PRESENTATIONS FOR SUBSEMIGROUPS OF $P D_{n}$

Abdullahi Umar, Abu Dhabi

Received July 23, 2017. Published online August 9, 2018.

Abstract

Let $[n]=\{1, \ldots, n\}$ be an n-chain. We give presentations for the following transformation semigroups: the semigroup of full order-decreasing mappings of $[n]$, the semigroup of partial one-to-one order-decreasing mappings of $[n]$, the semigroup of full order-preserving and order-decreasing mappings of $[n]$, the semigroup of partial one-toone order-preserving and order-decreasing mappings of $[n]$, and the semigroup of partial order-preserving and order-decreasing mappings of $[n]$.

Keywords: presentation; order-decreasing mapping; order-preserving mapping; transformation semigroups

MSC 2010: 20M20, 20M30

1. Introduction and preliminaries

There are many well-known presentations for various finite permutation groups, for example, the famous Coxeter presentation for the symmetric group. After tools of semigroup theory were developed, semigroup theorists became interested in finding presentations for finite transformation semigroups. Some of the early works on this go back to the start of earnest investigation as to what semigroup presentations are, see [24], [25]. Later some papers appeared on presentations for order-preserving mappings, see [13], [14], [23], orientation-preserving mappings, see [12], and for general transformation monoids, see [9]-[11]. Inspired by the Coxeter groups and Brauertype semigroups, there also appeared presentations for various subsemigroups of the composition monoid in [18] and [21]. A substantial amount of work to find presentations for various transformation-like monoids has been carried out in papers [1]-[8].

In general, the big motivation for finding presentations for semigroups lies in the fact that knowing their presentations is really helpful to construct various types of representations of those semigroups, see [16] and [22]. However, for us the main objective in this paper is purely combinatorial - we are going to provide presentations
for various subsemigroups of $P D_{n}$, which we now define. (An earlier draft of this paper has appeared as [30].)

Consider an n-chain, i.e. $[n]=\{1, \ldots, n\}$ together with the the natural linear order on it. Let P_{n} denote the semigroup of all partial mappings on $[n]$. By an order-decreasing mapping we shall mean a partial mapping $\alpha \in P_{n}$ such that $x \alpha \leqslant x$ for all $x \in \operatorname{dom}(\alpha)$; and by an order-preserving mapping we shall mean a partial mapping $\alpha \in P_{n}$ such that $x \alpha \leqslant y \alpha$ for all $x \leqslant y$ from the domain of α. Let
$\triangleright P D_{n}$ be the semigroup of all partial order-decreasing mappings of the chain $[n]$;
$\triangleright D_{n}$ be the semigroup of all full order-decreasing mappings of $[n]$;
$\triangleright P C_{n}$ be the semigroup of all partial order-preserving and order-decreasing mappings of $[n]$;
$\triangleright C_{n}$ be the semigroup of all full order-preserving and order-decreasing mappings of $[n]$;
$\triangleright I C_{n}$ be the semigroup of all partial one-to-one order-preserving and orderdecreasing mappings of $[n]$;
$\triangleright I D_{n}$ be the semigroup of all partial one-to-one order-decreasing mappings of $[n]$.
The subsemigroups of $P D_{n}$ and D_{n} are well-studied, one should consult [17], [27]-[29].

Now section by section we will provide the presentations for these semigroups. But prior to that, we recall what semigroup presentations are: Let A be a finite set, and A^{*} be the free monoid generated by A, i.e. the set of all words over A under concatenation. Let $R \subseteq A^{*} \times A^{*}$. Then by the (monoid) presentation $\langle A: R\rangle$ we mean the semigroup A^{*} / ϱ, where ϱ is the congruence on A^{*}, defined as follows: for $u, v \in A^{*}$ we have $u \varrho v$ if and only if there exist $x_{0}, x_{1} \ldots, x_{n} \in A^{*}$ such that $u=x_{0} \sim x_{1} \sim \ldots \sim x_{n-1} \sim x_{n}=v$, where by $x \sim y$ for $x, y \in A^{*}$ we mean that there exists $(u, v) \in R$ and $\alpha, \beta \in A^{*}$ such that either $x=\alpha u \beta$ and $y=\alpha v \beta$, or $x=\alpha v \beta$ and $y=\alpha u \beta$. For more detail on monoid presentations we refer the reader to two theses [25] and [20].

2. Presentation for D_{n}

A general study of the semigroups D_{n} and $P D_{n}$ was initiated in [28] and they arise in language theory [17].

Prior to stating the presentation for D_{n}, let us discuss its natural generating set. For $1 \leqslant i<j \leqslant n$ let $f_{i, j}$ be the idempotent in D_{n} which maps j to i and fixes all remaining points. Then one checks that the $f_{i, j}$'s generate D_{n} (see [27]) and are
subject to the following relations (under the mapping $e_{i, j} \mapsto f_{i, j}$):

$$
\begin{align*}
e_{i, j}^{2} & =e_{i, j}, & & \tag{1}\\
e_{i, j} e_{k, l} & =e_{k, l} e_{i, j} & & \text { if }\{i, j\} \cap\{k, l\}=\emptyset, \tag{2}\\
e_{i, j} e_{i, k} & =e_{j, k} e_{i, j}, & & i<j<k, \tag{3}\\
e_{i, k} e_{i, j} & =e_{j, k} e_{i, j}, & & i<j<k, \tag{4}\\
e_{i, k} e_{j, k} & =e_{i, k}, & & i, j<k . \tag{5}
\end{align*}
$$

We will prove now that the monoid M_{n} presented by (1)-(5) is isomorphic to D_{n}. Firstly, we start with the following lemma.

Lemma 2.1. Let $i<j$ and $k<l$. If $l<j$, then we can select p, q, r such that $p<q, r<j,\{p, q, r\}=\{i, k, l\}$ and $e_{i, j} e_{k, l}=e_{p, q} e_{r, j}$.

Proof. Let $l<j$. If $\{k, l\} \cap\{i, j\}=\emptyset$, then the claim follows from (2). If $\{k, l\} \cap\{i, j\} \neq \emptyset$, then one of k and l must coincide with i. If $l=i$, then $k<l=i<j$ and so $e_{i, j} e_{k, l}=e_{i, j} e_{k, i}=e_{k, i} e_{k, j}$ by (3). If $k=i$, then $i=k<l<j$ and so $e_{i, j} e_{k, l}=e_{i, j} e_{i, l}=e_{i, l} e_{i, j}$ by (3) and (4). The claim follows.

Now we will show that every element from M_{n} can be represented in the form

$$
\begin{equation*}
e_{i_{1}, j_{1}} e_{i_{2}, j_{2}} \ldots e_{i_{k}, j_{k}} \tag{6}
\end{equation*}
$$

for some $k \geqslant 0,2 \leqslant j_{1}<j_{2}<\ldots<j_{k} \leqslant n$ and $1 \leqslant i_{s}<j_{s}$ for all $s \leqslant k$.
By inductive arguments, to establish this it suffices to show that the product of element (6) and any element $e_{i, j}$ is of the form (6). So, let $\pi=e_{i_{1}, j_{1}} e_{i_{2}, j_{2}} \ldots e_{i_{k}, j_{k}}$ with all the above conditions on i_{s} and j_{s}. If $j>j_{k}$, then $\pi e_{i, j}$ is of the required form. If $j=j_{k}$, then using (5) we have that $\pi e_{i, j}=\pi$ is again of the required form. So, let $j<j_{k}$. Then by Lemma 2.1 there exist $p, q, r<j_{k}$ such that $e_{i_{k}, j_{k}} e_{i, j}=e_{p, q} e_{r, j_{k}}$. Repeating this at most $k-1$ more times will bring $\pi e_{i, j}$ to the required form.

One now notices that there are exactly n ! different formal products (6), which yields $\left|M_{n}\right| \leqslant n$!. But $\left|D_{n}\right|=n$!, and since there is an onto homomorphism from M_{n} onto D_{n}, this completes the proof that $M_{n} \cong D_{n}$.

Remark 2.2. From [28] we know that $P D_{n}$ is isomorphic to D_{n+1} and so there is no need to give separate presentation for $P D_{n}$.

3. Presentation for $I D_{n}$

As with D_{n} and $P D_{n}$, a general study of the semigroup $I D_{n}$ was initiated in [28], see also [29].

Let e_{i} be the idempotent in $I D_{n}$ such that $\operatorname{dom}\left(e_{i}\right)=\operatorname{im}\left(e_{i}\right)=\{1, \ldots, n\} \backslash\{i\}$; and for $1 \leqslant i<j \leqslant n$ let $b_{i, j}$ be the element of $I D_{n}$ with $\operatorname{dom}\left(b_{i, j}\right)=\{1, \ldots, n\} \backslash\{i\}$ which maps j to i and fixes all remaining points. One checks that the e_{i} 's together with the $b_{i, j}$'s generate $I D_{n}$ (see [29]) and that they are subject to the following relations (under the mapping $f_{i} \mapsto e_{i}$ and $a_{i, j} \mapsto b_{i, j}$):

$$
\begin{align*}
f_{i}^{2} & =f_{i}, & & \tag{7}\\
f_{i} f_{j} & =f_{j} f_{i}, & & i \neq j, \tag{8}\\
f_{k} a_{i, j} & =a_{i, j} f_{k}, & & i<j \& k \notin\{i, j\}, \tag{9}\\
f_{i} a_{i, j} & =a_{i, j} f_{j}=a_{i, j}, & & i<j, \tag{10}\\
f_{j} a_{i, j} & =a_{i, j} f_{i}=f_{i} f_{j}, & & i<j, \tag{11}\\
a_{i, j} a_{k, l} & =a_{k, l} a_{i, j}, & & \{i, j\} \cap\{k, l\}=\emptyset, \tag{12}\\
a_{j, k} a_{i, j} & =f_{j} a_{i, k}, & & i<j<k . \tag{13}
\end{align*}
$$

We will prove that the monoid M_{n} presented by relations (7)-(13) is isomorphic to $I D_{n}$. From (9), (10), (11) and by induction we easily see that every element $w \in M_{n}$ is expressible as

$$
f_{i_{1}} f_{i_{2}} \ldots f_{i_{k}} u
$$

where $u \in\left\{a_{i, j}: i<j\right\}^{*}, 1 \leqslant i_{1}<i_{2}<\ldots<i_{k} \leqslant n$.

Lemma 3.1.

(1) $a_{i, j} a_{k, j}=f_{k} a_{i, j}$ if $i, k<j$ and $i \neq k$.
(2) $a_{i, j} a_{i, k}=f_{j} a_{i, k}$ if $i<j, k$ and $j \neq k$.
(3) $a_{i, j} a_{i, j}=f_{i} f_{j}$ if $i<j$.

Proof. (1) $a_{i, j} a_{k, j}=a_{i, j} f_{j} a_{k, j}=a_{i, j} f_{j} f_{k}=a_{i, j} f_{k}=f_{k} a_{i, j}$.
(2) $a_{i, j} a_{i, k}=a_{i, j} f_{i} a_{i, k}=f_{i} f_{j} a_{i, k}=f_{j} a_{i, k}$.
(3) $a_{i, j} a_{i, j}=a_{i, j} f_{i} a_{i, j}=f_{i} f_{j} a_{i, j}=f_{i} f_{j}$.

From Lemma 3.1 it follows that any word $w \in M_{n}$ can be expressed as

$$
\begin{equation*}
f_{i_{1}} \ldots f_{i_{k}} a_{t_{1}, j_{1}} \ldots a_{t_{r}, j_{r}} \tag{14}
\end{equation*}
$$

with $2 \leqslant j_{1}<\ldots<j_{r} \leqslant n$ and $t_{s}<j_{s}$ for all s.

Now we will prove that additionally we may assume that in (14) all t_{i} 's are pairwise distinct. Indeed, let (14) have a chunk of consecutive letters $a_{t_{s}, j_{s}} \ldots a_{t_{p}, j_{p}}$ such that $t_{s}=t_{p}$ and there is no t_{i} equal to $t_{s}=t_{p}$ for $s<i<p$. Note also that $t_{s}=t_{p} \notin\left\{j_{s}, \ldots, j_{p}\right\}$. Hence by (9), (10) and (11) we have

$$
\begin{aligned}
a_{t_{s}, j_{s}} \ldots a_{t_{p}, j_{p}} & =a_{t_{s}, j_{s}} \ldots a_{t_{p-1}, j_{p-1}} f_{t_{p}} a_{t_{p}, j_{p}} \\
& =a_{t_{s}, j_{s}} \ldots a_{t_{p-2}, j_{p-2}} f_{t_{p}} a_{t_{p-1}, j_{p-1}} a_{t_{p}, j_{p}} \\
& \vdots \\
& =a_{t_{s}, j_{s}} f_{t_{p}} a_{t_{s+1}, j_{s+1}} \ldots a_{t_{p}, j_{p}} \\
& =f_{t_{s}} f_{j_{s}} a_{t_{s+1}, j_{s+1}} \ldots a_{t_{p}, j_{p}},
\end{aligned}
$$

and hence we turn product (14) to one with lesser number of entries of $a_{i, j}$'s, which allows by use of inductive reasoning to deduce that indeed in (14) we may assume that all t_{i} 's are pairwise distinct.

Furthermore, in (14) we may assume that $\left\{i_{1}, \ldots, i_{k}\right\} \cap\left\{j_{1}, \ldots, j_{r}, t_{1}, \ldots, t_{r}\right\}=\emptyset$. Indeed, otherwise, using relations (8), (9), (10), and (11), we could push the corresponding f_{i} to the right of the word (14) and either replace some of $a_{t_{s}, j_{s}}$ by some f_{q} and move that newly introduced f_{q} back to the left, or the corresponding f_{i} vanishes.

Now, element (14) in M_{n} with all the above conditions on i_{s}, t_{l} and j_{l}, evaluated in $I D_{n}$ is the element which maps j_{l} to t_{l} for $l \leqslant r$ and any point from $\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{r}, t_{1}, \ldots, t_{r}\right\}$ identically. Any such element in $I D_{n}$ uniquely recovers product (14). Hence $\left|M_{n}\right| \leqslant\left|I D_{n}\right|$, but of course $\left|M_{n}\right| \geqslant\left|I D_{n}\right|$ and so $M_{n} \cong I D_{n}$, as required.

4. Presentation for C_{n}

The semigroup C_{n}, also known as the Catalan monoid because $\left|C_{n}\right|$ is the nth Catalan number, was first studied by Higgins and it also arose in language theory [17]. We provide for completeness the following result, the proof of which the reader can find in [16] and [26]. The monoid C_{n} is presented by

$$
\begin{align*}
\left\langle e_{i}, 1 \leqslant i \leqslant n-1:\right. & e_{i}^{2}=e_{i}, \tag{15}\\
& e_{i} e_{j}=e_{j} e_{i} \quad \text { if }|i-j| \geqslant 2, \tag{16}\\
& e_{i} e_{i+1} e_{i}=e_{i+1} e_{i}, \tag{17}\\
& \left.e_{i+1} e_{i} e_{i+1}=e_{i+1} e_{i}\right\rangle . \tag{18}
\end{align*}
$$

5. Presentation for $I C_{n}$

The semigroup $I C_{n}$ first appeared in [15] and not much is known about it. For $i \leqslant n$ let f_{i} be the idempotent in $I C_{n}$ with $\operatorname{dom}\left(f_{i}\right)=\operatorname{im}\left(f_{i}\right)=\{1, \ldots, n\} \backslash\{i\}$; and for $i \leqslant n-1$ let b_{i} be the element of $I C_{n}$ which maps $i+1$ to i and fixes all the points from $\{1, \ldots, n\} \backslash\{i, i+1\}$.

Lemma 5.1. $I C_{n}=\left\langle f_{i}, i \leqslant n ; b_{i}, i \leqslant n-1\right\rangle$.
Proof. Let $f \in I C_{n}$. Let F be the set of fixed points of f. Let $\operatorname{dom}(f) \backslash F$ consist of the points $j_{1}<\ldots<j_{p}$ and $\operatorname{im}(f) \backslash F$ consist of the points $t_{1}<\ldots<t_{p}$. Then one has $t_{s} \leqslant j_{s}$. Then one easily calculates that

$$
f=\prod_{x \in[n] \backslash \operatorname{dom}(f)} f_{x} \cdot\left(b_{j_{1}} \ldots b_{t_{1}}\right) \ldots\left(b_{j_{p}} \ldots b_{t_{p}}\right) .
$$

Also one sees that the f_{i} 's together with the b_{i} 's satisfy the following relations (under the mapping $e_{i} \mapsto f_{i}, a_{i} \mapsto b_{i}$):

$$
\begin{align*}
e_{i}^{2} & =e_{i}, \tag{19}\\
e_{i} e_{j} & =e_{j} e_{i}, \tag{20}\\
e_{i} a_{j} & =a_{j} e_{i} \quad \text { if } i<j \text { or } i>j+1, \tag{21}\\
a_{i} a_{j} & =a_{j} a_{i} \quad \text { if }|i-j| \geqslant 2, \tag{22}\\
e_{i} a_{i} & =a_{i} e_{i+1}=a_{i}, \quad i \leqslant n-1, \tag{23}\\
e_{i+1} a_{i} & =a_{i} e_{i}=e_{i} e_{i+1}, \quad i \leqslant n-1 . \tag{24}
\end{align*}
$$

We will prove that the monoid M_{n} presented by relations (19)-(24) is isomorphic to $I C_{n}$. We proceed with the following lemma.

Lemma 5.2.

(1) $a_{i+1} a_{i} a_{i+1}=a_{i+1} a_{i}$.
(2) $a_{i} a_{i}=e_{i} e_{i+1}$.
(3) $a_{i} a_{i+1} a_{i}=a_{i+1} a_{i}$.

Proof. (1) $a_{i+1} a_{i} a_{i+1}=a_{i+1} e_{i+2} a_{i} a_{i+1}=a_{i+1} a_{i} e_{i+2} a_{i+1}=a_{i+1} a_{i} e_{i+1} e_{i+2}=$ $a_{i+1} a_{i} e_{i+2}=a_{i+1} e_{i+2} a_{i}=a_{i+1} a_{i}$.
(2) $a_{i} a_{i}=a_{i} e_{i} a_{i}=e_{i} e_{i+1} a_{i}=e_{i} e_{i} e_{i+1}=e_{i} e_{i+1}$.
(3) $a_{i} a_{i+1} a_{i}=a_{i} a_{i+1} e_{i} a_{i}=a_{i} e_{i} a_{i+1} a_{i}=e_{i} e_{i+1} a_{i+1} a_{i}=e_{i} a_{i+1} a_{i}=a_{i+1} e_{i} a_{i}=$ $a_{i+1} a_{i}$.

Now, one easily sees from (21), (23) and (24) that every element $w \in M_{n}$ can be expressed as

$$
e_{i_{1}} \ldots e_{i_{k}} a_{j_{1}} \ldots a_{j_{p}}
$$

Actually, we will prove that any $w \in M_{n}$ can be represented as

$$
\begin{equation*}
\pi=e_{i_{1}} \ldots e_{i_{k}}\left(a_{j_{1}} \ldots a_{t_{1}}\right) \ldots\left(a_{j_{p}} \ldots a_{t_{p}}\right) \tag{25}
\end{equation*}
$$

with $j_{1}<j_{2}<\ldots<j_{p} ; t_{1}<t_{2}<\ldots<t_{p} ; t_{s} \leqslant j_{s}$.
To prove this, we proceed by induction and let i be arbitrary to consider πa_{i}. If $i>j_{p}$, then πa_{i} is of the required form. So let $i \leqslant j_{p}$. If $t_{p} \leqslant i$, then by Lemma 5.2 and (22) we can use induction and bring πa_{i} to the required form. Thus let $i<t_{p}$. If $i<t_{p}-1$, then

$$
\pi a_{i}=e_{i_{1}} \ldots e_{i_{k}}\left(a_{j_{1}} \ldots a_{t_{1}}\right) \ldots\left(a_{j_{p-1}} \ldots a_{t_{p-1}}\right) a_{i}\left(a_{j_{p}} \ldots a_{t_{p}}\right),
$$

and we further bring πa_{i} to the required form. So let $i=t_{p}-1$. If $t_{p}-1>t_{p-1}$, then πa_{i} is in the needed form. Thus, let finally $t_{p}-1=t_{p-1}$. Then by Lemma 5.2,

$$
\begin{aligned}
\pi a_{i} & =e_{i_{1}} \ldots e_{i_{k}}\left(a_{j_{1}} \ldots a_{t_{1}}\right) \ldots\left(a_{j_{p-2}} \ldots a_{t_{p-2}}\right)\left(a_{j_{p-1}} \ldots a_{t_{p-1}+1}\right)\left(a_{j_{p}} \ldots a_{t_{p}-1} a_{t_{p}} a_{t_{p}-1}\right) \\
& =e_{i_{1}} \ldots e_{i_{k}}\left(a_{j_{1}} \ldots a_{t_{1}}\right) \ldots\left(a_{j_{p-2}} \ldots a_{t_{p-2}}\right)\left(a_{j_{p-1}} \ldots a_{t_{p-1}+1}\right)\left(a_{j_{p}} \ldots a_{t_{p}-1}\right) \\
& =e_{i_{1}} \ldots e_{i_{k}}\left(a_{j_{1}} \ldots a_{t_{1}}\right) \ldots\left(a_{j_{p-2}} \ldots a_{t_{p-2}}\right)\left(a_{j_{p}} \ldots a_{t_{p}-1}\right)
\end{aligned}
$$

is in the required form.
Additionally, we may require that in (25) the elements i_{s} do not coincide with any of the indices i of a_{i} appearing in (25), and do not coincide with any of $j_{1}+1, \ldots, j_{p}+1$. Then all such products (25) evaluated in $I C_{n}$ are pairwise distinct. Hence $M_{n} \cong I C_{n}$.

6. Presentation for $P C_{n}$

The semigroup $P C_{n}$, also known as the Schröder monoid because $\left|P C_{n}\right|$ is the nth (double) Schröder number, first appeared in [19] and it also arose in language theory [17].

Let a_{i} be the idempotent from $P C_{n}$ with $\operatorname{dom}\left(a_{i}\right)=\operatorname{im}\left(a_{i}\right)=\{1, \ldots, n\} \backslash\{i\}$; and for $i \leqslant n-1$ let b_{i} be the idempotent from $P C_{n}$ which maps $i+1$ to i and fixes all remaining points. Then the a_{i} 's together with the b_{i} 's generate $P C_{n}$, and are
subject to the following relations (under the mapping $f_{i} \mapsto a_{i}, e_{i} \mapsto b_{i}$):

$$
\begin{align*}
e_{i}^{2} & =e_{i}, \tag{26}\\
e_{i} e_{j} & =e_{j} e_{i} \quad \text { if }|i-j| \geqslant 2, \tag{27}\\
e_{i} e_{i+1} e_{i} & =e_{i+1} e_{i}, \tag{28}\\
e_{i+1} e_{i} e_{i+1} & =e_{i+1} e_{i}, \tag{29}\\
f_{i}^{2} & =f_{i}, \tag{30}\\
f_{i} f_{j} & =f_{j} f_{i}, \tag{31}\\
f_{j} e_{i} & =e_{i} f_{j} \quad \text { if } j<i \text { or } j>i+1, \tag{32}\\
f_{i+1} e_{i} & =f_{i+1}, \tag{33}\\
e_{i} f_{i+1} & =e_{i}, \tag{34}\\
e_{i} f_{i} & =f_{i} f_{i+1} . \tag{35}
\end{align*}
$$

Similarly to the cases we treated above, one shows that every element of M_{n} can be expressed as

$$
\begin{equation*}
\pi=f_{p_{1}} \ldots f_{p_{r}}\left(e_{j_{1}} e_{j_{1}-1} \ldots e_{i_{1}}\right)\left(e_{j_{2}} e_{j_{2}-1} \ldots e_{i_{2}}\right) \ldots\left(e_{j_{k}} e_{j_{k}-1} \ldots e_{i_{k}}\right) \tag{36}
\end{equation*}
$$

where $1 \leqslant i_{1}<i_{2}<\ldots<i_{k} ; j_{1}<j_{2}<\ldots<j_{k} ; i_{s} \leqslant j_{s}$ for all $s ; k \geqslant 0$; and $\left\{p_{1}, \ldots, p_{r}\right\} \cap\left\{j_{1}+1, \ldots, j_{k}+1\right\}=\emptyset$.

Then distinct words of the form (36) evaluated in $P C_{n}$ are pairwise distinct and so $M_{n} \cong P C_{n}$. Thus, the monoid presented by (26)-(35) is isomorphic to $P C_{n}$.

Acknowledgement. This work was supposed to be a joint article with Dr. Victor Maltcev, but he does not want to be named as a coauthor. I would like to thank Prof. James East for bringing references [1], [2], [9], [10], [11], [12], [23] to my attention.

References

[1] A. J. Aŭzenštat: Defining relations of finite symmetric semigroups. Mat. Sb. N.Ser. 45 (1958), 261-280. (In Russian.)
[2] A. J. A乞̆zenštat: The defining relations of the endomorphism semigroup of a finite linearly ordered set. Sib. Mat. Zh. 3 (1962), 161-169. (In Russian.)
[3] D. Easdown, J. East, D. G. FitzGerald: A presentation of the dual symmetric inverse monoid. Int. J. Algebra Comput. 18 (2008), 357-374.
zbl MR doi
[4] J. East: A presentation of the singular part of the symmetric inverse monoid. Commun. Algebra 34 (2006), 1671-1689.
[5] J. East: A presentation for the singular part of the full transformation semigroup. Semigroup Forum 81 (2010), 357-379.
[6] J. East: Presentations for singular subsemigroups of the partial transformation semigroup. Int. J. Algebra Comput. 20 (2010), 1-25.
zbl MR doi
[7] J. East: Generators and relations for partition monoids and algebras. J. Algebra 339 (2011), 1-26.
zbl MR doi
[8] J. East: On the singular part of the partition monoid. Int. J. Algebra Comput. 21 (2011), 147-178.
[9] J. East: Defining relations for idempotent generators in finite full transformation semigroups. Semigroup Forum 86 (2013), 451-485.
zbl MR doi

10] J. East: Defining relations for idempotent generators in finite partial transformation semigroups. Semigroup Forum 89 (2014), 72-76.
zbl MR doi
[11] J. East: A symmetrical presentation for the singular part of the symmetric inverse monoid. Algebra Univers. 74 (2015), 207-228.
zbl MR doi
[12] V. H. Fernandes: The monoid of all injective orientation preserving partial transformations on a finite chain. Commun. Algebra 28 (2000), 3401-3426.
zbl MR doi
[13] V. H. Fernandes, G. M.S. Gomes, M. M. Jesus: Presentations for some monoids of injective partial transformations on a finite chain. Southeast Asian Bull. Math. 28 (2004), 903-918.
zbl MR
[14] V. H. Fernandes, G. M. S. Gomes, M. M. Jesus: Presentations for some monoids of partial transformations on a finite chain. Commun. Algebra 33 (2005), 587-604.
zbl MR doi
[15] O. Ganyushkin, V. Mazorchuk: Classical Finite Transformation Semigroups. An Introduction. Algebra and Applications 9, Springer, London, 2009.
zbl MR doi
[16] O. Ganyushkin, V. Mazorchuk: On Kiselman quotients of 0-Hecke monoids. Int. Electron. J. Algebra 10 (2011), 174-191.
zbl MR
[17] P. M. Higgins: A proof of Simon's theorem on piecewise testable languages. Theor. Comput. Sci. 178 (1997), 257-264.
zbl MR doi
[18] G. Kudryavtseva, V. Mazorchuk: On presentations of Brauer-type monoids. Cent. Eur. J. Math. 4 (2006), 413-434.
zbl MR doi
[19] A. Laradji, A. Umar: Combinatorial results for semigroups of order-decreasing partial transformations. J. Integer Seq. 7 (2004), Art. 04.3.8, 14 pages.
[20] V. Maltcev: Topics in Combinatorial Semigroup Theory. Ph.D. Thesis, University of St. Andrews, United Kingdom, 2012.
[21] V. Maltcev, V. Mazorchuk: Presentation of the singular part of the Brauer monoid. Math. Bohem. 132 (2007), 297-323.
[22] V. Mazorchuk, B. Steinberg: Double Catalan monoids. J. Algebr. Comb. 36 (2012), 333-354.
[23] L. M. Popova: Defining relations of a semigroup of partial endomorphisms of a finite linearly ordered set. Leningr. Gos. Ped. Inst. A. I. Gertsen, Uch. Zap. 238 (1962), 78-88. (In Russian.)
zbl MR
[24] N. Ruškuc: Matrix semigroups-generators and relations. Semigroup Forum 51 (1995), 319-333.
zbl MR doi
[25] N. Ruškuc: Semigroup Presentations. Ph.D. Thesis, University of St. Andrews, United Kingdom, 1995.
[26] A. Solomon: Catalan monoids, monoids of local endomorphisms, and their presentations. Semigroup Forum 53 (1996), 351-368.
zbl MR doi
[27] A. Umar: On the semigroups of order-decreasing finite full transformations. Proc. R. Soc. Edinb., Sect. A 120 (1992), 129-142.
[28] A. Umar: Semigroups of Order-Decreasing Transformations. Ph.D. Thesis, University of St. Andrews, United Kingdom, 1992.
[29] A. Umar: On the semigroups of partial one-to-one order-decreasing finite transformations. Proc. R. Soc. Edinb., Sect. A 123 (1993), 355-363.
[30] A. Umar: Presentations for subsemigroups of $P D_{n}$. Available at https://arxiv.org/ abs/1702. 02788 (2017), 7 pages.

Author's address: Abdullahi Umar, Department of Mathematical Sciences, Petroleum Institute, P. O. Box 2533, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates, e-mail: aumar@pi.ac.ae.

