TRACEABILITY IN $\left\{K_{1,4}, K_{1,4}+e\right\}$-FREE GRAPHS

Wei Zheng, Ligong Wang, Xi'an

Received August 2, 2017. Published online February 11, 2019.

Abstract. A graph G is called $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$-free if G contains no induced subgraph isomorphic to any graph $H_{i}, 1 \leqslant i \leqslant k$. We define

$$
\sigma_{k}=\min \left\{\sum_{i=1}^{k} d\left(v_{i}\right):\left\{v_{1}, \ldots, v_{k}\right\} \text { is an independent set of vertices in } G\right\} .
$$

In this paper, we prove that (1) if G is a connected $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graph of order n and $\sigma_{3}(G) \geqslant n-1$, then G is traceable, (2) if G is a 2 -connected $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graph of order n and $\left|N\left(x_{1}\right) \cup N\left(x_{2}\right)\right|+\left|N\left(y_{1}\right) \cup N\left(y_{2}\right)\right| \geqslant n-1$ for any two distinct pairs of non-adjacent vertices $\left\{x_{1}, x_{2}\right\}$, $\left\{y_{1}, y_{2}\right\}$ of G, then G is traceable, i.e., G has a Hamilton path, where $K_{1,4}+e$ is a graph obtained by joining a pair of non-adjacent vertices in a $K_{1,4}$.

Keywords: $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graph; neighborhood union; traceable
MSC 2010: 05C45, 05C38, 05C07

1. Introduction

We consider only finite undirected graphs without loops and multiple edges. For terminology, notation and concepts not defined here, see [2]. Suppose that G is a graph with vertex set $V(G)$ and edge set $E(G)$. For $a \in V(G)$ and subgraphs H and R of G, let $N_{R}(a)$ and $N_{R}(H)$ denote the set of neighbors of the vertex a and the subgraph H in R respectively, that is

$$
\begin{aligned}
N_{R}(a) & =\{v \in V(R): v a \in E(G)\}, \\
N_{R}(H) & =\left(\bigcup_{u \in V(H)} N_{R}(u)\right) \backslash V(H) .
\end{aligned}
$$

The research was supported by the National Natural Science Foundation of China (No. 11871398) and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018JM1032).

The numbers $\left|N_{R}(a)\right|$ and $\left|N_{R}(H)\right|$ are called the degrees of the vertex a and the subgraph H in R, denoted as $d_{R}(a)$ and $d_{R}(H)$, respectively. If $R=G$, then $N_{R}(a)$ and $N_{R}(H)$ are written as $N(a)$ and $N(H)$, and $\left|N_{R}(a)\right|$ and $\left|N_{R}(H)\right|$ are written as $d(a)$ and $d(H)$, respectively. Let $\delta(G)$ denote the minimum degree of G, and let

$$
\sigma_{k}=\min \left\{\sum_{i=1}^{k} d\left(v_{i}\right):\left\{v_{1}, \ldots, v_{k}\right\} \text { is an independent set of vertices in } G\right\} .
$$

If G is a complete graph, we set $N C(G)=|V(G)|-1$, otherwise $N C(G)$ is denoted as

$$
N C(G)=\min \{|N(x) \cup N(y)|: x, z \in V(G) \text { and } x y \notin E(G)\} .
$$

The subgraph induced by S will be denoted by $G[S]$. If $S=\left\{x_{1}, x_{2}, \ldots, x_{|S|}\right\}$, then $G[S]=G\left[\left\{x_{1}, x_{2}, \ldots, x_{|S|}\right\}\right]$ is also written as $G\left[x_{1}, x_{2}, \ldots, x_{|S|}\right]$.

Let $P=x_{1} x_{2} \ldots x_{t}$ be a path in G with a given orientation. For $x_{i}, x_{j} \in V(P)$, $1 \leqslant i<j \leqslant t$, let $x_{i}^{-l}, x_{i}^{+l}, 1 \leqslant i-l<i+l \leqslant t$ denote the vertices x_{i-l} and x_{i+l} on P, respectively. We denote by $x_{i} P x_{j}$ and $x_{i} \bar{P} x_{j}$ the paths $x_{i} x_{i+1} \ldots x_{j-1} x_{j}$ and $x_{j} x_{j-1} \ldots x_{i+1} x_{i}$, respectively. For convenience, we also denote x_{i}^{-1} and x_{i}^{+1} as x_{i}^{-} and x_{i}^{+}, respectively. Sometimes we denote x_{i} as x_{i}^{-0} or x_{i}^{+0}.

A Hamilton cycle (path) of G is a cycle (path) that contains every vertex of G. A graph is called traceable if it has a Hamilton path. A graph containing a Hamilton cycle is said to be hamiltonian.

A graph G is called $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$-free if G contains no induced subgraph isomorphic to any graph $H_{i}, 1 \leqslant i \leqslant k$. The graph $K_{1,4}$ is a star with 5 vertices, and $K_{1,4}+e$ is obtained from $K_{1,4}$ by adding an edge connecting two non-adjacent vertices. In this paper, we investigate the traceability of $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graphs.

Li et al. in [3], [4], [5] obtained some results on the hamiltonicity of $\left\{K_{1,4}, K_{1,4}+e\right\}-$ free graphs.

Theorem 1.1 ([5]). Let G be a 3 -connected $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graph of order $n \geqslant 30$. If $\delta(G) \geqslant(n+5) / 5$, then G is hamiltonian.

Theorem $1.2([4])$. Let G be a 2-connected $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graph of order $n \geqslant 13$. If $\delta(G) \geqslant n / 4$, then G is hamiltonian or $G \in \mathcal{F}$, where \mathcal{F} is a family of non-hamiltonian graphs of connectivity 2 .

Theorem 1.3 ([3]). Suppose that G is a connected $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graph of order n that is isomorphic to none of graphs G_{1} and G_{2} shown in Figure 1. If $\delta(G) \geqslant(n-2) / 3$, then G is traceable.

Figure 1. G_{1} and G_{2}

We first get the following result by considering $\sigma_{3}(G)$ as follows:

Theorem 1.4. Let G be a connected $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graph of order n. If $\sigma_{3}(G) \geqslant n-1$, then G is traceable.

Remark 1.5. The degree condition of Theorem 1.4 is sharp. The infinite class of graphs \mathcal{G}_{1} depicted in Figure 2 is not traceable with $\sigma_{3}(G)=n-2$. Figure 3 gives an infinite class of graphs \mathcal{G}_{2}. Each graph G in \mathcal{G}_{2} is a connected $\left\{K_{1,4}, K_{1,4}+e\right\}$ free graph of order $2 m$ with $\delta(G)=2$ and $\sigma_{3}(G)=n-1$. It is easy to see that G has a Hamilton path. So there is an infinite class of traceable graphs satisfying the condition of Theorem 1.4 but not satisfying the condition of Theorem 1.3.

Figure 2. Graphs \mathcal{G}_{1}

Figure 3. Graphs \mathcal{G}_{2}

On the other hand, the neighborhood union of vertices is another factor that can impact the traceability of a graph. A combination of Theorem 1.4 and the following lemma yields a corollary that can ensure graph's traceability by its neighborhood union.

Lemma 1.6 ([1]). Let G be a graph of order $n \geqslant 3$. Then $\sigma_{3}(G) \geqslant 3 N C(G)-n+3$.

Corollary 1.7. Let G be a connected $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graph of order n. If $N C(G) \geqslant(2 n-4) / 3$, then G is traceable.

For 2-connected graphs, the neighborhood union also can help to judge whether a graph is traceable.

Theorem $1.8([6])$. If G is a 2-connected $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graph of order n such that $N C(G) \geqslant(n-2) / 2$, then G is traceable.

Our second main result further extends Theorem 1.8 as follows:

Theorem 1.9. Let G be a 2-connected $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graph of order n. If $\left|N\left(x_{1}\right) \cup N\left(x_{2}\right)\right|+\left|N\left(y_{1}\right) \cup N\left(y_{2}\right)\right| \geqslant n-1$ for any two distinct pairs of non-adjacent vertices $\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}$ of G, then G is traceable.

Remark 1.10. In the graphs of Figure 4, the three vertices of the upper triangle dominate the vertices of the three complete graphs indicated by K_{m}, K_{m} and $K_{2 m-2}$, and $\min \left\{\left|N\left(x_{1}\right) \cup N\left(x_{2}\right)\right|+\left|N\left(y_{1}\right) \cup N\left(y_{2}\right)\right|\right\}=n-1$. Obviously, every graph of Figure 4 is connected $\left\{K_{1,4}, K_{1,4}+e\right\}$-free, but not traceable. Hence, the infinite class of graphs \mathcal{G}_{3} depicted in Figure 4 is an evidence showing that the connectivity of Theorem 1.9 cannot be relaxed to 1 .

Figure 4. Graphs \mathcal{G}_{3}
Figure 5 shows an infinite class of graphs \mathcal{G}_{4}. The graph G in \mathcal{G}_{4} is composed of two disjoint complete subgraphs G_{1}, G_{2} of order $2 m-1$ and two non-adjacent vertices x, y. The vertex x joins $m-4$ vertices of G_{1} and 3 vertices of G_{2}, the vertex y joins 3 vertices of G_{1} and $m-4$ vertices of G_{2}, and $N(x) \cap N(y)=\emptyset$. Then each graph G in \mathcal{G}_{4} is a 2 -connected $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graph of order $4 m$, $N C(G)=2(m-1)<(n-2) / 2,|N(x) \cup N(y)|+\left|N(y) \cup N\left(u_{4}\right)\right|=n-1$, and there are no other two different pairs of vertices such that their sum of neighborhood union is less than $n-1$. It is easy to see that G has a Hamilton path. So there is an infinite class of traceable graphs satisfying the condition of Theorem 1.9 but not satisfying the condition of Theorem 1.8.

Since every claw-free graph is $\left\{K_{1,4}, K_{1,4}+e\right\}$-free, we have the following corollary of Theorem 1.9.

Corollary 1.11. If G is a 2 -connected claw-free graph of order n such that $\left|N\left(x_{1}\right) \cup N\left(x_{2}\right)\right|+\left|N\left(y_{1}\right) \cup N\left(y_{2}\right)\right| \geqslant n-1$ for any two distinct pairs of non-adjacent vertices $\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}$ of G, then G is traceable.

Figure 5. Graphs \mathcal{G}_{4}

2. Proof of Theorem 1.4

Suppose that a graph G satisfies the conditions of Theorem 1.4, but G has no Hamilton path. Let $P=x_{1} x_{2} \ldots x_{t}$ be a longest path in G where $t \leqslant n-1$. Let $R=G-P$, and let H be a component of R. Since G is connected, there is an edge $y_{1} x_{i} \in E(G)$, where $y_{1} \in V(H)$. Then we have the following observation.

Observation 2.1.

(1) $2 \leqslant i \leqslant t-1, N\left(x_{1}\right), N\left(x_{t}\right) \subseteq V(P)$ and $x_{i-1}, x_{i+1} \notin N\left(y_{1}\right), x_{1} x_{t} \notin E(G)$.
(2) $x_{i}, x_{i+1} \notin N\left(x_{1}\right), x_{i}, x_{i-1} \notin N\left(x_{t}\right)$ for $3 \leqslant i \leqslant t-2$.

Proof. (1) Suppose the opposite. We obtain a path longer than P in all cases easily.
(2) If $x_{i+1} \in N\left(x_{1}\right)$, then the path $x_{t} \bar{P} x_{i+1} x_{1} P x_{i} y_{1}$ is longer than P, a contradiction. If $x_{i} \in N\left(x_{1}\right)$, since $y_{1} x_{1}, y_{1} x_{i-1}, y_{1} x_{i+1}, x_{1} x_{i+1} \notin E(G)$, if $x_{i-1} x_{i+1} \in E(G)$, the path $x_{t} \bar{P} x_{i+1} x_{i-1} \bar{P} x_{1} x_{i} y_{1}$ is longer than P, so $x_{i-1} x_{i+1} \notin E(G)$. Then

$$
G\left[x_{i}, x_{1}, y_{1}, x_{i-1}, x_{i+1}\right] \cong K_{1,4} \quad \text { or } \quad G\left[x_{i}, x_{1}, y_{1}, x_{i-1}, x_{i+1}\right] \cong K_{1,4}+e,
$$

a contradiction. In a similar way, we can show that $x_{i}, x_{i-1} \notin N\left(x_{t}\right)$.

Claim 2.2.

(1) $N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right) \cup N_{R}\left(y_{1}\right) \subseteq V(R) \backslash\left\{y_{1}\right\}$.
(2) $N_{R}\left(x_{1}\right) \cap N_{R}\left(x_{t}\right)=\emptyset, N_{R}\left(x_{1}\right) \cap N_{R}\left(y_{1}\right)=\emptyset, N_{R}\left(x_{t}\right) \cap N_{R}\left(y_{1}\right)=\emptyset, N_{R}\left(x_{1}\right) \cap$ $N_{R}\left(x_{t}\right) \cap N_{R}\left(y_{1}\right)=\emptyset$.
Proof. (1) Since $N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right)=\emptyset, N_{R}\left(y_{1}\right) \subseteq V(H) \backslash\left\{y_{1}\right\} \subseteq V(R) \backslash\left\{y_{1}\right\}$, so $N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right) \cup N_{R}\left(y_{1}\right) \subseteq V(R) \backslash\left\{y_{1}\right\}$.
(2) Since $N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right)=\emptyset$, so (2) is correct obviously.

Set $P_{1}=x_{1} P x_{i}, P_{2}=x_{i+1} P x_{t}$.

$$
N_{P_{i}}^{+}(v)=\left\{u^{+}: u^{+} \in P, u \in N_{P_{i}}(v)\right\}, \quad N_{P_{i}}^{-}(v)=\left\{u^{-}: u^{-} \in P, u \in N_{P_{i}}(v)\right\} .
$$

Claim 2.3.

(1) If $i=2$, then $N_{P_{1}}\left(x_{1}\right)=N_{P_{1}}\left(y_{1}\right)=\left\{x_{2}\right\}, N_{P_{1}}\left(x_{t}\right)=\emptyset$, and $\left|N_{P_{1}}\left(x_{1}\right)\right|+$ $\left|N_{P_{1}}\left(y_{1}\right)\right|+\left|N_{P_{1}}\left(x_{t}\right)\right|=2=\left|V\left(P_{1}\right)\right|$.
(2) If $i \neq 2$, then
(a) $N_{P_{1}}^{-}\left(x_{1}\right) \cup N_{P_{1}}\left(x_{t}\right) \cup N_{P_{1}}\left(y_{1}\right) \subseteq V\left(P_{1}\right) \backslash\left\{x_{i-1}\right\}$.
(b) $N_{P_{1}}^{-}\left(x_{1}\right) \cap N_{P_{1}}\left(x_{t}\right)=\emptyset, N_{P_{1}}^{-}\left(x_{1}\right) \cap N_{P_{1}}\left(y_{1}\right)=\emptyset, N_{P_{1}}\left(x_{t}\right) \cap N_{P_{1}}\left(y_{1}\right)=\emptyset$, $N_{P_{1}}^{-}\left(x_{1}\right) \cap N_{P_{1}}\left(x_{t}\right) \cap N_{P_{1}}\left(y_{1}\right)=\emptyset$.

Proof. The item (1) is an obvious fact, and we start the proof of item (2).
(a) From Observation 2.1 we have $N_{P_{1}}\left(x_{1}\right) \subseteq V\left(P_{1}\right) \backslash\left\{x_{1}, x_{i}\right\}$, so $N_{P_{1}}^{-}\left(x_{1}\right) \subseteq$ $V\left(P_{1}\right) \backslash\left\{x_{i-1}, x_{i}\right\}, N_{P_{1}}\left(x_{t}\right) \subseteq V\left(P_{1}\right) \backslash\left\{x_{1}, x_{i-1}, x_{i}\right\}, N_{P_{1}}\left(y_{1}\right) \subseteq V\left(P_{1}\right) \backslash\left\{x_{1}, x_{i-1}\right\}$. Thus $N_{P_{1}}^{-}\left(x_{1}\right) \cup N_{P_{1}}\left(x_{t}\right) \cup N_{P_{1}}\left(y_{1}\right) \subseteq V\left(P_{1}\right) \backslash\left\{x_{i-1}\right\}$.
(b) Suppose that $x_{k} \in N_{P_{1}}^{-}\left(x_{1}\right) \cap N_{P_{1}}\left(x_{t}\right)$. From (a) we know that $k \neq 1, i-1, i$, hence the path $y_{1} x_{i} P x_{t} x_{k} \bar{P} x_{1} x_{k+1} P x_{i-1}$ is longer than P, a contradiction. Suppose that $x_{k} \in N_{P_{1}}^{-}\left(x_{1}\right) \cap N_{P_{1}}\left(y_{1}\right)$. Then it contradicts Observation 2.1, item (2). Suppose that $x_{k} \in N_{P_{1}}\left(x_{t}\right) \cap N_{P_{1}}\left(y_{1}\right)$. Then it contradicts Observation 2.1, item (2).

Claim 2.4.

(1) If $i=t-1$, then $N_{P_{2}}\left(x_{1}\right)=N_{P_{2}}\left(y_{1}\right)=N_{P_{1}}\left(x_{t}\right)=\emptyset$, and $\left|N_{P_{2}}\left(x_{1}\right)\right|+\left|N_{P_{2}}\left(y_{1}\right)\right|+$ $\left|N_{P_{2}}\left(x_{t}\right)\right|=0=\left|V\left(P_{2}\right)\right|-1$.
(2) If $i \neq t-1$, then
(a) $N_{P_{2}}^{-}\left(x_{1}\right) \cup N_{P_{2}}\left(x_{t}\right) \cup N_{P_{2}}\left(y_{1}\right) \subseteq V\left(P_{2}\right) \backslash\left\{x_{t}\right\}$.
(b) $N_{P_{2}}^{-}\left(x_{1}\right) \cap N_{P_{2}}\left(x_{t}\right)=\emptyset, N_{P_{2}}^{-}\left(x_{1}\right) \cap N_{P_{2}}\left(y_{1}\right)=\emptyset, N_{P_{2}}\left(x_{t}\right) \cap N_{P_{2}}\left(y_{1}\right)=\emptyset$, $N_{P_{2}}^{-}\left(x_{1}\right) \cap N_{P_{2}}\left(x_{t}\right) \cap N_{P_{2}}\left(y_{1}\right)=\emptyset$.

Proof. The item (1) is an obvious fact, and we start the proof of item (2).
(a) From Observation 2.1 we have $N_{P_{2}}\left(x_{1}\right) \subseteq V\left(P_{2}\right) \backslash\left\{x_{i+1}, x_{t}\right\}$, so $N_{P_{2}}^{-}\left(x_{1}\right) \subseteq$ $V\left(P_{2}\right) \backslash\left\{x_{t-1}, x_{t}\right\}, N_{P_{2}}\left(x_{t}\right) \subseteq V\left(P_{2}\right) \backslash\left\{x_{t}\right\}, N_{P_{2}}\left(y_{1}\right) \subseteq V\left(P_{2}\right) \backslash\left\{x_{i+1}, x_{t}\right\}$. Thus $N_{P_{2}}^{-}\left(x_{1}\right) \cup N_{P_{2}}\left(x_{t}\right) \cup N_{P_{2}}\left(y_{1}\right) \subseteq V\left(P_{2}\right) \backslash\left\{x_{t}\right\}$.
(b) Suppose that $x_{k} \in N_{P_{2}}^{-}\left(x_{1}\right) \cap N_{P_{2}}\left(x_{t}\right)$. From (a) we know that $k \neq t-1, t$, hence the path $y_{1} x_{i} P x_{k} x_{t} \bar{P} x_{k+1} x_{1} P x_{i-1}$ is longer than P, a contradiction. Suppose that $x_{k} \in N_{P_{2}}^{-}\left(x_{1}\right) \cap N_{P_{2}}\left(y_{1}\right)$. Then it contradicts Observation 2.1, item (2). Suppose that $x_{k} \in N_{P_{2}}\left(x_{t}\right) \cap N_{P_{2}}\left(y_{1}\right)$. Then it contradicts Observation 2.1, item (2).

From Claim 2.2, we have

$$
\begin{align*}
&\left|N_{R}\left(x_{1}\right)\right|+\left|N_{R}\left(x_{t}\right)\right|+\left|N_{R}\left(y_{1}\right)\right| \tag{2.1}\\
&=\left|N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right) \cup N_{R}\left(y_{1}\right)\right|+\left|N_{R}\left(x_{1}\right) \cap N_{R}\left(x_{t}\right)\right| \\
&+\left|N_{R}\left(x_{1}\right) \cap N_{R}\left(y_{1}\right)\right|+\left|N_{R}\left(x_{t}\right) \cap N_{R}\left(y_{1}\right)\right| \\
& \quad-\left|N_{R}\left(x_{1}\right) \cap N_{R}\left(x_{t}\right) \cap N_{R}\left(y_{1}\right)\right| \leqslant|V(R)|-1 .
\end{align*}
$$

From Claim 2.3, we have:
If $i=2$, then

$$
\begin{equation*}
\left|N_{P_{2}}\left(x_{1}\right)\right|+\left|N_{P_{1}}\left(y_{1}\right)\right|+\left|N_{P_{1}}\left(x_{t}\right)\right|=\left|V\left(P_{1}\right)\right| . \tag{2.2}
\end{equation*}
$$

If $i \neq 2$, then
(2.3) $\left|N_{P_{1}}\left(x_{1}\right)\right|+\left|N_{P_{1}}\left(x_{t}\right)\right|+\left|N_{P_{1}}\left(y_{1}\right)\right|$

$$
\begin{aligned}
= & \left|N_{P_{1}}^{-}\left(x_{1}\right)\right|+\left|N_{P_{1}}\left(x_{t}\right)\right|+\left|N_{P_{1}}\left(y_{1}\right)\right| \\
= & \left|N_{P_{1}}^{-}\left(x_{1}\right) \cup N_{P_{1}}\left(x_{t}\right) \cup N_{P_{1}}\left(y_{1}\right)\right|+\left|N_{P_{1}}^{-}\left(x_{1}\right) \cap N_{P_{1}}\left(x_{t}\right)\right| \\
& +\left|N_{P_{1}}^{-}\left(x_{1}\right) \cap N_{P_{1}}\left(y_{1}\right)\right|+\left|N_{P_{1}}\left(x_{t}\right) \cap N_{P_{1}}\left(y_{1}\right)\right| \\
& -\left|N_{P_{1}}^{-}\left(x_{1}\right) \cap N_{P_{1}}\left(x_{t}\right) \cap N_{P_{1}}\left(y_{1}\right)\right| \leqslant\left|V\left(P_{1}\right)\right|-1 .
\end{aligned}
$$

Similarly, from Claim 2.4, we have:
If $i=t-1$, then

$$
\begin{equation*}
\left|N_{P_{2}}\left(x_{1}\right)\right|+\left|N_{P_{2}}\left(y_{1}\right)\right|+\left|N_{P_{2}}\left(x_{t}\right)\right|=\left|V\left(P_{2}\right)\right|-1 . \tag{2.4}
\end{equation*}
$$

If $i \neq t-1$, then

$$
\begin{align*}
\left|N_{P_{2}}\left(x_{1}\right)\right|+\left|N_{P_{2}}\left(x_{t}\right)\right|+\left|N_{P_{2}}\left(y_{1}\right)\right| & =\left|N_{P_{2}}^{-}\left(x_{1}\right)\right|+\left|N_{P_{2}}\left(x_{t}\right)\right|+\left|N_{P_{2}}\left(y_{1}\right)\right| \tag{2.5}\\
& \leqslant\left|V\left(P_{2}\right)\right|-1 .
\end{align*}
$$

From inequalities (2.1)-(2.5), we have

$$
\left|N\left(x_{1}\right)\right|+\left|N\left(x_{t}\right)\right|+\left|N\left(y_{1}\right)\right| \leqslant n-2 .
$$

Since x_{1}, x_{t}, y_{1} are pairwise non-adjacent, this contradicts the condition $\sigma_{3}(G) \geqslant$ $n-1$ of Theorem 1.4. This completes the proof of Theorem 1.4.

3. Proof of Theorem 1.9

Suppose that a graph G satisfies the conditions of Theorem 1.9, but G has no Hamilton path. Let $P=x_{1} x_{2} \ldots x_{t}$ be a longest path in G with $t \leqslant n-1$. Let $R=G-P$, and let H be a component of R. Since G is 2 -connected, there are $x_{i}, x_{j} \in N_{p}(H), i<j$, such that $N(H) \cap V\left(x_{i+1} P x_{j-1}\right)=\emptyset$. Choose a longest path $P^{\prime}=y_{1} y_{2} \ldots y_{l}$ in $G[H], l \geqslant 1$, such that $x_{i} y_{1}, x_{j} y_{l} \in E(G)$. Then we have the following observation.

Observation 3.1.

(1) $i \geqslant 2, i+2 \leqslant j \leqslant t-1$ and $N\left(x_{1}\right), N\left(x_{t}\right) \subseteq V(P)$.
(2) For $3 \leqslant i \leqslant t-2, x_{i}, x_{i+1}, x_{j-1}, x_{j}, x_{j+1}, x_{t} \notin N\left(x_{1}\right)$ and $x_{j}, x_{j-1}, x_{i+1}, x_{i}$, $x_{i-1}, x_{1} \notin N\left(x_{t}\right)$.
(3) $x_{i-1} x_{j-1} \notin E(G), x_{i+1} x_{j+1} \notin E(G)$.

Proof. (1) Suppose the opposite. Then we obtain a path longer than P in all cases easily.
(2) If $x_{i+1} \in N\left(x_{1}\right)$, then the path $x_{t} \bar{P} x_{j} y_{l} \bar{P}^{\prime} y_{1} x_{i} \bar{P} x_{1} x_{i+1} P x_{j-1}$ is longer than P, a contradiction. If $x_{i} \in N\left(x_{1}\right)$, since $y_{1} x_{1}, y_{1} x_{i-1}, y_{1} x_{i+1}, x_{1} x_{i+1} \notin E(G)$, if $x_{i-1} x_{i+1} \in E(G)$, the path $x_{t} \bar{P} x_{j} y_{l} \bar{P}^{\prime} y_{1} x_{i} x_{1} P x_{i-1} x_{i+1} P x_{j-1}$ is longer than P, so $x_{i-1} x_{i+1} \notin E(G)$. Then

$$
G\left[x_{i}, x_{1}, y_{1}, x_{i-1}, x_{i+1}\right] \cong K_{1,4} \quad \text { or } \quad G\left[x_{i}, x_{1}, y_{1}, x_{i-1}, x_{i+1}\right] \cong K_{1,4}+e,
$$

a contradiction. If $x_{j-1} \in N\left(x_{1}\right)$, then the path $x_{t} \bar{P} x_{j} y_{l} \bar{P}^{\prime} y_{1} x_{i} \bar{P} x_{1} x_{j-1} \bar{P} x_{i+1}$ is longer than P, a contradiction. If $x_{j+1} \in N\left(x_{1}\right)$, then the path $x_{t} \bar{P} x_{j+1} x_{1} P x_{i} y_{1}$ $P^{\prime} y_{l} x_{j} \bar{P} x_{i-1}$ is longer than P, a contradiction. If $x_{j} \in N\left(x_{1}\right)$, then

$$
G\left[x_{j}, x_{1}, x_{j-1}, y_{l}, x_{j+1}\right] \cong K_{1,4} \quad \text { or } \quad G\left[x_{j}, x_{1}, x_{j-1}, y_{l}, x_{j+1}\right] \cong K_{1,4}+e,
$$

a contradiction. If $x_{t} \in N\left(x_{1}\right)$, then the path $x_{i-1} \bar{P} x_{1} x_{t} \bar{P} x_{i} y_{1} P^{\prime} y_{l}$ is longer than P, a contradiction. In a similar way, we can show that $x_{j}, x_{j-1}, x_{i+1}, x_{i}, x_{i-1}, x_{1} \notin$ $N\left(x_{t}\right)$.
(3) If $x_{j-1} x_{i-1} \in E(G)$, then the path $x_{1} P x_{i-1} x_{j-1} \bar{P} x_{i} y_{1} P^{\prime} y_{l} x_{j} P x_{t}$ is longer than P, a contradiction. If $x_{i+1} x_{j+1} \in E(G)$, then the path $x_{1} P x_{i} y_{1} P^{\prime} y_{l} x_{j}$ $\bar{P} x_{i+1} x_{j+1} P x_{t}$ is longer than P, a contradiction.

Claim 3.2.

(1) $\left[N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right)\right] \cup\left[N_{R}\left(y_{1}\right) \cup N_{R}\left(x_{i+1}\right)\right] \subseteq V(R) \backslash\left\{y_{1}\right\}$.
(2) $\left[N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right)\right] \cap\left[N_{R}\left(y_{1}\right) \cup N_{R}\left(x_{i+1}\right)\right]=\emptyset$.

Proof. (1) $N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right)=\emptyset, N_{R}\left(y_{1}\right) \subseteq V(H) \backslash\left\{y_{1}\right\}, N_{R}\left(x_{i+1}\right) \subseteq V(R) \backslash$ $V(H)$. So, $N_{R}\left(y_{1}\right) \cup N_{R}\left(x_{i+1}\right) \subseteq V(R) \backslash\left\{y_{1}\right\},\left[N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right)\right] \cup\left[N_{R}\left(y_{1}\right) \cup\right.$ $\left.N_{R}\left(x_{i+1}\right)\right] \subseteq V(R) \backslash\left\{y_{1}\right\}$.
(2) Since $N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right)=\emptyset,\left[N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right)\right] \cap\left[N_{R}\left(y_{1}\right) \cup N_{R}\left(x_{i+1}\right)\right]=\emptyset$.

Set $P_{1}=x_{1} P x_{i}, P_{2}=x_{i+1} P x_{j-1}, P_{3}=x_{j} P x_{t}$.

$$
N_{P_{i}}^{+}(v)=\left\{u^{+}: u^{+} \in P, u \in N_{P_{i}}(v)\right\}, \quad N_{P_{i}}^{-}(v)=\left\{u^{-}: u^{-} \in P, u \in N_{P_{i}}(v)\right\} .
$$

Claim 3.3.

(1) If $i=2$, then $N_{P_{1}}\left(x_{1}\right) \cup N_{P_{1}}\left(x_{t}\right)=N_{P_{1}}\left(y_{1}\right) \cup N_{P_{1}}\left(x_{i+1}\right)=\left\{x_{i}\right\}$, and $\mid N_{P_{1}}\left(x_{1}\right) \cup$ $N_{P_{1}}\left(x_{t}\right)\left|+\left|N_{P_{1}}\left(y_{1}\right) \cup N_{P_{1}}\left(x_{i+1}\right)\right|=2=\left|V\left(P_{1}\right)\right|\right.$.
(2) If $i \neq 2$, then
(a) $\left[N_{P_{1}}^{-}\left(x_{1}\right) \cup N_{P_{1}}^{-}\left(x_{t}\right)\right] \cup\left[N_{P_{1}}\left(y_{1}\right) \cup N_{P_{1}}\left(x_{i+1}\right)\right] \subseteq V\left(P_{1}\right)$.
(b) $\left[N_{P_{1}}^{-}\left(x_{1}\right) \cup N_{P_{1}}^{-}\left(x_{t}\right)\right] \cap\left[N_{P_{1}}\left(y_{1}\right) \cup N_{P_{1}}\left(x_{i+1}\right)\right]=\emptyset$.

Proof. The item (1) is an obvious fact, and we start the proof of item (2).
(a) From Observation 3.1 we have $N_{P_{1}}\left(x_{1}\right) \cup N_{P_{1}}\left(x_{t}\right) \subseteq V\left(P_{1}\right) \backslash\left\{x_{1}, x_{i}\right\}$, so $N_{P_{1}}^{-}\left(x_{1}\right) \cup N_{P_{1}}^{-}\left(x_{t}\right) \subseteq V\left(P_{1}\right) \backslash\left\{x_{i-1}, x_{i}\right\}, N_{P_{1}}\left(y_{1}\right) \cup N_{P_{1}}\left(x_{i+1}\right) \subseteq V\left(P_{1}\right) \backslash\left\{x_{1}\right\}$. Thus $\left[N_{P_{1}}^{-}\left(x_{1}\right) \cup N_{P_{1}}^{-}\left(x_{t}\right)\right] \cup\left[N_{P_{1}}\left(y_{1}\right) \cup N_{P_{1}}\left(x_{i+1}\right)\right] \subseteq V\left(P_{1}\right)$.
(b) Suppose that $x_{k} \in\left[N_{P_{1}}^{-}\left(x_{1}\right) \cup N_{P_{1}}^{-}\left(x_{t}\right)\right] \cap\left[N_{P_{1}}\left(y_{1}\right) \cup N_{P_{1}}\left(x_{i+1}\right)\right]$. From (a) we know that $k \neq 1, i-1, i$.

Case 1: $x_{1} x_{k}^{+} \in E(G)$. If $y_{1} x_{k} \in E(G)$, then the path $x_{t} \bar{P} x_{j} y_{l} \bar{P}^{\prime} y_{1} x_{k} \bar{P} x_{1} x_{k}^{+} P x_{j-1}$ is longer than P, a contradiction. If $x_{i+1} x_{k} \in E(G)$, then the path $x_{t} \bar{P} x_{j} y_{l} \bar{P}^{\prime} y_{1} x_{i}$ $\bar{P} x_{k}^{+} x_{1} P x_{k} x_{i+1} P x_{j-1}$ is longer than P, a contradiction.

Case 2: $x_{t} x_{k}^{+} \in E(G)$. If $y_{1} x_{k} \in E(G)$, then the path $x_{1} P x_{k} y_{1} P^{\prime} y_{l} x_{j} P x_{t} x_{k}^{+} P x_{j-1}$ is longer than P, a contradiction. If $x_{i+1} x_{k} \in E(G)$, then the path $x_{1} P x_{k} x_{i+1} P x_{j} y_{l}$ $\bar{P}^{\prime} y_{1} x_{i} \bar{P} x_{k}^{+} x_{t} \bar{P} x_{j+1}$ is longer than P, a contradiction.

Claim 3.4.

(1) $\left[N_{P_{2}}^{+}\left(x_{1}\right) \cup N_{P_{2}}^{+}\left(x_{t}\right)\right] \cup\left[N_{P_{2}}\left(y_{1}\right) \cup N_{P_{2}}\left(x_{i+1}\right)\right] \subseteq V\left(P_{2}\right) \backslash\left\{x_{i+1}\right\}$.
(2) $\left[N_{P_{2}}^{+}\left(x_{1}\right) \cup N_{P_{2}}^{+}\left(x_{t}\right)\right] \cap\left[N_{P_{2}}\left(y_{1}\right) \cup N_{P_{2}}\left(x_{i+1}\right)\right]=\emptyset$.

Proof. (1) From Observation 3.1 we have

$$
N_{P_{2}}\left(x_{1}\right) \cup N_{P_{2}}\left(x_{t}\right) \subseteq V\left(P_{2}\right) \backslash\left\{x_{i+1}, x_{j-1}\right\},
$$

so $N_{P_{2}}^{+}\left(x_{1}\right) \cup N_{P_{2}}^{+}\left(x_{t}\right) \subseteq V\left(P_{2}\right) \backslash\left\{x_{i+1}, x_{i+2}\right\}, N_{P_{2}}\left(y_{1}\right) \cup N_{P_{2}}\left(x_{i+1}\right) \subseteq V\left(P_{2}\right) \backslash\left\{x_{i+1}\right\}$. Thus $\left[N_{P_{2}}^{+}\left(x_{1}\right) \cup N_{P_{2}}^{+}\left(x_{t}\right)\right] \cup\left[N_{P_{2}}\left(y_{1}\right) \cup N_{P_{2}}\left(x_{i+1}\right)\right] \subseteq V\left(P_{2}\right) \backslash\left\{x_{i+1}\right\}$.
(2) Suppose that $x_{k} \in\left[N_{P_{2}}^{+}\left(x_{1}\right) \cup N_{P_{2}}^{+}\left(x_{t}\right)\right] \cap\left[N_{P_{2}}\left(y_{1}\right) \cup N_{P_{2}}\left(x_{i+1}\right)\right]$. We know that $k \neq i+1, i+2, j$. From the assumption that $N(H) \cap V\left(x_{i+1} P x_{j-1}\right)=\emptyset$ we have $y_{1} x_{k} \notin E(G)$, so $x_{i+1} x_{k} \in E(G)$.

Case 1: $x_{1} x_{k}^{-} \in E(G)$. Then the path $x_{t} \bar{P} x_{j} y_{l} \bar{P}^{\prime} y_{1} x_{i} \bar{P} x_{1} x_{k}^{-} \bar{P} x_{i+1} x_{k} P x_{j-1}$ is longer than P, a contradiction.

Case 2: $x_{t} x_{k}^{-} \in E(G)$. Then the path $x_{1} P x_{i} y_{1} P^{\prime} y_{l} x_{j} P x_{t} x_{k}^{-} \bar{P} x_{i+1} x_{k} P x_{j-1}$ is longer than P, a contradiction.

Claim 3.5.

(1) If $j=t-1$, then $N_{P_{3}}\left(x_{1}\right) \cup N_{P_{3}}\left(x_{t}\right)=\left\{x_{t-1}\right\}, N_{P_{3}}\left(y_{1}\right) \cup N_{P_{3}}\left(x_{i+1}\right) \subseteq\left\{x_{t-1}\right\}$, and $\left|N_{P_{3}}\left(x_{1}\right) \cup N_{P_{3}}\left(x_{t}\right)\right|+\left|N_{P_{3}}\left(y_{1}\right) \cup N_{P_{3}}\left(x_{i+1}\right)\right| \leqslant 2=\left|V\left(P_{3}\right)\right|$.
(2) If $j \neq t-1$, then
(a) $\left[N_{P_{3}}^{+}\left(x_{1}\right) \cup N_{P_{3}}^{+}\left(x_{t}\right)\right] \cup\left[N_{P_{3}}\left(y_{1}\right) \cup N_{P_{3}}\left(x_{i+1}\right)\right] \subseteq V\left(P_{3}\right) \backslash\left\{x_{j+1}\right\}$.
(b) $\left[N_{P_{3}}^{+}\left(x_{1}\right) \cup N_{P_{3}}^{+}\left(x_{t}\right)\right] \cap\left[N_{P_{3}}\left(y_{1}\right) \cup N_{P_{3}}\left(x_{i+1}\right)\right]=\emptyset$.

Proof. The item (1) is an obvious fact, and we start the proof of item (2).
(a) From Observation 3.1 we have $N_{P_{3}}\left(x_{1}\right) \cup N_{P_{3}}\left(x_{t}\right) \subseteq V\left(P_{3}\right) \backslash\left\{x_{j}, x_{t}\right\}$, so $N_{P_{3}}^{+}\left(x_{1}\right) \cup N_{P_{3}}^{+}\left(x_{t}\right) \subseteq V\left(P_{3}\right) \backslash\left\{x_{j}, x_{j+1}\right\}, N_{P_{3}}\left(y_{1}\right) \cup N_{P_{3}}\left(x_{i+1}\right) \subseteq V\left(P_{3}\right) \backslash\left\{x_{j+1}, x_{t}\right\}$. Thus $\left[N_{P_{3}}^{+}\left(x_{1}\right) \cup N_{P_{3}}^{+}\left(x_{t}\right)\right] \cup\left[N_{P_{3}}\left(y_{1}\right) \cup N_{P_{3}}\left(x_{i+1}\right)\right] \subseteq V\left(P_{3}\right) \backslash\left\{x_{j+1}\right\}$.
(b) Suppose that $x_{k} \in\left[N_{P_{3}}^{+}\left(x_{1}\right) \cup N_{P_{3}}^{+}\left(x_{t}\right)\right] \cap\left[N_{P_{3}}\left(y_{1}\right) \cup N_{P_{3}}\left(x_{i+1}\right)\right]$. From (a) we know that $k \neq j, j+1, t$.

Case 1: $x_{1} x_{k}^{-} \in E(G)$. If $y_{1} x_{k} \in E(G)$, then the path $x_{t} \bar{P} x_{k} y_{1} x_{i} \bar{P} x_{1} x_{k}^{-} \bar{P} x_{i+1}$ is longer than P, a contradiction. If $x_{i+1} x_{k} \in E(G)$, then the path $x_{t} \bar{P} x_{k} x_{i+1} P x_{j} y_{l}$ $\bar{P}^{\prime} y_{1} x_{i} \bar{P} x_{1} x_{k}^{-} \bar{P} x_{j+1}$ is longer than P, a contradiction.

Case 2: $x_{t} x_{k}^{-} \in E(G)$. If $y_{1} x_{k} \in E(G)$, then the path $x_{1} P x_{i} y_{1} x_{k} P x_{t} x_{k}^{-} \bar{P} x_{i+1}$ is longer than P, a contradiction. If $x_{i+1} x_{k} \in E(G)$, then the path $x_{1} P x_{i} y_{1} P^{\prime} y_{l} x_{j}$ $\bar{P} x_{i+1} x_{k} P x_{t} x_{k}^{-} \bar{P} x_{j+1}$ is longer than P, a contradiction.

From Claim 3.2, we have

$$
\begin{align*}
\mid N_{R}\left(x_{1}\right) \cup & N_{R}\left(x_{t}\right)\left|+\left|N_{R}\left(y_{1}\right) \cup N_{R}\left(x_{i+1}\right)\right|\right. \tag{3.1}\\
= & \left|\left[N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right)\right] \cup\left[N_{R}\left(y_{1}\right) \cup N_{R}\left(x_{i+1}\right)\right]\right| \\
& +\left|\left[N_{R}\left(x_{1}\right) \cup N_{R}\left(x_{t}\right)\right] \cap\left[N_{R}\left(y_{1}\right) \cup N_{R}\left(x_{i+1}\right)\right]\right| \leqslant|V(R)|-1 .
\end{align*}
$$

From Claim 3.3, we have:
If $i=2$, then

$$
\begin{equation*}
\left|N_{P_{1}}\left(x_{1}\right) \cup N_{P_{1}}\left(x_{t}\right)\right|+\left|N_{P_{1}}\left(y_{1}\right) \cup N_{P_{1}}\left(x_{i+1}\right)\right|=\left|V\left(P_{1}\right)\right| . \tag{3.2}
\end{equation*}
$$

If $i \neq 2$, then

$$
\begin{align*}
\mid N_{P_{1}}\left(x_{1}\right) \cup & N_{P_{1}}\left(x_{t}\right)\left|+\left|N_{P_{1}}\left(y_{1}\right) \cup N_{P_{1}}\left(x_{i+1}\right)\right|\right. \tag{3.3}\\
= & \left|N_{P_{1}}^{-}\left(x_{1}\right) \cup N_{P_{1}}^{-}\left(x_{t}\right)\right|+\left|N_{P_{1}}\left(y_{1}\right) \cup N_{P_{1}}\left(x_{i+1}\right)\right| \\
= & \left|\left[N_{P_{1}}^{-}\left(x_{1}\right) \cup N_{P_{1}}^{-}\left(x_{t}\right)\right] \cup\left[N_{P_{1}}\left(y_{1}\right) \cup N_{P_{1}}\left(x_{i+1}\right)\right]\right| \\
& +\left|\left[N_{P_{1}}^{-}\left(x_{1}\right) \cup N_{P_{1}}^{-}\left(x_{t}\right)\right] \cap\left[N_{P_{1}}\left(y_{1}\right) \cup N_{P_{1}}\left(x_{i+1}\right)\right]\right| \leqslant\left|V\left(P_{1}\right)\right| .
\end{align*}
$$

From Claim 3.4, we have

$$
\begin{align*}
\mid N_{P_{2}}\left(x_{1}\right) & \cup N_{P_{2}}\left(x_{t}\right)\left|+\left|N_{P_{2}}\left(y_{1}\right) \cup N_{P_{2}}\left(x_{i+1}\right)\right|\right. \tag{3.4}\\
& =\left|N_{P_{2}}^{+}\left(x_{1}\right) \cup N_{P_{2}}^{+}\left(x_{t}\right)\right|+\left|N_{P_{2}}\left(y_{1}\right) \cup N_{P_{2}}\left(x_{i+1}\right)\right| \leqslant\left|V\left(P_{2}\right)\right|-1 .
\end{align*}
$$

From Claim 3.5, we have:
If $j=t-1$, then

$$
\begin{equation*}
\left|N_{P_{3}}\left(x_{1}\right) \cup N_{P_{3}}\left(x_{t}\right)\right|+\left|N_{P_{3}}\left(y_{1}\right) \cup N_{P_{3}}\left(x_{i+1}\right)\right| \leqslant\left|V\left(P_{3}\right)\right| . \tag{3.5}
\end{equation*}
$$

If $j \neq t-1$, then

$$
\begin{align*}
\mid N_{P_{3}}\left(x_{1}\right) & \cup N_{P_{3}}\left(x_{t}\right)\left|+\left|N_{P_{3}}\left(y_{1}\right) \cup N_{P_{3}}\left(x_{i+1}\right)\right|\right. \tag{3.6}\\
& =\left|N_{P_{3}}^{+}\left(x_{1}\right) \cup N_{P_{3}}^{+}\left(x_{t}\right)\right|+\left|N_{P_{3}}\left(y_{1}\right) \cup N_{P_{3}}\left(x_{i+1}\right)\right| \leqslant\left|V\left(P_{3}\right)\right|-1 .
\end{align*}
$$

From inequalities (3.1)-(3.6), we have

$$
\left|N\left(x_{1}\right) \cup N\left(x_{t}\right)\right|+\left|N\left(y_{1}\right) \cup N\left(x_{i+1}\right)\right| \leqslant n-2 .
$$

This contradicts the condition $\left|N\left(x_{1}\right) \cup N\left(x_{2}\right)\right|+\left|N\left(y_{1}\right) \cup N\left(y_{2}\right)\right| \geqslant n-1$ of Theorem 1.9. The proof of Theorem 1.9 is completed.

Acknowledgements. The author are grateful to the anonymous referee for his or her helpful suggestions.

References

[1] D. Bauer, G. Fan, H. J. Veldman: Hamiltonian properties of graphs with large neighborhood unions. Discrete Math. 96 (1991), 33-49.
[2] J. A. Bondy, U. S. R. Murty: Graph Theory with Applications. American Elsevier Publishing, New York, 1976.
[3] F. Duan, G. P. Wang: Note on the longest paths in $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graphs. Acta Math. Sin., Engl. Ser. 28 (2012), 2501-2506.
[4] R.Li: Hamiltonicity of 2-connected $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graphs. Discrete Math. 287 (2004), 69-76.
[5] R. Li, R. H. Schelp: Hamiltonicity of $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graphs. Discrete Math. 245 (2002), 195-202.
zbl MR doi
[6] H. Lin, J. Wang: Hamilton paths in $\left\{K_{1,4}, K_{1,4}+e\right\}$-free graphs. Discrete Math. 308 (2008), 4280-4285.
zbl MR doi
Authors' address: Wei Zheng, Ligong Wang (corresponding author), Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P.R. China, e-mail: zhengweimath@163.com, lgwangmath@163.com.

