E := ER(k) is the injective hull of k. Let R̂ be the m-adic completion of R. Since
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the module D(M) admits a structure of an R̂-module, it is natural to ask the re-

lations between HomR(M,M) and HomR̂(D(M), D(M)), making the study of the

endomorphism ring of the module M a topic of investigation.

Note that there are natural injective homomorphisms M → D(D(M)) and

HomR(M,M)→ HomR̂(D(M), D(M))

such that the following diagram is commutative:

R //

��

HomR(M,M)

�� ��

R̂ // HomR̂(D(M), D(M)).

The investigation of endomorphism rings HomR(H
i
I(M), Hi

I(M)) was initially dis-

cussed in [13] for the case dimR = i and I = m. For certain ideals I and several

i ∈ N, see also [12], [15], [17], [23], [24] and [25].

Takahashi, Yoshino and Yoshizawa (see also [27]) introduced the notion of lo-

cal cohomology module with respect to a pair of ideals. More precisely, consider

W (I, J) = {p ∈ Spec(R) : In ⊆ p + J for some integer n} and W̃ (I, J), the set of

ideals a of R such that In ⊆ a + J for some integer n. For an R-module M , the

(I, J)-torsion of M is defined by

ΓI,J(M) = {x ∈M : Inx ⊆ Jx for n≫ 1}.

The functor ΓI,J(−) is left exact, additive and covariant, from the category of all

R-modules, and is called the (I, J)-torsion functor. For an integer i, the ith right

derived functor of ΓI,J(−) is denoted by Hi
I,J(−) and will be called the ith local

cohomology functor with respect to (I, J). For an R-module M , Hi
I,J(M) will be

called the ith local cohomology module ofM with respect to (I, J) while ΓI,J(M) will

be refered to as the (I, J)- torsion part ofM . Note that when J = 0 or J is a nilpotent

ideal, Hi
I,J(−) coincides with the ordinary local cohomology functor H

i
I(−) with

support in the closed subset V (I).

Several authors have investigated the local cohomology modules with respect to

a pair of ideals (see [1], [2], [5], [6], [8], [9], [18], [19], [28], [29]). The results on the

behavior of endomorphism rings for local cohomology with respect to a pair of ideals

were initially studied in [20] for rings, and no results are known for modules. In this

sense, the main purpose of this paper is to provide a better understanding of local

cohomology modules with respect to a pair of ideals by the endomorphism ring.
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The organization of the paper is as follows. In Section 2, we show a generalized

version of the Duality Theorem for Cohen-Macaulay rings. This is the main result of

this paper (Theorem 2.3), and generalizes [27], Theorem 5.1, [17], Lemma 2.4 and [8],

Theorem 6.4.

In Section 3, we will give an alternative characterization for the least integer i

such that the local cohomology with respect to a pair of ideals is nonzero, denoted

by depth(I, J,M) (see [1]). Also, when depth(I, J,M) = t, we show that there is

an isomorphism between the endomorphism rings HomR(H
t
I,J(M), Ht

I,J (M)) and

HomR(D(Ht
I,J (M)), D(Ht

I,J (M))), and we provide several sufficient conditions for

the homomorphism

R→ HomR(D(Ht
I,J(M), D(Ht

I,J (M)))

to be an isomorphism (see Theorem 3.4 and Corollary 3.5).

In Section 4, we define the truncation complex using the concept of local coho-

mology with respect to a pair of ideals. This concept will be useful for showing that

if R is a d-dimensional complete Cohen-Macaulay ring and Hi
I,J(R) = 0 for all i 6= t,

the natural homomorphism

R→ HomR(H
t
I,J(KR), H

t
I,J (KR))

is an isomorphism, where KR is the canonical module of R (Theorem 4.3).

In the last section, we study the depth and Cohen-Macaulayness of the Matlis

dual of Hd
I,J(M), where M is a finitely generated R-module of dimension d.

2. The generalized Duality Theorem

In this section, we fix our notation and list several results for the convenience of

the reader. It is well known that for an ideal a of R (not necessarily a local ring)

with aM 6= M , the depth(a,M) is the least integer i such that Hi
a(M) 6= 0 (see [3],

Theorem 6.2.7). This motivates us to consider the following definition.

Definition 2.1 ([1], Proposition 2.3). Let I, J be ideals of R and let M be an

R-module. The depth of (I, J) on M is defined by

depth(I, J,M) = inf{i ∈ N0 : Hi
I,J(M) 6= 0}

if this infimum exists, and ∞ otherwise.
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Note that if J 6= R, by [27], Theorem 4.3 and the previous definition we have that

Hi
I,J(M) 6= 0 for all i such that

depth(I, J,M) 6 i 6 dimM/JM.

Furthermore, by [27], Theorem 4.1 the concept of depth defined by a pair of ideals

can be reformulated using the definition of the usual depth, i.e,

depth(I, J,M) = inf{depth(Mp) : p ∈W (I, J)}.

Now, we recall a technical result showed in [26], Theorem 3.4.14.

Lemma 2.2. Let M , N be R-modules (not necessarily finitely generated). For

all i ∈ Z, there are isomorphisms

(a) D(TorRi (N,M)) ∼= ExtiR(N,D(M)),

(b) TorRi (N,D(M)) ∼= D(ExtiR(N,M)), provided N is finitely generated.

Also, recall that if R is a d-dimensional Cohen-Macaulay local ring with a canonical

module KR, it is well known that there are isomorphisms

Hi
m(M) = D(Extd−i

R (M,KR))

for 0 6 i 6 d, and Hd
m(R) ∼= D(KR). This result is called the Duality Theorem for

Cohen-Macaulay rings (see [8], Theorem 6.4, [17], Lemma 2.4 and [27], Theorem 5.1).

Due to these comments, the next result extends the previous theorem.

Theorem 2.3 (Generalized Duality Theorem). Assume that Hi
I,J(R) = 0 for all

i 6= t = depth(I, J,R). Then for any R-moduleM and i ∈ Z, there are isomorphisms:

(a) TorRt−i(M,Ht
I,J (R)) ∼= Hi

I,J(M),

(b) D(Hi
I,J(M)) ∼= Extt−i

R (M,D(Ht
I,J (R))).

P r o o f. Note that if statement (a) is true, by Lemma 2.2 it follows that

D(Hi
I,J(M)) ∼= D(TorRt−i(M,Ht

I,J(R))) ∼= Extt−i
R (M,D(Ht

I,J (R))),

and we obtain the statement (b).

So, it is sufficient to prove statement (a). Consider the families of functors

{Hi
I,J(−) : i > 0} and {TorRt−i(−, H

t
I,J(R)) : i > 0}. We want to show that there

is an isomorphism between these two families. Since Hi
I,J(R) = 0 for all i 6= t =

depth(I, J,R), we obtain that Ht
I,J(N) ∼= Ht

I,J(R)⊗R N (see [27], Lemma 4.8). So,

if i = t we have that

TorR0 (N,Ht
I,J (R)) ∼= Ht

I,J(N).
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Since both of the families are cohomological sequences of functors, by [3], Theo-

rem 1.3.5 it is enough to show that for any projective R-module M ,

Hi
I,J(M) = 0 = TorRt−i(M,Ht

I,J(R))

for all i 6= t. If M = R, the statement is clear. Since any projective R-module

over a local ring is isomorphic to a direct sum of copies of R and the functors

TorRt−i(−, H
t
I,J(R)) and Hi

I,J (−) commute with direct sums, the desired conclusion

follows. �

For the next result, recall the definition of (I, J)-Cohen-Macaulay modules intro-

duced in [1], Definition 3.5.

Definition 2.4. An R-module M is called (I, J)-Cohen-Macaulay if either

M = 0 or depth(I, J,M) = dimM/JM .

Note that if I = m and J = 0, the definition of (I, J)-Cohen-Macaulay module

coincides with the usual definition of the Cohen-Macaulay module.

The next corollary is also obtained in [8], Theorem 6.5 by a different technique.

Corollary 2.5. Suppose that R is an (I, J)-Cohen-Macaulay ring, I + J is an

m-primary ideal and dimR/J = t. Then for any R-module M and i ∈ Z, we have

the following isomorphisms:

(a) TorRt−i(M,Ht
I,J (R)) ∼= Hi

I,J(M),

(b) D(Hi
I,J(M)) ∼= Extt−i

R (M,D(Ht
I,J (R))).

P r o o f. The result follows by [1], Corollary 3.13 and Theorem 2.3. �

The next result shows the relation between the J-adic completion of Ht
m,J(R) and

the dual of certain modules. This result generalizes [27], Theorem 5.4.

Corollary 2.6. Suppose that I + J is an m-primary ideal and Hi
I,J(R) = 0 for

all i 6= t = depth(I, J,R). Then there is a natural isomorphism

lim←−

Ht
I,J(R)

JsHt
I,J(R)

∼= D(ΓJ (D(Ht
m(R)))).

In particular, if R is a complete Cohen-Macaulay local ring, we obtain that

lim←−

Ht
I,J(R)

JsHt
I,J(R)

∼= D(ΓJ (KR)),

where KR is the canonical module of R.
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P r o o f. First, since I+J is an m-primary ideal we have thatHt
I,J(R) ∼= Ht

m,J(R),

see [27], Proposition 1.4, equations (6) and (7). We consider the isomorphims

Ht
m,J(R)

JsHt
m,J(R)

∼= Ht
m,J(R)⊗R R/Js

∼= Ht
m,J(R/Js) (by [27], Lemma 4.8)

∼= Ht
m(R/Js) (by [27], Corollary 2.5)

∼= D(HomR(R/Js, D(Ht
m(R)))) (by Theorem 2.3).

Applying the inverse limit we obtain that

lim←−

Ht
m,J(R)

JsHt
m,J(R)

∼= lim←−D(HomR(R/Js, D(Ht
m(R)))).

Since

lim←−D(HomR(R/Js, D(Ht
m(R)))) ∼= D(ΓJ(D(Ht

m(R)))),

we complete the proof by combining the isomorphisms. �

As a particular case of the previous result, if R is a d-dimensional complete Cohen-

Macaulay local ring with canonical module KR, and J is an ideal of R such that

dimR/J = d− r, then we have that

lim←−

Hd−r
I,J (R)

JsHd−r
I,J (R)

∼= D(Hr
J(KR)).

The previous isomorphism was obtained by Takahashi et al. in [27], Theorem 5.4.

Furthermore, in the same paper, the authors have shown that

lim←−

Hd−i
I,J (R)

JsHd−i
I,J (R)

6∼= D(Hi
J (KR))

for all integers i (see [27], Remark 5.5).

3. Endomorphism rings for a pair of ideals

In this section, we start the investigation of the endomorphism ring of Ht
I,J(M),

where t = depth(I, J,M). For this purpose, some preliminary results are useful.

Lemma 3.1. Suppose that SuppRM ⊆W (I, J). Then there are natural isomor-

phims

(a) HomR(M,ΓI,J(N)) ∼= HomR(M,N),

(b) M ⊗HomR(ΓI,J(N), E) ∼= M ⊗HomR(N,E).
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P r o o f. Since SuppRM ⊆W (I, J), we have that M is an (I, J)-torsion (see [27],

Proposition 1.7). Moreover, ΓI,J(N) = lim−→a∈W̃ (I,J)
Γa(N) (see [27], Theorem 3.2).

For statement (a), suppose initially that M is a finitely generated R-module. In this

case, the proof of (a) follows from the isomorphisms

HomR(M,ΓI,J(N)) ∼= lim−→HomR(M,Γa(N)) ∼= HomR(M,N),

where the last isomorphism follows by [24], Lemma 2.2 (a).

Now, suppose that M is not finitely generated R-module. Then M ∼= lim−→Mα,

where {Mα}α is a directed family of a finitely generated R-modules such that

Mα ⊆ M . So SuppRMα ⊆ W (I, J). We complete the proof of this item by the

isomorphisms

HomR(M,ΓI,J(N)) ∼= lim←−HomR(Mα,Γa(N)) ∼= HomR(M,N),

where the last isomorphism follows by the previous case.

For statement (b), we will proceed analogously to item (a). If M is finitely gener-

ated, by [3], Lemma 10.2.16, we have the isomorphism

M ⊗R HomR(ΓI,J(N), E) ∼= HomR(HomR(M,ΓI,J(N)), E).

Thus, by item (a) we conclude the proof. Now, if M is not a finitely generated

R-module, then M ∼= lim−→Mα and so

HomR(M,ΓI,J (N)) ∼= lim←−HomR(Mα,ΓI,J(N)).

By item (a) we obtain the statement. �

The next result generalizes [17], Proposition 2.1, [24], Theorem 2.3 and [20], The-

orem 2.4 (a).

Theorem 3.2. Suppose that depth(I, J,N) = t and SuppRM ⊆W (I, J). Then

(a) ExttR(M,N) ∼= HomR(M,Ht
I,J(N)) and ExtiR(M,N) = 0 for all i < t,

(b) TorRt (M,D(N)) ∼= M ⊗R D(Ht
I,J (N)) and TorRi (M,D(N)) = 0 for all i < t.

P r o o f. Let E◦

R be a minimal injective resolution of the R-module N . We can

describe each Ei
R as a direct sum of indecomposable injective modules, i.e.,

Ei
R =

⊕

p∈Spec(R)

ER(R/p)µi(p,N),

where ER(R/p) denotes the injective hull of R/p, and µi(p, N) is the ith Bass number

of N with respect to p.
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Since depth(I, J,N) = inf{depth(Np) : p ∈ W (I, J)} and depth(Np) = inf{i :

µi(p, N) 6= 0}, it follows that µi(p, N) = 0 for all i < t and p ∈ W (I, J). So, we can

conclude that HomR(M,Ei
R) = 0 for all i < t. Now, since SuppRM ⊆ W (I, J), by

Lemma 3.1 we obtain the isomorphism of complexes

HomR(M,E◦

R)
∼= HomR(M,ΓI,J(E

◦

R)).

By the exact sequence 0 → Ht
I,J(N) → ΓI,J(E

◦

R)
t → ΓI,J(E

◦

R)
t+1 and the previ-

ous isomorphism of complexes, we can consider the following commutative diagram

with exact arrows:

0 // HomR(M,Ht
I,J(N)) //

��

HomR(M,ΓI,J(E◦

R))
t //

��

HomR(M,ΓI,J(E
◦

R))
t+1

��

0 // ExttR(M,N) // HomR(M,E◦

R)
t // HomR(M,E◦

R)
t+1.

Therefore, the first vertical arrow is an isomorphism, because the last two vertical

arrows are isomorphisms (Lemma 3.1). This completes the proof of statement (a).

For statement (b), applying the Matlis dual functor D(−) to the above exact

sequence we obtain

D(ΓI,J(E
t+1
R ))→ D(ΓI,J(E

t
R))→ D(Ht

I,J(N))→ 0.

Note that, since D(ΓI,J(E
◦

R)) is a complex of flat R-modules, the previous se-

quence is the beginning of a flat resolution of D(Hi
I,J(N)). Using the fact that

M ∼= lim−→Mα, where Mα are finitely generated R-submodules, by Lemma 3.1 we

obtain the isomorphisms of complexes

M ⊗R D(E◦

R)
∼= M ⊗R D(ΓI,J (E

◦

R))
∼= lim−→HomR(HomR(Mα,ΓI,J(E

◦

R)), E).

By construction, since HomR(M,Ei
R) = 0 for all i < t, it follows that Hi(M ⊗R

D(E◦

R)) = 0 for all i < t. Hence TorRi (M,D(N)) = 0 for all i < t, since D(E◦

R) is

a flat resolution of D(N). Therefore, by the commutative diagram with exact rows

M ⊗R D(Et+1
R ) //

��

M ⊗R D(Et
R)

//

��

TorRt (M,D(N)) // 0

M ⊗R D(ΓI,J(E
t+1
R )) // M ⊗R D(ΓI,J(E

t
R))

// M ⊗R D(Ht
I,J (N)) // 0

the proof of statement (b) is complete, because the two vertical arrows on the left

are isomorphisms and so, TorRt (M,D(N)) ∼= M ⊗R D(Ht
I,J(N)). �
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Note that in the proof of the previous result, we are using a “truncation argument”

that will be extended in Section 4. As a consequence, we show a characterization of

depth of a module defined by a pair of ideals.

Corollary 3.3. Let N be an R-module. Then

depth(I, J,N) = inf{i ∈ Z : TorRi (R/a, D(N)) 6= 0 and a ∈ W̃ (I, J)}.

P r o o f. By [1], Proposition 2.3,

depth(I, J,N) = inf{depth(a, N) : a ∈ W̃ (I, J)}.

Then, applying the version of Theorem 3.2 or [17], Corollary 2.3, we can conclude

that

depth(a, N) = inf{i ∈ Z : TorRi (R/a, D(N)) 6= 0}.

This completes the proof of the statement. �

The next result shows the close relation between the endomorphism rings

of Ht
I,J(M) and D(Ht

I,J(M)). This result and the next corollary generalize [24],

Theorem 1.1 and [17], Lemma 3.2, respectively.

Theorem 3.4. Let R be a complete local ring and M an R-module. There is

a natural isomorphism

HomR(H
t
I,J(M), Ht

I,J(M)) ∼= HomR(D(Ht
I,J(M)), D(Ht

I,J (M))),

where depth(I, J,M) = t.

P r o o f. First, by Lemma 2.2 consider the isomorphism

HomR(D(Ht
I,J(M), D(Ht

I,J (M))) ∼= D(Ht
I,J (M)⊗R D(Ht

I,J(M))).

Since Ht
I,J(M) is an (I, J)-torsion R-module [27], Corollary 1.13, Equation (5) and

Proposition 1.7, by Theorem 3.2 (b) we obtain that

D(Ht
I,J(M)⊗R D(Ht

I,J(M))) ∼= D(TorRt (H
t
I,J (M), D(M)))

∼= ExttR(H
t
I,J (M), D(D(M))).

By the Matlis Duality Theorem (see [3], Theorem 10.2.12), it follows that

D(D(M)) ∼= M . Applying again Theorem 3.2 case (a) we have that

ExttR(H
t
I,J(M), D(D(M))) ∼= HomR(H

t
I,J (M), Ht

I,J(M))

and so the desired conclusion follows. �
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Corollary 3.5. Consider the same hypothesis as in Theorem 3.4. Then the fol-

lowing conditions are equivalent.

(a) The natural homomorphism

R→ HomR(H
t
I,J (M), Ht

I,J(M))

is an isomorphism.

(b) The natural homomorphism

R→ HomR(D(Ht
I,J(M), D(Ht

I,J (M)))

is an isomorphism.

(c) The natural homomorphism

Ht
I,J (M)⊗R D(Ht

I,J(M))→ E

is an isomorphism.

P r o o f. The result follows by the previous theorem, Matlis duality, Lemma 2.2 (a)

and the fact that D(E) ∼= R. �

It is interesting to ask when the natural homomorphisms considered in the previous

corollary are isomorphisms. This question motivates the results in the next section.

4. The truncation complex for a pair of ideals

The concept of the truncation complex was introduced in [11], Section 2 when R is

a d-dimensional Gorenstein ring, and using a different approach in [17], [22] and [20].

We will generalize this concept using the local cohomology defined by a pair of

ideals. This definition is the key ingredient for the most important result of this

section (Theorem 4.3).

Let R be a d-dimensional local ring and let M 6= 0 be an R-module. Consider

depth(I, J,M) = t and dimM/JM = n. Now, we recall a construction made in

Theorem 3.2.

Let E◦

R(M) be a minimal injective resolution of an R-module M . It is well know

that we can describe the modules Ei
R(M) as a direct sum of indecomposable injective

modules, more precisely,

Ei
R(M) =

⊕

p∈Spec(R)

ER(R/p)µi(p,M),
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where ER(R/p) denotes the injective hull of R/p and µi(p, N) is the ith Bass number

of M with respect to p. By [27], Proposition 1.11, it follows that

ΓI,J(E
i
R(M)) =

⊕

p∈W (I,J)

ER(R/p)µi(p,M).

Since depth(I, J,M) = inf{depth(Mp) : p ∈ W (I, J)} and depth(Mp) = inf{i :

µi(p,M) 6= 0}, we obtain that µi(p,M) = 0 for all i < t and p ∈ W (I, J). Then for

all i < t we have that ΓI,J(E
i
R(M)) = 0.

Therefore Ht
I,J(M) is isomorphic to the kernel of the map

ΓI,J(E
t
R(M))→ ΓI,J(E

t+1
R (M))

and so, there is an embedding of complexes of R-modules

Ht
I,J(M)[−t]→ ΓI,J(E

◦

R(M)).

Definition 4.1. We call the cokernel of the above embedding, denoted by

C◦

M (I, J), the truncation complex with respect to the pair of ideals (I, J). Thus, we

can consider the short exact sequence of complexes of R-modules

0→ Ht
I,J (M)[−t]→ ΓI,J(E

◦

R(M))→ C◦

M (I, J)→ 0.

Note that Hi(C◦

M (I, J)) = 0 for all i < t. Furthermore, if i > n (by [27], Theo-

rem 4.3 with J 6= R) and i > dimR/J we also have that Hi(C◦

M (I, J)) = 0.

Lemma 4.2. Let R be a d-dimensional complete local ring, and let M be an

R-module such that depth(I, J,M) = t and Hi
I,J(M) = 0 for all i 6= t. Then for all

integers i 6= c:

(a) There are isomorphisms

(i) Exti−t
R (Ht

I,J (M), Ht
I,J(M)) ∼= ExtiR(H

t
I,J(M),M).

(ii) TorRi−t(H
t
I,J(M), D(Ht

I,J(M))) ∼= TorRi (H
t
I,J (M), D(M)).

(b) The following conditions are equivalent

(i) Exti−t
R (Ht

I,J (M), Ht
I,J(M)) = 0.

(ii) Exti−t
R (D(Ht

I,J (M)), D(Ht
I,J (M))) = 0.

(iii) TorRi−t(H
t
I,J(M), D(Ht

I,J (M))) = 0.

P r o o f. Let E◦

R(M) be a minimal injective resolution of the R-module M . Note

that the complex ΓI,J(E
◦

R(M)) is a minimal injective resolution of Ht
I,J(M)[−t],
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because Hi
I,J(M) = 0 for all i 6= t. By [27], Corollary 1.13 and Proposition 1.7, we

have that SuppR(H
t
I,J (M)) ⊆W (I, J). So, by Lemma 3.1,

Exti−t
R (Ht

I,J(M), Ht
I,J(M)) ∼= ExtiR(H

t
I,J (M),M)

for all integer i. Thus, we obtain the first statement of (a). For the second claim,

first note that the complexes D(E◦

R(M)) and D(ΓI,J(E
◦

R(M))) are flat resolutions

of D(M) and D(Ht
I,J(M)[t]), respectively.

Since SuppR(H
t
I,J(M)) ⊆W (I, J), by Lemma 3.1 we obtain the isomorphism

Ht
I,J(M)⊗R D(E◦

R(M)) ∼= Ht
I,J(M)⊗R D(ΓI,J(E

◦

R(M))),

which induces for all integers i the following isomorphisms on homology:

TorRi−t(H
t
I,J(M), D(Ht

I,J(M))) ∼= TorRi (H
t
I,J (M), D(M)).

This completes the proof of case (a).

Now, by Lemma 2.2 there are isomorphisms

(4.1) Exti−t
R (D(Ht

I,J(M)), D(Ht
I,J (M))) ∼= D(TorRi−t(D(Ht

I,J(M)), Ht
I,J (M)))

and

(4.2) D(TorRi (H
t
I,J (M), D(M))) ∼= ExtiR(H

t
I,J (M),M)

for all integer i. Therefore, by case (a) and the isomorphisms (4.1) and (4.2), we

obtain the vanishing desired in case (b). �

The next theorem improves [17], Theorem 3.4 and is the main result of this section.

Theorem 4.3. Let R be a d-dimensional complete Cohen Macaulay local ring. If

depth(I, J,R) = t and Hi
I,J(R) = 0 for all i 6= t, then:

(a) The natural homomorphism

R→ HomR(H
t
I,J(KR), H

t
I,J (KR))

is an isomorphism and for all i 6= t

Exti−t
R (Ht

I,J(KR), H
t
I,J (KR)) = 0.

(b) The natural homomorphism

R→ HomR(D(Ht
I,J (KR)), D(Ht

I,J (KR)))

464



is an isomorphism and for all i 6= t

Exti−t
R (D(Ht

I,J (KR)), D(Ht
I,J (KR))) = 0.

(c) The natural homomorphism

Ht
I,J(KR)⊗R D(Ht

I,J(KR))→ E

is an isomorphism and for all i 6= c

TorRi−t(H
t
I,J(KR), D(Ht

I,J(KR))) = 0.

P r o o f. First, we will show the item (a). By [1], Definition 2.1 we have that

depth(I, J,KR) = inf{depth(a,KR) : a ∈ W̃ (I, J)}.

By hypothesis, R has a canonical module KR. Note that for all a ∈ W̃ (I, J), by [4],

Theorem 2.1.2

depth(a,KR) = dimR(KR)− dimR(KR/aKR),

and so t = depth(I, J,KR), because depth(a,KR) = depth(a, R).

Let E◦

R(KR) be a minimal injective resolution of KR. Applying the functor

HomR(−, E
◦

R(KR)) to the short exact sequence associated to the truncation com-

plex of KR with respect to the pair of ideals (I, J), we obtain an exact sequence

0→ HomR(C
◦

KR
(I, J), E◦

R(KR))→ HomR(ΓI,J(E
◦

R(KR)), E
◦

R(KR))(4.3)

→ HomR(H
t
I,J(KR), E

◦

R(KR))[t]→ 0.

Note that for each a ∈ W̃ (I, J) and due to the definition of the functor Γa(−) we

have the isomorphisms

HomR(Γa(E
◦

R(KR)), E
◦

R(KR)) ∼= lim←−HomR(HomR(R/ar, E◦

R(KR)), E
◦

R(KR))

∼= lim←−
(R/ar ⊗R Y ).

where Y := HomR(E
◦

R(KR), E
◦

R(KR)).

In the previous isomorphisms, note that R/ar is a finitely generated R-module for

all r > 1. Since R is Cohen-Macaulay one has that the minimal injective resolution

E◦

R(KR) of KR is bounded and isomorphic to a dualizing complex for R. Therefore

the natural chain map

R→ HomR(E
◦

R(KR), E
◦

R(KR))
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is a quasi-isomorphism. We claim that Y is a flat resolution of R. From the definition

of Hom of complexes, we can conclude that

Y j ∼=
∏

i∈Z

HomR(E
i
R(KR), E

i+j
R (KR)),

and so, Y j is a flat R-module for all j ∈ Z. Since R is a d-dimensional Cohen-

Macaulay local ring, Hi
m(R) = 0 for all i 6= d. Hence Hj(Y ) ∼= ExtjR(KR,KR) = 0

for all j 6= 0, and H0(Y ) = HomR(KR,KR) ∼= R by Theorem 2.3 (in the case I = m

and J = 0). Moreover, if p ∈ Spec(R) we have that

Ei
R(KR) ∼=

⊕

height p=i

ER(R/p).

Since R is Cohen Macaulay, KR has finite injective dimension. So, Y
j = 0 for all

j > 0. Hence, we can conclude that Y is a flat resolution of R. Now, we can see that

the ith cohomology module of the complex

lim←−(R/ar ⊗R HomR(E
◦

R(KR), E
◦

R(KR)))

is zero for all i 6= 0, and R for i = 0 because R is complete. Thus, we conclude that

HomR(Γa(E
◦

R(KR)), E
◦

R(KR)) ∼= R.

Now, applying lim←−a∈W̃ (I,J)
in the previous isomorphism and using [27], Theo-

rem 3.2, we obtain that

HomR(ΓI,J(E
◦

R(KR)), E
◦

R(KR)) ∼= R.

Furthermore, Hi
I,J(KR) = 0 for all i 6= t. Thus the complex

HomR(C
◦

KR
(I, J), E◦

R(KR))

is an exact complex. Considering the long exact sequence of the cohomology of the

short exact sequence (4.3), we obtain the isomorphism

R
∼=
−→ ExttR(H

t
I,J(KR),KR)

and for all i 6= t,

ExtiR(H
t
I,J (KR),KR) = 0.

By Theorem 3.2 and Lemma 4.2 statement (a), we have the proof of state-

ment (a). The proof of statements (b) and (c) follows immediately from state-

ment (a), Lemma 4.2, Theorem 3.4 and Corollary 3.5. �
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5. Local cohomology and Cohen-Macaulayness

In this section, we prove some results involving local cohomology with respect to

a pair of ideals, Matlis duality, depth and Cohen-Macaulayness.

Remember that, if (R,m) is a complete local ring, the Matlis dual functor

D(−) = HomR(−, E(R/m)) establishes a close relationship between Artinian and

Noetherian R-modules (see [3], Theorem 10.2.12).

For local cohomology defined by a pair of ideals, Chu and Wang [6] have shown

that, if (R,m) is a local ring and M is a finitely generated R-module of dimension d,

then Hd
I,J(M) is Artinian. These facts will be important for the next results.

The next result is a generalization of [16], Lemma 3.3.

Lemma 5.1. Let R be a complete local ring, and let M be a nonzero finitely

generated R-module of dimension d. If d 6 2 and Hd
I,J(M) 6= 0, then D(Hd

I,J (M))

is a Cohen-Macaulay R-module of dimension d.

P r o o f. By [5], Theorem 2.3 there exists a quotient module L of M satis-

fying SuppRL ⊆ V (J) and dimL = d such that Hd
I,J(M) ∼= Hd

I (L). Since

HomR(H
d
I (L), E(R/m)) is a Cohen-Macaulay R-module of dimension d (see [16],

Lemma 3.3) and

HomR(H
d
I,J(M), E(R/m)) ∼= HomR(H

d
I (L), E(R/m)),

we have the desired conclusion. �

Now we examine the depth of Matlis dual of top local cohomology modules with

respect to a pair of ideals. The next result improves [21], Proposition 2.4.

Theorem 5.2. Let R be a complete local ring, and let M be a nonzero finitely

generated R-module of dimension d. If Hd
I,J(M) 6= 0, then

depth(D(Hd
I,J(M))) > min{2, d}.

P r o o f. As in the previous lemma, there exists a quotient module L of M satis-

fying SuppRL ⊆ V (J) and dimL = d such that Hd
I,J(M) ∼= Hd

I (L) (see [5], Theo-

rem 2.3). By [7], Theorem 2.3 and Lemma 3.2,

Hd
I (L)

∼= Hd
m(L/QI(L)),

where QI(L) is the intersection of all primary components of the zero submodule

of L such that dimR/p = dimL and dimR/I + p = 0, and

AssRL/Qi(L) = {p ∈ AssRL : dimR/p = d and dimR/I + p = 0}.
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We claim that depth(Hd
m(L/QI(L))) > min{2, d}.We will proceed by induction on d.

If d 6 2 the result follows by Lemma 5.1. So, assume that d > 3.

Note that m 6∈ AssRL/Qi(L). So we may consider an element x ∈ m which is

a nonzero divisor on L/Qi(L), since depth(L/Qi(L)) > 0. The short exact sequence

0→ L/Qi(L)
x
−→ L/Qi(L)→ L/(x,Qi(L))→ 0

induces the long exact sequence

0→ D(Hd
m(L/QI(L)))

x
−→ D(Hd

m(L/QI(L)))→ D(Hd−1
m (L/(x,Qi(L))))→ . . . .

Now, from the induction hypothesis, depth(Hd−1
m (L/(x,QI(L)))) > 2, because

dimL/(x,QI(L)) = d− 1.

So there are elements x1, x2 ∈ m \
⋃

p∈AssR(D(Hd
m
(L/QI(L)))/xD(Hd

m
(L/QI(L)))) p.

Therefore depth(Hd
I,J(M)) = depth(Hd

m(L/(QI(L)))) > 2, as desired. �

Corollary 5.3. With the same assumptions as in the previous result,

depth(HomR(H
d
I,J (M), Hd

I,J(M))) > min{2, d}.

P r o o f. Since Hd
I,J(M) is Artinian and R is complete, by Lemma 2.2 case (a)

HomR(H
d
I,J(M), Hd

I,J(M)) ∼= HomR(H
d
I,J(M), D(D(Hd

I,J (M))))

∼= D(Hd
I,J (M)⊗R D(Hd

I,J(M)))

∼= D(D(Hd
I,J (M))⊗R Hd

I,J(M))

∼= HomR(D(Hd
I,J(M)), D(Hd

I,J (M))).

Now by [4], Exercise 1.4.19 and Theorem 5.2 the proof is complete. �

Proposition 5.4. Let R be a complete local ring, and letM be a nonzero finitely

generatedR-module of dimension d. IfHd
I,J(M) 6= 0, then HomR(H

d
I,J(M),Hd

I,J (M))

is a commutative semi-local Noetherian ring.

P r o o f. Proceeding as in the proof of Theorem 5.2, there is a quotient module L

of M such that

Hd
I,J(M) ∼= Hd

I (L)
∼= Hd

m(L/QI(L)).

Since D(Hd
m(L/QI(L))) ∼= KL/QI(L), where KL/QI(L) is the canonical module of

L/QI(L), by the isomorphism shown in the proof of Corollary 5.3 we obtain that

HomR(H
d
I,J(M), Hd

I,J(M)) ∼= HomR(H
d
m(L/QI(L)), H

d
m(L/QI(L)))

∼= HomR(KL/QI(L),KL/QI(L)).

Now the result follows by [13], Remark 2.2 case (f). �
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