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TRACEABILITY IN {K1,4,K1,4 + e}-FREE GRAPHS
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Abstract. A graph G is called {H1,H2, . . . ,Hk}-free if G contains no induced subgraph
isomorphic to any graph Hi, 1 6 i 6 k. We define

σk = min

{ k
∑

i=1

d(vi) : {v1, . . . , vk} is an independent set of vertices in G

}

.

In this paper, we prove that (1) if G is a connected {K1,4, K1,4 + e}-free graph of order n
and σ3(G) > n − 1, then G is traceable, (2) if G is a 2-connected {K1,4,K1,4 + e}-free
graph of order n and |N(x1)∪N(x2)|+ |N(y1)∪N(y2)| > n− 1 for any two distinct pairs
of non-adjacent vertices {x1, x2}, {y1, y2} of G, then G is traceable, i.e., G has a Hamilton
path, where K1,4+e is a graph obtained by joining a pair of non-adjacent vertices in a K1,4.
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1. Introduction

We consider only finite undirected graphs without loops and multiple edges. For

terminology, notation and concepts not defined here, see [2]. Suppose that G is

a graph with vertex set V (G) and edge set E(G). For a ∈ V (G) and subgraphs H

and R of G, let NR(a) and NR(H) denote the set of neighbors of the vertex a and

the subgraph H in R respectively, that is

NR(a) = {v ∈ V (R) : va ∈ E(G)},

NR(H) =

(

⋃

u∈V (H)

NR(u)

)

\ V (H).
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The numbers |NR(a)| and |NR(H)| are called the degrees of the vertex a and the

subgraph H in R, denoted as dR(a) and dR(H), respectively. If R = G, then NR(a)

and NR(H) are written as N(a) and N(H), and |NR(a)| and |NR(H)| are written

as d(a) and d(H), respectively. Let δ(G) denote the minimum degree of G, and let

σk = min

{ k
∑

i=1

d(vi) : {v1, . . . , vk} is an independent set of vertices in G

}

.

If G is a complete graph, we set NC(G) = |V (G)|−1, otherwise NC(G) is denoted as

NC(G) = min{|N(x) ∪N(y)| : x, z ∈ V (G) and xy /∈ E(G)}.

The subgraph induced by S will be denoted by G[S]. If S = {x1, x2, . . . , x|S|}, then

G[S] = G[{x1, x2, . . . , x|S|}] is also written as G[x1, x2, . . . , x|S|].

Let P = x1x2 . . . xt be a path in G with a given orientation. For xi, xj ∈ V (P ),

1 6 i < j 6 t, let x−l
i , x

+l
i , 1 6 i − l < i + l 6 t denote the vertices xi−l and xi+l

on P , respectively. We denote by xiPxj and xiPxj the paths xixi+1 . . . xj−1xj and

xjxj−1 . . . xi+1xi, respectively. For convenience, we also denote x
−1
i and x+1

i as x−
i

and x+
i , respectively. Sometimes we denote xi as x

−0
i or x+0

i .

A Hamilton cycle (path) of G is a cycle (path) that contains every vertex of G.

A graph is called traceable if it has a Hamilton path. A graph containing a Hamilton

cycle is said to be hamiltonian.

A graph G is called {H1, H2, . . . , Hk}-free if G contains no induced subgraph

isomorphic to any graph Hi, 1 6 i 6 k. The graph K1,4 is a star with 5 vertices,

and K1,4 + e is obtained from K1,4 by adding an edge connecting two non-adjacent

vertices. In this paper, we investigate the traceability of {K1,4,K1,4+e}-free graphs.

Li et al. in [3], [4], [5] obtained some results on the hamiltonicity of {K1,4,K1,4+e}-

free graphs.

Theorem 1.1 ([5]). Let G be a 3-connected {K1,4,K1,4 + e}-free graph of order

n > 30. If δ(G) > (n+ 5)/5, then G is hamiltonian.

Theorem 1.2 ([4]). Let G be a 2-connected {K1,4,K1,4 + e}-free graph of order

n > 13. If δ(G) > n/4, then G is hamiltonian or G ∈ F , where F is a family of

non-hamiltonian graphs of connectivity 2.

Theorem 1.3 ([3]). Suppose that G is a connected {K1,4,K1,4 + e}-free graph

of order n that is isomorphic to none of graphs G1 and G2 shown in Figure 1. If

δ(G) > (n− 2)/3, then G is traceable.
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Figure 1. G1 and G2

We first get the following result by considering σ3(G) as follows:

Theorem 1.4. Let G be a connected {K1,4,K1,4 + e}-free graph of order n. If

σ3(G) > n− 1, then G is traceable.

Remark 1.5. The degree condition of Theorem 1.4 is sharp. The infinite class

of graphs G1 depicted in Figure 2 is not traceable with σ3(G) = n− 2. Figure 3 gives

an infinite class of graphs G2. Each graph G in G2 is a connected {K1,4,K1,4 + e}-

free graph of order 2m with δ(G) = 2 and σ3(G) = n − 1. It is easy to see that G

has a Hamilton path. So there is an infinite class of traceable graphs satisfying the

condition of Theorem 1.4 but not satisfying the condition of Theorem 1.3.

Kn−3

Figure 2. Graphs G1

Km−1 Km

Figure 3. Graphs G2

On the other hand, the neighborhood union of vertices is another factor that can

impact the traceability of a graph. A combination of Theorem 1.4 and the following

lemma yields a corollary that can ensure graph’s traceability by its neighborhood

union.

Lemma 1.6 ([1]). LetG be a graph of order n > 3. Then σ3(G) > 3NC(G)−n+3.

Corollary 1.7. Let G be a connected {K1,4,K1,4 + e}-free graph of order n. If

NC(G) > (2n− 4)/3, then G is traceable.

For 2-connected graphs, the neighborhood union also can help to judge whether

a graph is traceable.

Theorem 1.8 ([6]). If G is a 2-connected {K1,4,K1,4 + e}-free graph of order n

such that NC(G) > (n− 2)/2, then G is traceable.
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Our second main result further extends Theorem 1.8 as follows:

Theorem 1.9. Let G be a 2-connected {K1,4,K1,4 + e}-free graph of order n. If

|N(x1)∪N(x2)|+ |N(y1)∪N(y2)| > n− 1 for any two distinct pairs of non-adjacent

vertices {x1, x2}, {y1, y2} of G, then G is traceable.

Remark 1.10. In the graphs of Figure 4, the three vertices of the upper triangle

dominate the vertices of the three complete graphs indicated byKm, Km andK2m−2,

and min{|N(x1) ∪ N(x2)| + |N(y1) ∪ N(y2)|} = n − 1. Obviously, every graph of

Figure 4 is connected {K1,4,K1,4 + e}-free, but not traceable. Hence, the infinite

class of graphs G3 depicted in Figure 4 is an evidence showing that the connectivity

of Theorem 1.9 cannot be relaxed to 1.

Km Km
K2m−2

Figure 4. Graphs G3

Figure 5 shows an infinite class of graphs G4. The graph G in G4 is composed

of two disjoint complete subgraphs G1, G2 of order 2m − 1 and two non-adjacent

vertices x, y. The vertex x joins m − 4 vertices of G1 and 3 vertices of G2, the

vertex y joins 3 vertices of G1 and m − 4 vertices of G2, and N(x) ∩ N(y) = ∅.

Then each graph G in G4 is a 2-connected {K1,4,K1,4 + e}-free graph of order 4m,

NC(G) = 2(m− 1) < (n− 2)/2, |N(x) ∪N(y)|+ |N(y) ∪N(u4)| = n− 1, and there

are no other two different pairs of vertices such that their sum of neighborhood union

is less than n−1. It is easy to see that G has a Hamilton path. So there is an infinite

class of traceable graphs satisfying the condition of Theorem 1.9 but not satisfying

the condition of Theorem 1.8.

Since every claw-free graph is {K1,4,K1,4+e}-free, we have the following corollary

of Theorem 1.9.

Corollary 1.11. If G is a 2-connected claw-free graph of order n such that

|N(x1)∪N(x2)|+ |N(y1)∪N(y2)| > n− 1 for any two distinct pairs of non-adjacent

vertices {x1, x2}, {y1, y2} of G, then G is traceable.
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Figure 5. Graphs G4

2. Proof of Theorem 1.4

Suppose that a graph G satisfies the conditions of Theorem 1.4, but G has no

Hamilton path. Let P = x1x2 . . . xt be a longest path in G where t 6 n − 1. Let

R = G− P , and let H be a component of R. Since G is connected, there is an edge

y1xi ∈ E(G), where y1 ∈ V (H). Then we have the following observation.

Observation 2.1.

(1) 2 6 i 6 t− 1, N(x1), N(xt) ⊆ V (P ) and xi−1, xi+1 /∈ N(y1), x1xt /∈ E(G).

(2) xi, xi+1 /∈ N(x1), xi, xi−1 /∈ N(xt) for 3 6 i 6 t− 2.

P r o o f. (1) Suppose the opposite. We obtain a path longer than P in all cases

easily.

(2) If xi+1 ∈ N(x1), then the path xtPxi+1x1Pxiy1 is longer than P , a contradic-

tion. If xi ∈ N(x1), since y1x1, y1xi−1, y1xi+1, x1xi+1 /∈ E(G), if xi−1xi+1 ∈ E(G),

the path xtPxi+1xi−1Px1xiy1 is longer than P , so xi−1xi+1 /∈ E(G). Then

G[xi, x1, y1, xi−1, xi+1] ∼= K1,4 or G[xi, x1, y1, xi−1, xi+1] ∼= K1,4 + e,

a contradiction. In a similar way, we can show that xi, xi−1 /∈ N(xt). �

Claim 2.2.

(1) NR(x1) ∪NR(xt) ∪NR(y1) ⊆ V (R) \ {y1}.

(2) NR(x1) ∩NR(xt) = ∅, NR(x1) ∩NR(y1) = ∅, NR(xt) ∩ NR(y1) = ∅, NR(x1) ∩

NR(xt) ∩NR(y1) = ∅.

P r o o f. (1) Since NR(x1) ∪NR(xt) = ∅, NR(y1) ⊆ V (H) \ {y1} ⊆ V (R) \ {y1},

so NR(x1) ∪NR(xt) ∪NR(y1) ⊆ V (R) \ {y1}.

(2) Since NR(x1) ∪NR(xt) = ∅, so (2) is correct obviously. �
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Set P1 = x1Pxi, P2 = xi+1Pxt.

N+
Pi
(v) = {u+ : u+ ∈ P, u ∈ NPi

(v)}, N−
Pi
(v) = {u− : u− ∈ P, u ∈ NPi

(v)}.

Claim 2.3.

(1) If i = 2, then NP1
(x1) = NP1

(y1) = {x2}, NP1
(xt) = ∅, and |NP1

(x1)| +

|NP1
(y1)|+ |NP1

(xt)| = 2 = |V (P1)|.

(2) If i 6= 2, then

(a) N−
P1
(x1) ∪NP1

(xt) ∪NP1
(y1) ⊆ V (P1) \ {xi−1}.

(b) N−
P1
(x1) ∩ NP1

(xt) = ∅, N−
P1
(x1) ∩ NP1

(y1) = ∅, NP1
(xt) ∩ NP1

(y1) = ∅,

N−
P1
(x1) ∩NP1

(xt) ∩NP1
(y1) = ∅.

P r o o f. The item (1) is an obvious fact, and we start the proof of item (2).

(a) From Observation 2.1 we have NP1
(x1) ⊆ V (P1) \ {x1, xi}, so N−

P1
(x1) ⊆

V (P1) \ {xi−1, xi}, NP1
(xt) ⊆ V (P1) \ {x1, xi−1, xi}, NP1

(y1) ⊆ V (P1) \ {x1, xi−1}.

Thus N−
P1
(x1) ∪NP1

(xt) ∪NP1
(y1) ⊆ V (P1) \ {xi−1}.

(b) Suppose that xk ∈ N−
P1
(x1) ∩NP1

(xt). From (a) we know that k 6= 1, i− 1, i,

hence the path y1xiPxtxkPx1xk+1Pxi−1 is longer than P , a contradiction. Suppose

that xk ∈ N−
P1
(x1)∩NP1

(y1). Then it contradicts Observation 2.1, item (2). Suppose

that xk ∈ NP1
(xt) ∩NP1

(y1). Then it contradicts Observation 2.1, item (2). �

Claim 2.4.

(1) If i = t−1, then NP2
(x1) = NP2

(y1) = NP1
(xt) = ∅, and |NP2

(x1)|+|NP2
(y1)|+

|NP2
(xt)| = 0 = |V (P2)| − 1.

(2) If i 6= t− 1, then

(a) N−
P2
(x1) ∪NP2

(xt) ∪NP2
(y1) ⊆ V (P2) \ {xt}.

(b) N−
P2
(x1) ∩ NP2

(xt) = ∅, N−
P2
(x1) ∩ NP2

(y1) = ∅, NP2
(xt) ∩ NP2

(y1) = ∅,

N−
P2
(x1) ∩NP2

(xt) ∩NP2
(y1) = ∅.

P r o o f. The item (1) is an obvious fact, and we start the proof of item (2).

(a) From Observation 2.1 we have NP2
(x1) ⊆ V (P2) \ {xi+1, xt}, so N−

P2
(x1) ⊆

V (P2) \ {xt−1, xt}, NP2
(xt) ⊆ V (P2) \ {xt}, NP2

(y1) ⊆ V (P2) \ {xi+1, xt}. Thus

N−
P2
(x1) ∪NP2

(xt) ∪NP2
(y1) ⊆ V (P2) \ {xt}.

(b) Suppose that xk ∈ N−
P2
(x1) ∩ NP2

(xt). From (a) we know that k 6= t − 1, t,

hence the path y1xiPxkxtPxk+1x1Pxi−1 is longer than P , a contradiction. Suppose

that xk ∈ N−
P2
(x1)∩NP2

(y1). Then it contradicts Observation 2.1, item (2). Suppose

that xk ∈ NP2
(xt) ∩NP2

(y1). Then it contradicts Observation 2.1, item (2). �

436



From Claim 2.2, we have

|NR(x1)|+ |NR(xt)|+ |NR(y1)|(2.1)

= |NR(x1) ∪NR(xt) ∪NR(y1)|+ |NR(x1) ∩NR(xt)|

+ |NR(x1) ∩NR(y1)|+ |NR(xt) ∩NR(y1)|

− |NR(x1) ∩NR(xt) ∩NR(y1)| 6 |V (R)| − 1.

From Claim 2.3, we have:

If i = 2, then

(2.2) |NP2
(x1)|+ |NP1

(y1)|+ |NP1
(xt)| = |V (P1)|.

If i 6= 2, then

|NP1
(x1)|+ |NP1

(xt)|+ |NP1
(y1)|(2.3)

= |N−
P1
(x1)|+ |NP1

(xt)|+ |NP1
(y1)|

= |N−
P1
(x1) ∪NP1

(xt) ∪NP1
(y1)|+ |N−

P1
(x1) ∩NP1

(xt)|

+ |N−
P1
(x1) ∩NP1

(y1)|+ |NP1
(xt) ∩NP1

(y1)|

− |N−
P1
(x1) ∩NP1

(xt) ∩NP1
(y1)| 6 |V (P1)| − 1.

Similarly, from Claim 2.4, we have:

If i = t− 1, then

(2.4) |NP2
(x1)|+ |NP2

(y1)|+ |NP2
(xt)| = |V (P2)| − 1.

If i 6= t− 1, then

|NP2
(x1)|+ |NP2

(xt)|+ |NP2
(y1)| = |N−

P2
(x1)|+ |NP2

(xt)|+ |NP2
(y1)|(2.5)

6 |V (P2)| − 1.

From inequalities (2.1)–(2.5), we have

|N(x1)|+ |N(xt)|+ |N(y1)| 6 n− 2.

Since x1, xt, y1 are pairwise non-adjacent, this contradicts the condition σ3(G) >

n− 1 of Theorem 1.4. This completes the proof of Theorem 1.4. �
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3. Proof of Theorem 1.9

Suppose that a graph G satisfies the conditions of Theorem 1.9, but G has no

Hamilton path. Let P = x1x2 . . . xt be a longest path in G with t 6 n − 1. Let

R = G − P , and let H be a component of R. Since G is 2-connected, there are

xi, xj ∈ Np(H), i < j, such that N(H) ∩ V (xi+1Pxj−1) = ∅. Choose a longest path

P ′ = y1y2 . . . yl in G[H ], l > 1, such that xiy1, xjyl ∈ E(G). Then we have the

following observation.

Observation 3.1.

(1) i > 2, i+ 2 6 j 6 t− 1 and N(x1), N(xt) ⊆ V (P ).

(2) For 3 6 i 6 t − 2, xi, xi+1, xj−1, xj , xj+1, xt /∈ N(x1) and xj , xj−1, xi+1, xi,

xi−1, x1 /∈ N(xt).

(3) xi−1xj−1 /∈ E(G), xi+1xj+1 /∈ E(G).

P r o o f. (1) Suppose the opposite. Then we obtain a path longer than P in all

cases easily.

(2) If xi+1 ∈ N(x1), then the path xtPxjylP
′y1xiPx1xi+1Pxj−1 is longer than P ,

a contradiction. If xi ∈ N(x1), since y1x1, y1xi−1, y1xi+1, x1xi+1 /∈ E(G), if

xi−1xi+1 ∈ E(G), the path xtPxjylP
′y1xix1Pxi−1xi+1Pxj−1 is longer than P ,

so xi−1xi+1 /∈ E(G). Then

G[xi, x1, y1, xi−1, xi+1] ∼= K1,4 or G[xi, x1, y1, xi−1, xi+1] ∼= K1,4 + e,

a contradiction. If xj−1 ∈ N(x1), then the path xtPxjylP
′y1xiPx1xj−1Pxi+1 is

longer than P , a contradiction. If xj+1 ∈ N(x1), then the path xtP xj+1x1Pxiy1

P ′ylxjPxi−1 is longer than P , a contradiction. If xj ∈ N(x1), then

G[xj , x1, xj−1, yl, xj+1] ∼= K1,4 or G[xj , x1, xj−1, yl, xj+1] ∼= K1,4 + e,

a contradiction. If xt ∈ N(x1), then the path xi−1Px1xtPxiy1P
′yl is longer than P ,

a contradiction. In a similar way, we can show that xj , xj−1, xi+1, xi, xi−1, x1 /∈

N(xt).

(3) If xj−1xi−1 ∈ E(G), then the path x1Pxi−1xj−1Pxiy1P
′ylxjPxt is longer

than P , a contradiction. If xi+1xj+1 ∈ E(G), then the path x1Pxiy1P
′ylxj

Pxi+1xj+1Pxt is longer than P , a contradiction. �

Claim 3.2.

(1) [NR(x1) ∪NR(xt)] ∪ [NR(y1) ∪NR(xi+1)] ⊆ V (R) \ {y1}.

(2) [NR(x1) ∪NR(xt)] ∩ [NR(y1) ∪NR(xi+1)] = ∅.
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P r o o f. (1) NR(x1) ∪ NR(xt) = ∅, NR(y1) ⊆ V (H) \ {y1}, NR(xi+1) ⊆ V (R) \

V (H). So, NR(y1) ∪ NR(xi+1) ⊆ V (R) \ {y1}, [NR(x1) ∪ NR(xt)] ∪ [NR(y1) ∪

NR(xi+1)] ⊆ V (R) \ {y1}.

(2) Since NR(x1)∪NR(xt) = ∅, [NR(x1)∪NR(xt)]∩ [NR(y1)∪NR(xi+1)] = ∅. �

Set P1 = x1Pxi, P2 = xi+1Pxj−1, P3 = xjPxt.

N+
Pi
(v) = {u+ : u+ ∈ P, u ∈ NPi

(v)}, N−
Pi
(v) = {u− : u− ∈ P, u ∈ NPi

(v)}.

Claim 3.3.

(1) If i = 2, then NP1
(x1)∪NP1

(xt) = NP1
(y1)∪NP1

(xi+1) = {xi}, and |NP1
(x1)∪

NP1
(xt)|+ |NP1

(y1) ∪NP1
(xi+1)| = 2 = |V (P1)|.

(2) If i 6= 2, then

(a) [N−
P1
(x1) ∪N−

P1
(xt)] ∪ [NP1

(y1) ∪NP1
(xi+1)] ⊆ V (P1).

(b) [N−
P1
(x1) ∪N−

P1
(xt)] ∩ [NP1

(y1) ∪NP1
(xi+1)] = ∅.

P r o o f. The item (1) is an obvious fact, and we start the proof of item (2).

(a) From Observation 3.1 we have NP1
(x1) ∪ NP1

(xt) ⊆ V (P1) \ {x1, xi}, so

N−
P1
(x1)∪N−

P1
(xt) ⊆ V (P1) \ {xi−1, xi}, NP1

(y1)∪NP1
(xi+1) ⊆ V (P1) \ {x1}. Thus

[N−
P1
(x1) ∪N−

P1
(xt)] ∪ [NP1

(y1) ∪NP1
(xi+1)] ⊆ V (P1).

(b) Suppose that xk ∈ [N−
P1
(x1) ∪N−

P1
(xt)] ∩ [NP1

(y1) ∪NP1
(xi+1)]. From (a) we

know that k 6= 1, i− 1, i.

Case 1 : x1x
+
k ∈ E(G). If y1xk ∈ E(G), then the path xtPxjylP

′y1xkPx1x
+
k Pxj−1

is longer than P , a contradiction. If xi+1xk ∈ E(G), then the path xtPxjylP
′y1xi

Px+
k x1Pxkxi+1Pxj−1 is longer than P , a contradiction.

Case 2 : xtx
+
k ∈ E(G). If y1xk ∈ E(G), then the path x1Pxky1P

′ylxjPxtx
+
k Pxj−1

is longer than P , a contradiction. If xi+1xk ∈ E(G), then the path x1Pxkxi+1Pxjyl

P ′y1xiPx+
k xtPxj+1 is longer than P , a contradiction. �

Claim 3.4.

(1) [N+
P2
(x1) ∪N+

P2
(xt)] ∪ [NP2

(y1) ∪NP2
(xi+1)] ⊆ V (P2) \ {xi+1}.

(2) [N+
P2
(x1) ∪N+

P2
(xt)] ∩ [NP2

(y1) ∪NP2
(xi+1)] = ∅.

P r o o f. (1) From Observation 3.1 we have

NP2
(x1) ∪NP2

(xt) ⊆ V (P2) \ {xi+1, xj−1},

so N+
P2
(x1)∪N+

P2
(xt) ⊆ V (P2)\{xi+1, xi+2}, NP2

(y1)∪NP2
(xi+1) ⊆ V (P2)\{xi+1}.

Thus [N+
P2
(x1) ∪N+

P2
(xt)] ∪ [NP2

(y1) ∪NP2
(xi+1)] ⊆ V (P2) \ {xi+1}.
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(2) Suppose that xk ∈ [N+
P2
(x1)∪N+

P2
(xt)]∩ [NP2

(y1)∪NP2
(xi+1)]. We know that

k 6= i + 1, i + 2, j. From the assumption that N(H) ∩ V (xi+1Pxj−1) = ∅ we have

y1xk /∈ E(G), so xi+1xk ∈ E(G).

Case 1 : x1x
−
k ∈ E(G). Then the path xtPxjylP

′y1xiPx1x
−
k Pxi+1xkPxj−1 is

longer than P , a contradiction.

Case 2 : xtx
−
k ∈ E(G). Then the path x1Pxiy1P

′ylxjPxtx
−
k Pxi+1xkPxj−1 is

longer than P , a contradiction. �

Claim 3.5.

(1) If j = t− 1, then NP3
(x1) ∪NP3

(xt) = {xt−1}, NP3
(y1) ∪NP3

(xi+1) ⊆ {xt−1},

and |NP3
(x1) ∪NP3

(xt)|+ |NP3
(y1) ∪NP3

(xi+1)| 6 2 = |V (P3)|.

(2) If j 6= t− 1, then

(a) [N+
P3
(x1) ∪N+

P3
(xt)] ∪ [NP3

(y1) ∪NP3
(xi+1)] ⊆ V (P3) \ {xj+1}.

(b) [N+
P3
(x1) ∪N+

P3
(xt)] ∩ [NP3

(y1) ∪NP3
(xi+1)] = ∅.

P r o o f. The item (1) is an obvious fact, and we start the proof of item (2).

(a) From Observation 3.1 we have NP3
(x1) ∪ NP3

(xt) ⊆ V (P3) \ {xj , xt}, so

N+
P3
(x1) ∪N+

P3
(xt) ⊆ V (P3) \ {xj , xj+1}, NP3

(y1) ∪NP3
(xi+1) ⊆ V (P3) \ {xj+1, xt}.

Thus [N+
P3
(x1) ∪N+

P3
(xt)] ∪ [NP3

(y1) ∪NP3
(xi+1)] ⊆ V (P3) \ {xj+1}.

(b) Suppose that xk ∈ [N+
P3
(x1) ∪N+

P3
(xt)] ∩ [NP3

(y1) ∪NP3
(xi+1)]. From (a) we

know that k 6= j, j + 1, t.

Case 1 : x1x
−
k ∈ E(G). If y1xk ∈ E(G), then the path xtPxky1xiPx1x

−
k Pxi+1 is

longer than P , a contradiction. If xi+1xk ∈ E(G), then the path xtPxkxi+1Pxjyl
P ′y1xiPx1x

−
k Pxj+1 is longer than P , a contradiction.

Case 2 : xtx
−
k ∈ E(G). If y1xk ∈ E(G), then the path x1Pxiy1xkPxtx

−
k Pxi+1

is longer than P , a contradiction. If xi+1xk ∈ E(G), then the path x1Pxiy1P
′ylxj

Pxi+1xkPxtx
−
k Pxj+1 is longer than P , a contradiction. �

From Claim 3.2, we have

(3.1) |NR(x1) ∪NR(xt)|+ |NR(y1) ∪NR(xi+1)|

= |[NR(x1) ∪NR(xt)] ∪ [NR(y1) ∪NR(xi+1)]|

+ |[NR(x1) ∪NR(xt)] ∩ [NR(y1) ∪NR(xi+1)]| 6 |V (R)| − 1.

From Claim 3.3, we have:

If i = 2, then

(3.2) |NP1
(x1) ∪NP1

(xt)|+ |NP1
(y1) ∪NP1

(xi+1)| = |V (P1)|.
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If i 6= 2, then

(3.3) |NP1
(x1) ∪NP1

(xt)|+ |NP1
(y1) ∪NP1

(xi+1)|

= |N−
P1
(x1) ∪N−

P1
(xt)|+ |NP1

(y1) ∪NP1
(xi+1)|

= |[N−
P1
(x1) ∪N−

P1
(xt)] ∪ [NP1

(y1) ∪NP1
(xi+1)]|

+ |[N−
P1
(x1) ∪N−

P1
(xt)] ∩ [NP1

(y1) ∪NP1
(xi+1)]| 6 |V (P1)|.

From Claim 3.4 , we have

(3.4) |NP2
(x1) ∪NP2

(xt)|+ |NP2
(y1) ∪NP2

(xi+1)|

= |N+
P2
(x1) ∪N+

P2
(xt)|+ |NP2

(y1) ∪NP2
(xi+1)| 6 |V (P2)| − 1.

From Claim 3.5 , we have:

If j = t− 1, then

(3.5) |NP3
(x1) ∪NP3

(xt)|+ |NP3
(y1) ∪NP3

(xi+1)| 6 |V (P3)|.

If j 6= t− 1, then

(3.6) |NP3
(x1) ∪NP3

(xt)|+ |NP3
(y1) ∪NP3

(xi+1)|

= |N+
P3
(x1) ∪N+

P3
(xt)|+ |NP3

(y1) ∪NP3
(xi+1)| 6 |V (P3)| − 1.

From inequalities (3.1)–(3.6), we have

|N(x1) ∪N(xt)|+ |N(y1) ∪N(xi+1)| 6 n− 2.

This contradicts the condition |N(x1) ∪N(x2)| + |N(y1) ∪N(y2)| > n− 1 of Theo-

rem 1.9. The proof of Theorem 1.9 is completed.
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