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Abstract. We characterize the weak McShane integrability of a vector-valued function on
a finite Radon measure space by means of only finite McShane partitions. We also obtain
a similar characterization for the Fremlin generalized McShane integral.
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1. Introduction

The purpose of this note is to develop the theory of weak McShane integral, which

was initiated by Saadoune and Sayyad [6]. Our work here is motivated by two

things. The weak McShane integrability of a vector-valued function on a quasi-

Radon measure space is defined in terms of infinite McShane partitions. However,

it is possible to characterize the integrability by means of finite McShane partitions

if the measure space is compact and finite; see Proposition 2.2.

In [2] Faure and Mawhin defined the Henstock-Kurzweil integral of a vector-valued

function defined on an unbounded interval of Rm by using finite partitions; see

also [7], Section 3.7. These two things drew our interest in seeking a possibility to

characterize the weak McShane integrability of a function on a non-compact space

in terms of only finite McShane partitions. Our main result, Theorem 3.1, shows

that this is possible in the case where the space is a finite Radon measure space.

A similar assertion is also valid for the Fremlin generalized McShane integral [4]; see

Theorem 3.3.

Let us see the meaning of our main result from a different point of view. Propo-

sition 2.2 indicates that the weak McShane integral of a function on a compact

finite quasi-Radon measure space is a variant of the Riemann integral in the sense

that (2.1) involves only finite McShane sums. This, combined with Proposition 2.3
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and our Theorem 3.1, indicates that the weak McShane integral of a function on

a finite Radon measure space can be viewed as a variant of the improper integral.

2. Preliminaries

In this section several notions and terminologies are recalled from [6] for the

reader’s sake. Let (S, T ,Σ, µ) be a σ-finite quasi-Radon measure space which is outer

regular (the definition of a quasi-Radon measure space is supplied in Appendix). By

a generalized McShane partition of S we mean a sequence {(Ei, ti)}
∞
i=1 such that

{Ei}
∞
i=1 is a disjoint family of measurable sets of finite measure, ti ∈ S for each i,

and µ
(
S \

∞⋃
i=1

Ei

)
= 0. A function ∆: S → T is called a gauge if s ∈ ∆(s) for every

s ∈ S. We say that a generalized McShane partition {(Ei, ti)}
∞
i=1 is subordinate

to a gauge ∆: S → T if Ei ⊂ ∆(ti) for every i ∈ N. Given a gauge ∆, we de-

note by Π∞(∆) the set of all generalized McShane partitions of S subordinate to ∆.

A sequence {Pm
∞}∞m=1 of generalized McShane partitions of S is said to be adapted

to a sequence of gauges {∆m}∞m=1 if P
m
∞ is subordinate to ∆m for each m. Let X

be a Banach space. For a function f : S → X and a generalized McShane partition

P = {(Ei, ti)}
∞
i=1 of S, we set

σn(f,P) =

n∑

i=1

µ(Ei)f(ti).

Definition 2.1 ([6], Definition 3.2). A function f : S → X is said to be weakly

McShane integrable (WM-integrable for short) on S, with weak McShane integral w,

if there is a sequence of gauges ∆m : S → T , m = 1, 2, . . ., such that, for every

x∗ ∈ X∗ and for every sequence {Pm
∞}∞m=1 of generalized McShane partitions of S

adapted to {∆m}∞m=1,

lim
m→∞

lim sup
l→∞

|〈x∗, σl(f,P
m
∞)− w〉| = 0.

We set w = (WM)
∫
S
f dµ in this case.

A function f : S → X is said to be WM-integrable on a measurable subset E of S if

χEf is WM-integrable on S. Here χE stands for the characteristic function of E. We

say that f is WM-integrable on Σ if it is WM-integrable on every measurable subset

of S. It is proved in [6], Proposition 3.2 that a function f : S → X is WM-integrable

on S, with weak McShane integral w, if and only if there exists a sequence of gauges

∆m : S → T , m = 1, 2, . . ., such that

lim
m→∞

sup
P∞∈Π∞(∆m)

lim sup
l→∞

|〈x∗, σl(f,P∞)− w〉| = 0 ∀x∗ ∈ X∗.
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By a finite partial McShane partition of S we mean a finite sequence {(Ei, ti)}
p
i=1

such that E1, E2, . . . , Ep is a disjoint family of measurable sets of finite measure and

ti ∈ S for each i 6 p; it is said to be subordinate to a gauge ∆: S → T if Ei ⊂ ∆(ti)

for each i 6 p. A finite partial McShane partition {(Ei, ti)}
p
i=1 of S is called a finite

strict generalized McShane partition of S if
p⋃

i=1

Ei = S. It is also useful to recall the

following result:

Proposition 2.2 ([6], Proposition 3.3). Let (S, T ,Σ, µ) be a compact finite quasi-

Radon measure space, X a Banach space. Let f : S → X be a function. Then f is

WM-integrable, with weak McShane integral w, if and only if there is a sequence of

gauges ∆m : S → T , m = 1, 2, . . ., such that

(2.1) lim
m→∞

sup
{(Ei,ti)}16i6p∈Πf (∆m)

∣∣∣∣
〈
x∗,

p∑

i=1

µ(Ei)f(ti)− w

〉∣∣∣∣ = 0 ∀x∗ ∈ X∗.

Here, Πf (∆m) stands for the set of all finite strict generalized McShane partitions

of S subordinate to ∆m.

It is worth mentioning that this assertion is an analogy to [4], 1E Proposition. We

further recall the following implication.

Proposition 2.3 ([6], Proposition 3.4). Let (S, T ,Σ, µ) be a σ-finite outer regular

quasi-Radon measure space and let E ∈ Σ. Let X be a Banach space, f : S → X

a function. Let TE stand for the relativization of T to E. Set ΣE = {F ∈ Σ: F ⊂ E}

and µE = µ|ΣE
. Then, f isWM-integrable on E if and only if f |E isWM-integrable

on E with respect to the quasi-Radon measure space (E, TE , ΣE , µE), and the two

integrals are equal.

We also need additional terminologies. Let (S, T ,Σ, µ) be a σ-finite quasi-Radon

measure space which is outer regular. We call a generalized McShane partition

{(Ei, ti)}
∞
i=1 of S a strict generalized McShane partition of S if

∞⋃
i=1

Ei = S. Let X

be a Banach space. For a Pettis integrable function f : S → X and for E ∈ Σ,

there is a unique wE ∈ X such that
∫
E
〈x∗, f〉dµ = 〈x∗, wE〉 for every x

∗ ∈ X∗; we

write wE = (Pe)
∫
E
f dµ. The map Σ ∋ E 7→ wE ∈ X is called the indefinite Pettis

integral of f . We consult [1] or [5] for the notions and terminologies of the standard

measure theory. We refer to [8] for the theory of Pettis integral.
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3. Weak McShane integrability in terms of

finite McShane partitions

By a Radon measure space we mean a quasi-Radon measure space which is

inner regular for the compact sets. The following theorem characterizes the

WM-integrability of a function on a Radon measure space in terms of finite McShane

partitions.

Theorem 3.1. Let (S, T ,Σ, µ) be a finite Radon measure space, X a Banach

space. Let f : S → X be a function. Then the conditions (a) and (b) below are

equivalent:

(a) f is WM-integrable on Σ.

(b) For each E ∈ Σ, there exist a sequence {Kn}
∞
n=1 of compact sets, a sequence

of sequences of gauges {∆n
j }

∞
j=1 (n = 1, 2, . . .) on S and a vector wE ∈ X such

that the following (i)–(iii) are valid:

(i) Kn ⊂ E (n = 1, 2, . . .);

(ii) f is WM-integrable on each Kn and

lim
n→∞

∥∥∥∥(WM)

∫

Kn

f dµ− wE

∥∥∥∥ = 0;

(iii) for each x∗ ∈ X∗,

lim
n→∞

lim sup
j→∞

sup
{(Ei,ti)}16i6p∈PΠf (∆n

j
)

∣∣∣∣
〈
x∗,

p∑

i=1

µ(Ei)(χE\Kn
f)(ti)

〉∣∣∣∣ = 0.

Here, PΠf (∆
n
j ) stands for the set of all finite partial McShane partitions

of S subordinate to ∆n
j .

P r o o f. First, we prove that (b) yields (a). Let E, {Kn}
∞
n=1, {∆

n
j }

∞
j=1 (n =

1, 2, . . .) and wE be as in (b). It follows from the first condition of (ii) that, for

each n, there exists a sequence {δnj }
∞
j=1 of gauges on S such that, for each x∗ ∈ X∗,

lim
j→∞

sup
P∞∈Π∞(δn

j
)

lim sup
l→∞

∣∣∣∣
〈
x∗, σl(χKn

f,P∞)− (WM)

∫

Kn

f dµ

〉∣∣∣∣ = 0.

Define a sequence of gauges δ̃j : S → T (j = 1, 2, . . .) by

δ̃j(t) =

j⋂

n=1

(∆n
j (t) ∩ δnj (t)).
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We arbitrarily pick a sequence {(Ej
i , t

j
i )}

∞
i=1 (j = 1, 2, . . .) of generalized McShane

partitions of S adapted to {δ̃j}
∞
j=1. Pick also an x∗ ∈ X∗, arbitrarily. Let

M(n, j) = sup
{(Ei,ti)}16i6p∈PΠf (∆n

j
)

∣∣∣∣
〈
x∗,

p∑

i=1

µ(Ei)(χE\Kn
f)(ti)

〉∣∣∣∣

and

L(n, j) = sup
P∞∈Π∞(δn

j
)

lim sup
l→∞

∣∣∣∣
〈
x∗, σl(χKn

f,P∞)− (WM)

∫

Kn

f dµ

〉∣∣∣∣.

Pick an ε > 0, arbitrarily. It follows from (iii) that there is an N1 ∈ N such that for

any integer n > N1, lim sup
j→∞

M(n, j) < ε. By the last condition of (ii), we see that

there is an N2 ∈ N such that for any integer n > N2, ‖(WM)
∫
Kn

f dµ − wE‖ < ε.

Put N = max{N1, N2}. Note that

∣∣∣∣
〈
x∗,

l∑

i=1

µ(Ej
i )(χEf)(t

j
i )− wE

〉∣∣∣∣

6

∣∣∣∣
〈
x∗,

l∑

i=1

µ(Ej
i )(χKN

f)(tji )− (WM)

∫

KN

f dµ

〉∣∣∣∣

+

∣∣∣∣
〈
x∗, (WM)

∫

KN

f dµ− wE

〉∣∣∣∣+
∣∣∣∣
〈
x∗,

l∑

i=1

µ(Ej
i )(χE\KN

f)(tji )

〉∣∣∣∣.

We see that there exists a J ∈ N such that, for any integer j > J , M(N, j) < ε and

L(N, j) < ε. Pick arbitrarily an integer j satisfying j > max{J,N}. Since j > N ,

it holds that δ̃j(t) ⊂ ∆N
j (t) and δ̃j(t) ⊂ δNj (t). Thus, the generalized McShane

partition {(Ej
i , t

j
i )}

∞
i=1 is subordinate to both ∆N

j and δNj . Hence,

lim sup
l→∞

∣∣∣∣
〈
x∗,

l∑

i=1

µ(Ej
i )(χEf)(t

j
i )− wE

〉∣∣∣∣

6 L(N, j) + ‖x∗‖ε+M(N, j) < (2 + ‖x∗‖)ε.

Since ε > 0 was arbitrary, we have

lim
j→∞

lim sup
l→∞

∣∣∣∣
〈
x∗,

l∑

i=1

µ(Ej
i )(χEf)(t

j
i )− wE

〉∣∣∣∣ = 0,

that is, f is WM-integrable on E and (WM)
∫
E
f dµ = wE .
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Next, we prove the converse; suppose (a). It follows from [6], Corollary 3.3 that f is

Pettis integrable. So, the function ν : Σ → X defined by

ν(G) = (WM)

∫

G

f dµ

(
= (Pe)

∫

G

f dµ

)
, G ∈ Σ,

is a countably additive vector measure that is absolutely continuous with respect

to µ (see [4], Subsection 2A). Fix E ∈ Σ. Since (S, T ,Σ, ν) is a finite Radon measure

space, there is an increasing sequence {Kn}
∞
n=1 of compact sets which satisfies (i)

and µ(E \Kn) → 0 (as n → ∞). Pick an ε > 0, arbitrarily. There is an m ∈ N such

that, for any A ∈ Σ satisfying A ⊂ E \Km,

(3.1)

∥∥∥∥(WM)

∫

A

f dµ

∥∥∥∥ < ε.

Particularly, if we put wE = (WM)
∫
E
f dµ, then (ii) holds. For each n, there exists

a sequence of gauges ∆n
j : S → T (j = 1, 2, . . .) such that, for any x∗ ∈ X∗,

lim
j→∞

sup
P∞∈Π∞(∆n

j
)

lim sup
l→∞

∣∣∣∣
〈
x∗, σl(χE\Kn

f,P∞)− (WM)

∫

E\Kn

f dµ

〉∣∣∣∣ = 0,

because f is WM-integrable on E\Kn. This, combined with the weak Saks-Henstock

lemma [6], Lemma 3.2, implies that, for each n ∈ N and x∗ ∈ X∗,

lim
j→∞

sup
{(Ei,ti)}16i6p∈PΠf (∆n

j
)

∣∣∣∣
〈
x∗,

p∑

i=1

µ(Ei)(χE\Kn
f)(ti)(3.2)

− (WM)

∫
p⋃

i=1

Ei

χE\Kn
f dµ

〉∣∣∣∣ = 0.

We fix x∗ ∈ X∗. Pick arbitrarily an integer n satisfying n > m. Since

sup
{(Ei,ti)}16i6p∈PΠf (∆n

j
)

∣∣∣∣
〈
x∗,

p∑

i=1

µ(Ei)(χE\Kn
f)(ti)

〉∣∣∣∣

6 sup
{(Ei,ti)}16i6p∈PΠf (∆n

j
)

∣∣∣∣
〈
x∗,

p∑

i=1

µ(Ei)(χE\Kn
f)(ti)− (WM)

∫
p⋃

i=1

Ei

χE\Kn
f dµ

〉∣∣∣∣

+ sup
{(Ei,ti)}16i6p∈PΠf (∆n

j
)

∣∣∣∣
〈
x∗, (WM)

∫

(E\Kn)∩
p⋃

i=1

Ei

f dµ

〉∣∣∣∣
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and since (E\Kn)∩
p⋃

i=1

Ei ⊂ E\Km for {(Ei, ti)}16i6p ∈ PΠf (∆
n
j ), we see from (3.1)

and (3.2) that

lim sup
j→∞

sup
{(Ei,ti)}16i6p∈PΠf (∆n

j
)

∣∣∣∣
〈
x∗,

p∑

i=1

µ(Ei)(χE\Kn
f)(ti)

〉∣∣∣∣ 6 ε‖x∗‖.

Thereby, (iii) holds. �

We include the following proposition in this section, which belongs to remarks.

Recall that a topological space S is said to have the Lindelöf property if every open

cover of S admits a countable subcover.

Proposition 3.2. Let (S, T ,Σ, µ) be a σ-finite outer regular quasi-Radonmeasure

space. Suppose that (S, T ) possesses the Lindelöf property. LetX be a Banach space,

ϕ : S → X a function. In order that ϕ be WM-integrable, with WM-integral w, it

is necessary and sufficient that there exists a sequence of gauges ∆j : S → T , j =

1, 2, . . ., such that, for every sequence {(Ej
i , t

j
i )}

∞
i=1, j = 1, 2, . . ., of strict generalized

McShane partitions of S adapted to {∆j}
∞
j=1 and for every x

∗ ∈ X∗,

lim
j→∞

lim sup
l→∞

∣∣∣∣
〈
x∗,

l∑

i=1

µ(Ej
i )ϕ(t

j
i )− w

〉∣∣∣∣ = 0.

P r o o f. The necessity is clear. We deduce the sufficiency by the following obser-

vation. Let ∆: S → T be a gauge and let {(Ei, ti)}
∞
i=1 be a generalized McShane

partition of S subordinate to ∆. Then, N ≡ S \
∞⋃
i=1

Ei is a null set. Because (S, T )

possesses the Lindelöf property and {∆(t)}t∈S is an open cover of S, there is a se-

quence {ξi}
∞
i=1 in S for which S =

∞⋃
i=1

∆(ξi). Put Ni = N ∩ ∆(ξi). We define

a sequence {Ñi}
∞
i=1 of subsets of S by Ñ1 = N1 and Ñi = Ni \

i−1⋃
j=1

Nj (i > 1). For

each i, Ñi is a null set, and Ñi ⊂ ∆(ξi). We define a sequence {Fi}
∞
i=1 of subsets

of S and a sequence {ηi}
∞
i=1 in S by

F2i−1 = Ei, F2i = Ñi, η2i−1 = ti, η2i = ξi.

Then, {(Fi, ηi)}
∞
i=1 is a strict generalized McShane partition of S subordinate to ∆,

and it holds for every l ∈ N that

l∑

i=1

µ(Ei)ϕ(ti) =

2l−1∑

i=1

µ(Fi)ϕ(ηi).

We obtain the conclusion at once from this fact. �
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We shall see that a characterization similar to Theorem 3.1 is valid also for the

Fremlin generalized McShane integral (for the definition of this integral, see [4],

1A Definitions). To this end we introduce a terminology. Let (S, T ,Σ, µ) be a σ-finite

outer regular quasi-Radon measure space and let E ∈ Σ. Let X be a Banach space,

f : S → X a function. We say that f is McShane integrable (M-integrable for short)

on E if χEf is McShane integrable. In this case we designate by (M)
∫
E
f dµ the

McShane integral of χEf . We have the following assertion.

Theorem 3.3. Let (S, T ,Σ, µ) be a finite Radon measure space and let E ∈ Σ.

Let X be a Banach space, f : S → X a function. Then, the following conditions (a)

and (b) are equivalent:

(a) f is M-integrable on E.

(b) There is a wE ∈ X such that, for any ε > 0, there exist a compact set K and

a gauge ∆: S → T for which the following (i)–(iii) are valid:

(i) K ⊂ E;

(ii) f is M-integrable on K and ‖(M)
∫
K
f dµ− wE‖ < ε;

(iii)

sup
{(Ei,ti)}16i6p∈PΠf (∆)

∥∥∥∥
p∑

i=1

µ(Ei)(χE\Kf)(ti)

∥∥∥∥ < ε.

We omit the proof, as it is similar to that of Theorem 3.1.

4. Appendix

We recall from [3], Subsection 72 the definition of a quasi-Radon measure space

for the sake of convenience; several auxiliary notions are also recalled.

Definition A.1. Let (S,Σ, µ) be a measure space.

(i) (S,Σ, µ) is said to be finite (or totally finite) if µ(S) < ∞. (S,Σ, µ) is semi-

finite if, whenever E ∈ Σ and µ(E) = ∞, there is an F ⊂ E such that F ∈ Σ

and 0 < µ(F ) < ∞.

(ii) Set Σf = {F ∈ Σ: µ(F ) < ∞}. (S,Σ, µ) is said to be locally determined if it is

semi-finite and, for any set E ⊂ S,

E ∩ F ∈ Σ for every F ∈ Σf ⇒ E ∈ Σ.

Definition A.2. Let G be a family of sets. We say that G is directed upwards if

for every pair A, B of elements of G there is a C ∈ G such that A ⊂ C and B ⊂ C.
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Definition A.3. A quasi-Radon measure space is a quadruple (S, T ,Σ, µ), where

(S,Σ, µ) is a measure space and T is a topology on S such that:

(i) (S,Σ, µ) is complete and locally determined;

(ii) T ⊂ Σ;

(iii) if E ∈ Σ and µ(E) > 0, then there is a G ∈ T such that µ(G) < ∞ and

µ(E ∩G) > 0;

(iv) µ(E) = sup{µ(F ) : F ⊂ E, F closed} for every E ∈ Σ;

(v) if G is a nonempty subfamily of T which is directed upwards, then

µ
(⋃

G
)
= sup{µ(G) : G ∈ G}.
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