ON σ -PERMUTABLY EMBEDDED SUBGROUPS OF FINITE GROUPS

CHENCHEN CAO, LI ZHANG, WENBIN GUO, Hefei

Received March 23, 2017. Published online May 10, 2018.

Abstract. Let $\sigma = \{\sigma_i \colon i \in I\}$ be some partition of the set of all primes \mathbb{P} , G be a finite group and $\sigma(G) = \{\sigma_i \colon \sigma_i \cap \pi(G) \neq \emptyset\}$. A set \mathcal{H} of subgroups of G is said to be a complete Hall σ -set of G if every non-identity member of \mathcal{H} is a Hall σ_i -subgroup of G and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every $\sigma_i \in \sigma(G)$. G is said to be σ -full if G possesses a complete Hall σ -set. A subgroup H of G is σ -permutable in G if G possesses a complete Hall σ -set G subgroup G and G is G-permutably embedded in G if G is G-full and for every G is also a Hall G-subgroup of some G-permutable subgroup of G.

By using the σ -permutably embedded subgroups, we establish some new criteria for a group G to be soluble and supersoluble, and also give the conditions under which a normal subgroup of G is hypercyclically embedded. Some known results are generalized.

Keywords: finite group; σ -subnormal subgroup; σ -permutably embedded subgroup; σ -soluble group; supersoluble group

MSC 2010: 20D10, 20D20, 20D35

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. If n is an integer, then the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

In what follows, $\sigma = \{\sigma_i : i \in I\}$ is some partition of all primes \mathbb{P} , that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. We write $\sigma(G) = \{\sigma_i : \sigma_i \cap \pi(G) \neq \emptyset\}$.

Following [20], [29], [30], G is said to be σ -primary if $|\sigma(G)| \leq 1$; σ -soluble if every chief factor of G is σ -primary. A set \mathcal{H} of subgroups of G is said to be a complete

Research was supported by the NNSF of China (11771409) and Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences.

DOI: 10.21136/CMJ.2018.0148-17

Hall σ -set of G if every non-identity member of \mathcal{H} is a Hall σ_i -subgroup of G for some σ_i and \mathcal{H} contains exactly one Hall σ_i -subgroup for every $\sigma_i \in \sigma(G)$. G is said to be σ -full if G possesses a complete Hall σ -set; σ -nilpotent if G has a complete Hall σ -set $\mathcal{H} = \{H_1, H_2, \ldots, H_t\}$ such that $G = H_1 \times H_2 \times \ldots \times H_t$. Clearly, a σ -nilpotent group is σ -soluble. G is said to be a σ -full group of Sylow type if every subgroup of G is a D_{σ_i} -group for all $\sigma_i \in \sigma(G)$. A subgroup H of G is said to be σ -subnormal in G if there exists a subgroup chain G if there exists a subgroup chain G is G-primary for all G-such that either G-such in G-subgroup in G-subgroup is G-primary for all G-such that

Let \mathcal{L} be some nonempty set of subgroups of G and $K \leq G$. Following [29], a subgroup H of G is called \mathcal{L} -permutable if HA = AH for all $A \in \mathcal{L}$; \mathcal{L}^K -permutable if $HA^x = A^xH$ for all $A \in \mathcal{L}$ and all $x \in K$. In particular, a subgroup H of G is σ -permutable in G if G has a complete Hall σ -set \mathcal{H} such that H is \mathcal{H}^G -permutable.

It is well known that embedded subgroups play an important role in the theory of finite groups. For example, a subgroup H of G is said to be normally embedded in G(see [12], page 250) if for each prime p dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some normal subgroup of G. A subgroup H of Gis said to be permutably embedded in G (see [5]) if for each prime p dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some permutable subgroup of G. (Note that a subgroup H of G is said to be permutable in G if HS = SHfor any subgroup S of G.) A subgroup H of G is said to be s-permutably embedded in G (see [8]) if for each prime p dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-permutable subgroup of G. (Note that a subgroup H of G is said to be s-permutable in G if HP = PH for any Sylow subgroup P of G.) A subgroup H of G is σ -permutably embedded in G (see [19]) if H is σ -full and for every $\sigma_i \in \sigma(H)$, every Hall σ_i -subgroup of H is also a Hall σ_i -subgroup of some σ -permutable subgroup of G. By using the above embedded subgroups, the researchers have obtained a series of interesting results (see, for example, [3], [5], [8], [19], [24], [31]).

Some properties of σ -permutably embedded subgroups were analysed in [19]. In this paper, we continue the research of σ -permutably embedded subgroups.

We first obtain the following result.

Theorem 1.1. Let G be a σ -full group of Sylow type and $\mathcal{H} = \{H_1, H_2, \ldots, H_t\}$ be a complete Hall σ -set of G such that H_i is a supersoluble σ_i -subgroup for all $i = 1, \ldots, t$. If every maximal subgroup of non-cyclic H_i is σ -permutably embedded in G, then G is supersoluble.

Recall that a normal subgroup E of G is called *hypercyclically embedded* in G ([25], page 217) if every chief factor of G below E is cyclic. Hypercyclically embedded subgroups play an important role in the theory of soluble groups (see [6], [9], [15], [25])

and the conditions under which a normal subgroup is hypercyclically embedded in G were found by many authors (see books [6], [9], [15], [25] and, for example, the recent papers [16], [18], [23], [27], [28], [32]).

In this paper, we also get the following results in this line researches.

Theorem 1.2. Let G be a σ -full group of Sylow type and $\mathcal{H} = \{H_1, H_2, \ldots, H_t\}$ be a complete Hall σ -set of G such that H_i is a nilpotent σ_i -subgroup for all $i = 1, \ldots, t$. Let E be a normal subgroup of G. If every maximal subgroup of any noncyclic $H_i \cap E$ is σ -permutably embedded in G, then E is hypercyclically embedded in G.

Theorem 1.3. Let G be a σ -full group of Sylow type and $\mathcal{H} = \{H_1, H_2, \ldots, H_t\}$ be a complete Hall σ -set of G such that H_i is a supersoluble σ_i -subgroup for all $i = 1, \ldots, t$. Let E be a normal subgroup of G. If every cyclic subgroup H of any non-cyclic $H_i \cap E$ of prime order and order 4 (if the Sylow 2-subgroup of E is non-abelian and $H \nleq Z_{\infty}(G)$) is σ -permutably embedded in G, then E is hypercyclically embedded in G.

In Section 3 and Section 4 we give the proofs of Theorems 1.1, 1.2 and 1.3. In Section 5 we will give some applications of our results.

All unexplained terminologies and notations are standard. The reader is referred to [12], [15] if necessary.

2. Preliminaries

We use \mathfrak{S}_{σ} to denote the class of all σ -soluble groups and $F_{\sigma}(G)$ to denote the product of all normal σ -nilpotent subgroups of G.

Lemma 2.1 ([29], Lemma 2.1). The class \mathfrak{S}_{σ} is closed under taking direct products, homomorphic images and subgroups. Moreover, any extension of a σ -soluble group by a σ -soluble group is a σ -soluble group as well.

Lemma 2.2 ([29], Lemma 2.6 (11)). Let G be a σ -full group and A be a σ -subnormal subgroup of G. If A is σ -nilpotent, then A is contained in $F_{\sigma}(G)$.

Lemma 2.3 ([19], Lemma 2.6 (i)). $F_{\sigma}(G)$ is σ -nilpotent.

Lemma 2.4 ([29], Lemma 2.8). Let H, K and N be subgroups of G. Let $\mathcal{H} = \{H_1, H_2, \ldots, H_t\}$ be a complete Hall σ -set of G and $\mathcal{L} = \mathcal{H}^K$. Suppose that H is \mathcal{L} -permutable and N is normal in G.

(1) The subgroup HN/N is \mathcal{L}^* -permutable, where

$$\mathcal{L}^* = \{H_1 N/N, \dots, H_t N/N\}^{KN/N}.$$

In particular, if H is σ -permutable in G, then HN/N is σ -permutable in G/N.

(2) If G is a σ -full group of Sylow type and E/N is a σ -permutable subgroup of G/N, then E is σ -permutable in G.

Lemma 2.5 ([29], Theorem B). Let H be a subgroup of a σ -full group G. If H is σ -permutable in G, then H is σ -subnormal in G and H^G/H_G is σ -nilpotent.

Lemma 2.6. Let $H \leq K$ and N be subgroups of G. Suppose that N is normal in G.

- (1) If G is a σ -full group of Sylow type and H is σ -permutably embedded in G, then H is σ -permutably embedded in K.
- (2) If H is σ -permutably embedded in G, then HN/N is σ -permutably embedded in G/N.
- (3) If G is a σ -full group of Sylow type and H/N is σ -permutably embedded in G/N, then H is σ -permutably embedded in G.

Proof. (1)–(2) can be found in [19], Lemma 2.2.

(3) Let H_i be a Hall σ_i -subgroup of H, where $\sigma_i \in \sigma(H)$. Then $H_i N/N$ is a Hall σ_i -subgroup of H/N. By the hypothesis, there exists a σ -permutable subgroup T/N of G/N such that $H_i N/N$ is a Hall σ_i -subgroup of T/N. Then T is σ -permutable in G by Lemma 2.4 (2). Since $N \leq H$, $H_i N \leq H$ and so H_i is a Hall σ_i -subgroup of $H_i N$. It follows that $|T:H_i|=|T:H_i N||H_i N:H_i|$ is a σ'_i -number. Hence, H_i is a Hall σ_i -subgroup of T. This shows that T is T-permutably embedded in T.

Following [29], [20], we use $O^{\sigma_i}(G)$ to denote the subgroup of G generated by all σ'_i -subgroups of G, and $O_{\sigma_i}(G)$ and $O_{\sigma'_i}(G)$ to denote the subgroup of G generated by all normal σ_i -subgroups and normal σ'_i -subgroups of G, respectively.

Lemma 2.7 ([29], Lemma 3.1). Let H be a σ_1 -subgroup of a σ -full group G. Then H is σ -permutable in G if and only if $O^{\sigma_1}(G) \leq N_G(H)$.

Let P be a p-group. If P is not a non-abelian 2-group, then we use $\Omega(P)$ to denote $\Omega_1(P)$. Otherwise, $\Omega(P) = \Omega_2(P)$.

Lemma 2.8 ([17], Lemma 4.3). Let C be a Thompson critical subgroup of a p-group P (see [13], page 185).

- (1) If p is odd, then the exponent of $\Omega(C)$ is p.
- (2) If P is a non-abelian 2-group, then the exponent of $\Omega(C)$ is 4.

The following lemma is a corollary of [17], Lemma 4.4 and [11], Lemma 2.12.

Lemma 2.9. Let P be a normal p-subgroup of G and C be a Thompson critical subgroup of P. If either $P/\Phi(P)$ is hypercyclically embedded in $G/\Phi(P)$ or $\Omega(C)$ is hypercyclically embedded in G, then P is hypercyclically embedded in G.

Lemma 2.10 ([28], Theorem C). Let E be a normal subgroup of G. If $F^*(E)$ is hypercyclically embedded in G, then E is hypercyclically embedded in G.

In this lemma, $F^*(E)$ is the generalized Fitting subgroup of E, that is, the largest normal quasinilpotent subgroup of E (see [22], Chapter X).

Recall that a class of groups \mathfrak{F} is said to be a *formation* provided that (i) if $G \in \mathfrak{F}$ and $N \leq G$, then $G/N \in \mathfrak{F}$, and (ii) if $G/M \in \mathfrak{F}$ and $G/N \in \mathfrak{F}$, then $G/(M \cap N) \in \mathfrak{F}$ for any normal subgroup M, N of G. A formation \mathfrak{F} is said to be saturated if $G/\Phi(G) \in \mathfrak{F}$ implies that $G \in \mathfrak{F}$.

Lemma 2.11 ([26], Lemma 2.16 or [15], Theorem 1.2.7 (b)). Let \mathfrak{F} be a saturated formation containing all supersoluble groups and E be a normal subgroup of G such that $G/E \in \mathfrak{F}$. If E is cyclic, then $G \in \mathfrak{F}$.

3. Proofs of Theorems 1.1 and 1.2

The following fact is one of the main steps in the proofs of Theorems 1.1 and 1.2.

Proposition 3.1. Let G be a σ -full group of Sylow type and $\mathcal{H} = \{H_1, H_2, \ldots, H_t\}$ be a complete Hall σ -set of G such that H_i is a soluble σ_i -subgroup for all $i = 1, \ldots, t$, and let the smallest prime p of $\pi(G)$ belong to σ_1 . If every maximal subgroup of H_1 is σ -permutably embedded in G, then G is soluble.

Proof. Assume that this is false and let (G, H_1) be a counterexample with minimal $|G| + |H_1|$. Then $p = 2 \in \pi(H_1)$ by the Feit-Thompson theorem.

- (1) G is not σ -soluble, and so $|\sigma(G)| > 1$. Assume that G is σ -soluble. Then for every chief factor, H/K of G is σ -primary, that is, H/K is a σ_i -group for some i. But since H_i is soluble, H/K is an elementary abelian group. It follows that G is soluble. This contradiction shows that (1) holds.
- (2) $O_{\sigma_1}(G) = 1$. Assume that $O_{\sigma_1}(G) \neq 1$. Let $N = O_{\sigma_1}(G)$. If $N = H_1$, then G/N is soluble by Feit-Thompson theorem, and so G is σ -soluble, contrary to claim (1). Hence $N \neq H_1$, and so H_1/N is a non-identity Hall σ_1 -subgroup of G/N. Let M/N be a maximal subgroup of H_1/N . Then M is a maximal subgroup of H_1 . By the hypothesis and Lemma 2.6 (2), M/N is σ -permutably embedded in G/N.

Then, clearly, the hypothesis holds for $(G/N, H_1/N)$. Hence G/N is soluble by the choice of (G, H_1) . Consequently, G is σ -soluble, which contradicts claim (1). Hence we have (2).

- (3) $O_{\sigma'_1}(G) = 1$. Assume that $K = O_{\sigma'_1}(G) \neq 1$. Then H_1K/K is a Hall σ_1 -subgroup of G/K. Let W/K be a maximal subgroup of H_1K/K . Then $W = (H_1 \cap W)K$ is a maximal subgroup of H_1K . If $H_1 \cap W$ is not a maximal subgroup of H_1 , then there exists a subgroup E of H_1 such that $H_1 \cap W < E < H_1$. Since $(|H_1|, |K|) = 1$, $W < EK < H_1K$. This contradiction shows that $H_1 \cap W$ is a maximal subgroup of H_1 . By the hypothesis and Lemma 2.6 (2), W/K is σ -permutably embedded in G/K. This shows that $(G/K, H_1K/K)$ satisfies the hypothesis, so G/K is soluble by the choice of (G, H_1) . But since K is soluble by Feit-Thompson theorem, it follows that G is soluble. This contradiction shows that (3) holds.
- (4) Let R be a minimal normal subgroup of G. Then R is not σ -soluble and G/R is soluble. Assume that R is σ -soluble. Then R is a σ_i -group for some i. Hence, $R \leq O_{\sigma_1}(G)$ or $R \leq O_{\sigma'_1}(G)$, which contradicts claim (2) or (3). Hence, R is not σ -soluble. By the hypothesis and Lemma 2.6 (1), it is easy to see that (RH_1, H_1) satisfies the hypothesis. If $RH_1 < G$, then RH_1 is soluble by the choice of G. It follows that R is soluble, a contradiction. Hence, $G = RH_1$, and so $G/R = H_1R/R \cong H_1/(H_1 \cap R)$ is soluble since H_1 is soluble.
- (5) R is the unique minimal normal subgroup of G and $F_{\sigma}(G) = 1$. This directly follows from claim (4).
- (6) Final contradiction. Let L be any maximal subgroup of H_1 . By the hypothesis, there exists a σ -permutable subgroup T of G such that L is a Hall σ_1 -subgroup of T. If $T_G = 1$, then T is σ -nilpotent and σ -subnormal in G by Lemma 2.5. Then by Lemma 2.2 and claim (5), we get that $T \leq F_{\sigma}(G) = 1$. This implies that L = 1, and so |G| = 2n, where n is an odd number. It follows that G is soluble, a contradiction. Hence, $T_G \neq 1$, and so $R \leq T$ by claim (5). Then $T \geqslant RL$. Hence, $L = T \cap H_1 \geqslant RL \cap H_1 = (R \cap H_1)L$ for any maximal subgroup L of L of L or L of L of L of L such that L of L or any maximal subgroup L of L or L or L or L such that L or L or

Proof of Theorem 1.1. Assume that this is false and let G be a counterexample of minimal order. Then: (1) G is soluble. By Feit-Thompson theorem, we may assume that $2 \mid |G|$. Without loss of generality, we may assume that $2 \in \pi(H_1)$.

If H_1 is cyclic, then G has a cyclic Sylow 2-subgroup. Hence G is 2-nilpotent by [21], Theorem IV.2.8, and so G is soluble. If H_1 is non-cyclic, then G is soluble by Proposition 3.1.

- (2) Let R be a minimal normal subgroup of G. Then G/R is supersoluble. It is clear that $\overline{\mathcal{H}}=\{H_1R/R,H_2R/R,\ldots,H_tR/R\}$ is a complete Hall σ -set of G/R and $H_iR/R\cong H_i/H_i\cap R$ is supersoluble. By claim (1), R is an elementary abelian p-group for some prime p. Without loss of generality, we may assume that $R\leqslant H_1$. Assume that H_1/R is non-cyclic. Then H_1 is non-cyclic. Let M/R be a maximal subgroup of H_1/R . Then M is a maximal subgroup of H_1 . By the hypothesis and Lemma 2.6 (2), M/R is σ -permutably embedded in G/R. Now let M_i/R be a maximal subgroup of H_iR/R , where $i\neq 1$, and suppose that H_iR/R is non-cyclic. Then $M_i=(H_i\cap M_i)R$ is a maximal subgroup of H_iR . With the same discussion as for claim (3) in the proof of Proposition 3.1, we have that $H_i\cap M_i$ is a maximal subgroup of H_i . Then by the hypothesis and Lemma 2.6 (2), M_i/R is σ -permutably embedded in G/R. This shows that the hypothesis holds for G/R. The choice of G implies that G/R is supersoluble.
- (3) R is the unique minimal normal subgroup of G, $\Phi(G) = 1$, $C_G(R) = R$, R is an elementary abelian p-group for some prime p and |R| > p. This directly follows from claims (1), (2) and [12], Theorem A.15.2.

Without loss of generality, we may assume that $p \in \pi(H_1)$. Then $R \leq H_1$.

(4) Final contradiction. Since $\Phi(G)=1,\ R\nleq\Phi(H_1)$ by [21], Lemma III.3.3. Hence, there exists a maximal subgroup K of H_1 such that $H_1=RK$. Let $E=R\cap K$. By claim (3), we have that $E\unlhd H_1$. Since H_1 is supersoluble, $|R:E|=|RK:K|=|H_1:K|$ is a prime. Hence, E is a maximal subgroup of R, and so $E\ne 1$ by claim (3). Since R is not cyclic by claim (3) and $R\leqslant H_1$, H_1 is non-cyclic. Then by the hypothesis, there exists a σ -permutable subgroup T of G such that K is a Hall σ_1 -subgroup of T. If $T_G=1$, then T is σ -nilpotent and σ -subnormal in G by Lemma 2.5. It follows from Lemma 2.2 that $T\leqslant F_{\sigma}(G)$. But since $R\leqslant F_{\sigma}(G)$ and $C_G(R)=R$, we have that T is a σ_1 -group by Lemma 2.3, so T=K. It follows from Lemma 2.7 that $O^{\sigma_1}(G)\leqslant N_G(K)$. Hence $O^{\sigma_1}(G)\leqslant N_G(K\cap R)=N_G(E)$. This implies that $E\unlhd G$, which contradicts the minimality of R. Hence $T_G\ne 1$. Then by claim (3), $R\leqslant T_G\leqslant T$. Consequently, $K< H_1\leqslant T$. But K is a Hall σ_1 -subgroup of T, a contradiction. This completes the proof.

Proof of Theorem 1.2. Assume that this is false and let (G, E) be a counterexample with minimal |G| + |E|. Then: (1) E is supersoluble. It is clear that $\mathcal{H}^* = \{H_1 \cap E, H_2 \cap E, \dots, H_t \cap E\}$ is a complete Hall σ -set of $E, H_i \cap E$ is nilpotent and E is a σ -full group of Sylow type. By Lemma 2.6 (1) and Theorem 1.1, we get that E is supersoluble.

- (2) Let R be a minimal normal subgroup of G contained in E. Then R is an elementary abelian p-group for some prime p, E/R is hypercyclically embedded in G/R and R is non-cyclic. By claim (1), R is an elementary abelian p-group for some prime p. Without loss of generality, we may assume that $R \leq H_1$. Clearly, $\overline{H} = \{H_1/R, H_2R/R, \ldots, H_tR/R\}$ is a complete Hall σ -set of G/R and $H_iR/R \cong H_i/(H_i \cap R)$ is nilpotent. Assume that $(H_1/R) \cap (E/R)$ is non-cyclic. Then $H_1 \cap E$ is non-cyclic. Let M/R be a maximal subgroup of $(H_1/R) \cap (E/R)$. Then M is a maximal subgroup of $H_1 \cap E$. Hence, M/R is σ -permutably embedded in G/R by the hypothesis and Lemma 2.6 (2). Now assume that M_i/R is a maximal subgroup of some non-cyclic $(H_iR/R) \cap (E/R)$, where $i \neq 1$. Then $H_iR \cap E$ is non-cyclic and $M_i = (H_i \cap M_i)R$ is a maximal subgroup of $H_iR \cap E$. With the same discussion as for claim (3) in the proof of Proposition 3.1, we have that $H_i \cap M_i$ is a maximal subgroup of $H_i \cap E$. Then by the hypothesis and Lemma 2.6 (2), M_i/R is σ -permutably embedded in G/R. This shows that (G/R, E/R) satisfies the hypothesis. Hence E/R is hypercyclically embedded in G/R by the choice of G.
- (3) R is the unique minimal normal subgroup of G contained in E. Let L be a minimal normal subgroup of G contained in E such that $L \neq R$. Then E/L is also hypercyclically embedded in G/L by claim (2). It follows that RL/L is hypercyclically embedded in G/L. Then |R| = p for $RL/L \cong R$, contrary to claim (2). Hence we have (3).

Without loss of generality, we may assume that $p \in \pi(H_1)$.

- (4) E is a p-group, and so $E \leq H_1$. Let Q be a Sylow q-subgroup of E, where q is the largest prime belong to $\pi(E)$. Since E is supersoluble by claim (1), we obtain that Q char $E \subseteq G$ and so $Q \subseteq G$. Hence, $R \leq Q$, p = q and F(E) = Q is a Sylow p-subgroup of E by claim (3). It follows from [14], Theorem 1.8.18, that $C_E(Q) \leq Q$. Moreover, since $Q \leq H_1 \cap E$ and H_1 is nilpotent, we obtain that $Q = H_1 \cap E$. Hence, $H_1 \cap Q = Q = H_1 \cap E$ and $H_i \cap Q = 1$ for all $i = 2, \ldots, t$. This implies the hypothesis holds for (G, Q). Assume that Q < E. Then Q is hypercyclically embedded in G by the choice of (G, E). It follows that R is hypercyclically embedded in G, so R is cyclic, contrary to claim (2). Hence E = Q is a p-group, and so $E \leq H_1$.
- (5) $\Phi(E)=1$, so E is an elementary abelian p-group. Assume that $\Phi(E)\neq 1$. Then $R\leqslant \Phi(E)$ by claim (3). Hence $E/\Phi(E)$ is hypercyclically embedded in $G/\Phi(E)$ by claim (2) and [15], Theorem 1.2.6 (d). It follows from claim (4) and Lemma 2.9 that E is hypercyclically embedded in G. This contradiction shows that (5) holds.
- (6) Final contradiction. Let R_1 be a maximal subgroup of R such that $R_1 \leq H_1$. Then $|R_1| > 1$ by claim (3). By claim (5), there exists a complement S of R in E (maybe S = 1). Let $V = R_1S$. Then clearly $R_1 = R \cap V$ and V is a maximal subgroup of E. By the hypothesis and claims (2)–(5), there exists a σ -permutable subgroup T of G such that V is a Hall σ_1 -subgroup of T. We show that V is also

σ-permutable in G. Let L be a Hall σ_i -subgroup of G. If i=1, then $V \leq L$ by claim (4). This implies that VL = LV. If $i \neq 1$, then V is a Hall σ_1 -subgroup of TL = LT. (Note that since T is σ-permutable in G, TL = LT.) Since E is normal in G, V is subnormal in G by claim (4), so V is also subnormal in TL. But as V is a Hall σ_1 -subgroup of T, V is normal in TL. Hence VL = LV. This implies that V is σ-permutable in G. Then by Lemma 2.7, $O^{\sigma_1}(G) \leq N_G(V)$, and so $O^{\sigma_1}(G) \leq N_G(V \cap R) = N_G(R_1)$. Moreover, since $R_1 \leq H_1$, we obtain that $R_1 \leq G$. This contradiction completes the proof.

4. Proof of Theorem 1.3

In order to prove Theorem 1.3, we first prove the following:

Lemma 4.1. Let G be a σ -full group of Sylow type and $\mathcal{H} = \{H_1, H_2, \ldots, H_t\}$ be a complete Hall σ -set of G such that H_i is a supersoluble σ_i -subgroup for all $i = 1, \ldots, t$. Let P be a normal p-group of G and $P \leq H_j$ for some j. If every cyclic subgroup H of P of prime order and order P (if P is a non-abelian 2-group and $P \leq T_{\infty}(G)$) is σ -permutably embedded in G, then P is hypercyclically embedded in G.

Proof. Assume that this is false and let (G, P) be a counterexample with minimal |G| + |P|. Without loss of generality, we may assume that j = 1.

(1) Let P/N be a chief factor of G. Then N is hypercyclically embedded in G. Hence, N is a unique normal subgroup of G such that P/N is a chief factor of G and |P/N| > p.

It is clear that (G, N) satisfies the hypothesis. Hence, N is hypercyclically embedded in G by the choice of (G, P). Assume that G has another normal subgroup $R \neq N$ such that P/R is a chief factor of G. Then R is also hypercyclically embedded in G. It follows that P/N = RN/N is hypercyclically embedded in G/N. Hence, P is hypercyclically embedded in G. This contradiction shows that N is a unique normal subgroup such that P/N is a chief factor of G. It is also clear that |P/N| > p.

- (2) The exponent of P is p or 4 (if P is a non-abelian 2-group). Let C be a Thompson critical subgroup of P (see [13], page 185). If $\Omega(C) < P$, then $\Omega(C) \le N$ is hypercyclically embedded in G by claim (1). Hence, by Lemma 2.9, P is hypercyclically embedded in G, a contradiction. Hence, $\Omega(C) = P$, so by Lemma 2.8, the exponent of P is P or 4 (if P is a non-abelian 2-group).
- (3) Final contradiction. Since H_1/N is supersoluble and |P/N| > p, H_1/N has a minimal normal subgroup L/N such that $1 \neq L/N < P/N$ and L/N is cyclic. Let $x \in L \setminus N$ and $H = \langle x \rangle$. Then L = HN and |H| = p or 4 (if P is a non-abelian 2-group)

by claim (2). If $H \leqslant Z_{\infty}(G)$, then $L/N = HN/N \leqslant Z_{\infty}(G)N/N \leqslant Z_{\infty}(G/N)$ by [15], Theorem 1.2.6 (d). So $Z_{\infty}(G/N) \cap P/N \neq 1$. Hence, $P/N \leqslant Z_{\infty}(G/N)$ since P/N is a chief factor of G. It follows from claim (1) that P is hypercyclically embedded in G. This contradiction shows that $H \nleq Z_{\infty}(G)$. Then by the hypothesis, there exists a σ -permutable subgroup T of G such that H is a Hall σ_1 -subgroup of T. With a similar argument as for claim (6) in the proof of Theorem 1.2, we have that H is σ -permutable in G. Then HN/N is σ -permutable in G/N by Lemma 2.4 (1). Hence, $O^{\sigma_1}(G/N) \leqslant N_{G/N}(HN/N)$ by Lemma 2.7. Moreover, since $L/N \leq H_1/N$, we obtain that $HN/N = L/N \leq G/N$, and so $L \leq G$. This contradiction completes the proof.

Proof of Theorem 1.3. Assume that this is false and let (G, E) be a counterexample with minimal |G| + |E|. Let P be a Sylow p-subgroup of E, where p is the smallest prime contained in $\pi(E)$. Without loss of generality, we may assume that $P \leq H_1 \cap E$.

- (1) $H_1 \cap E$ is non-cyclic. Assume that $H_1 \cap E$ is cyclic. Then P is cyclic. By [21], Theorem IV.2.8, E is p-nilpotent. Let $E_{p'}$ be a normal Hall p'-subgroup of E. Then $E_{p'} \subseteq G$. If $E_{p'} = 1$, then E is cyclic, so E is hypercyclically embedded in G, a contradiction. Hence $E_{p'} \neq 1$. Clearly, $H_i \cap E_{p'} = H_i \cap E$ for $i = 2, \ldots, t$. This shows the hypothesis holds for $(G, E_{p'})$, so $E_{p'}$ is hypercyclically embedded in G by the choice of (G, E). But as $E/E_{p'} \cong P$ is cyclic, it follows that E is hypercyclically embedded in G. This contradiction shows that (1) holds.
- (2) If E = P, then E is hypercyclically embedded in G. This directly follows from Lemma 4.1 and claim (1).
- (3) E is not p-nilpotent. Assume that E is p-nilpotent. Let $E_{p'}$ be a normal Hall p'-subgroup of E. Then $E_{p'} \subseteq G$. By claim (2), $E_{p'} \neq 1$. Clearly, $\overline{\mathcal{H}} = \{H_1 E_{p'}/E_{p'}, H_2 E_{p'}/E_{p'}, \dots, H_t E_{p'}/E_{p'}\}$ is a complete Hall σ -set of $G/E_{p'}$ and $H_i E_{p'}/E_{p'} \cong H_i/H_i \cap E_{p'}$ is supersoluble.

We claim that the hypothesis holds for $(G/E_{p'}, E/E_{p'})$. In fact, $H_iE_{p'}/E_{p'} \cap E/E_{p'} = 1$ for i = 2, ..., t and $H_1E_{p'}/E_{p'} \cap E/E_{p'} = E/E_{p'}$. It is trivial when $E/E_{p'}$ is cyclic. We may therefore assume that $E/E_{p'}$ is non-cyclic. Let $H/E_{p'}$ be a cyclic subgroup of $E/E_{p'}$ of order p or 4 (if the Sylow 2-subgroup of $E/E_{p'}$ is non-cyclic and $H/E_{p'} \nleq Z_{\infty}(G/E_{p'})$). Then by Schur-Zassenhaus theorem, $H = E_{p'} \rtimes L$ and without loss of generality, we may assume that $L \leqslant E \cap H_1$. Note that if $L \leqslant Z_{\infty}(G)$, then $H/E_{p'} = LE_{p'}/E_{p'} \leqslant Z_{\infty}(G)E_{p'}/E_{p'} \leqslant Z_{\infty}(G/E_{p'})$ by [15], Theorem 1.2.6 (d). Hence, L is of order p or 4 (if the Sylow 2-subgroup of E is non-cyclic and $L \nleq Z_{\infty}(G)$). Then by Lemma 2.6 (2), we see that the hypothesis holds for $(G/E_{p'}, E/E_{p'})$. Hence, $E/E_{p'}$ is hypercyclically embedded in $G/E_{p'}$ by the choice of (G, E). On the other hand, it is clear that the hypothesis holds for

- $(G, E_{p'})$, so $E_{p'}$ is hypercyclically embedded in G by the choice of (G, E). Therefore E is hypercyclically embedded in G, a contradiction. Hence we have (3).
- (4) Final contradiction. By claim (3), [21], Theorem IV.5.4, and [14], Theorem 3.4.11, E has a p-closed Schmit subgroup $S = P_1 \times Q$, where P_1 is a Sylow p-subgroup of S of exponent p or 4 (if P_1 is non-abelian 2-group), Q is a Sylow q-subgroup of S for some prime $q \neq p$, $P_1/\Phi(P_1)$ is an S-chief factor, $Z_{\infty}(S) = \Phi(S)$ and $\Phi(S) \cap P_1 = \Phi(P_1)$.

We claim that $|P_1:\Phi(P_1)|=p$. If $q\in\pi(H_1)$, then S is a σ_1 -group, and so $S \leqslant H_1^g$ for some $g \in G$ since G is a σ -full group of Sylow type. Since H_1 is supersoluble and $P_1/\Phi(P_1)$ is an S-chief factor, $|P_1:\Phi(P_1)|=p$. Now we consider that $q \notin \pi(H_1)$. Assume that there exists a minimal subgroup $D/\Phi(P_1)$ of $P_1/\Phi(P_1)$ such that $D/\Phi(P_1)$ is not σ -permutable in $S/\Phi(P_1)$. Let $x \in D \setminus \Phi(P_1)$ and $U = \langle x \rangle$. Then $D = U\Phi(P_1)$ and |U| = p or 4 (if P_1 is non-abelian 2-group). If $U \leq Z_{\infty}(G)$, then $U \leq Z_{\infty}(S) \cap P_1 = \Phi(S) \cap P_1 = \Phi(P_1)$, a contradiction. Hence $U \nleq Z_{\infty}(G)$. Then by the hypothesis and Lemma 2.6 (1), there exists a σ -permutable subgroup Tof S such that U is a Hall σ_1 -subgroup of T. Let K be a Hall σ_i -subgroup of S, where $\sigma_i \cap \pi(S) \neq \emptyset$. If i = 1, then $K = P_1$, and so $UK = KU = P_1$. If $i \neq 1$, then U is a Hall σ_1 -subgroup of TK = KT. But as $D < P_1 \leq S$ and $p \in \sigma_1$, we have that TK < S. Hence, TK is nilpotent, and so $U \leq TK$. Thus UK = KU. This implies that U is σ -permutable in S. It follows from Lemma 2.4 (1) that $D/\Phi(P_1) = U\Phi(P_1)/\Phi(P_1)$ is σ -permutable in $S/\Phi(P_1)$. This contradiction shows that every minimal subgroup of $P_1/\Phi(P_1)$ is σ -permutable in $S/\Phi(P_1)$. Consequently, every minimal subgroup of $P_1/\Phi(P_1)$ is s-permutable in $S/\Phi(P_1)$ since $\pi(S) = \{p,q\}$ and $q \notin \pi(H_1)$. Then by [26], Lemma 2.12, we also have that $|P_1:\Phi(P_1)|=p$. Hence, P_1 is cyclic of exponent p. This implies that P_1 is a group of order p. Since $N_S(P_1)/C_S(P_1) \lesssim \operatorname{Aut}(P_1)$ is a group of order p-1 and p is the smallest prime contained in $\pi(E)$, it follows that $C_S(P_1) = N_S(P_1) = S$. Thus $Q \leq S$. This contradiction completes the proof.

5. Some applications of the results

It is clear that every σ -permutable subgroup of G is σ -permutably embedded in G. In the case when $\sigma = \{\{2\}, \{3\}, \ldots\}$, every normal subgroup, every normally embedded subgroup, every permutable subgroup, every permutably embedded subgroup, every s-permutable subgroup and every s-permutably embedded subgroup of G are all σ -permutably embedded in G. However, the converse is not true in general (see [19], Example 1.2). Hence, the following results directly follow from Theorem 1.1.

Corollary 5.1 ([31], Theorem 1). If all maximal subgroups of every Sylow subgroup of G are normal in G, then G is supersoluble.

Corollary 5.2 ([5], Theorem 4). If all maximal subgroups of every Sylow subgroup of G are permutably embedded in G, then G is supersoluble.

Corollary 5.3 ([31], Theorem 2). If all maximal subgroups of every Sylow subgroup of G are s-permutable in G, then G is supersoluble.

Corollary 5.4 ([8], Theorem 1). If all maximal subgroups of every Sylow subgroup of G are s-permutably embedded in G, then G is supersoluble.

By Theorems 1.2 and 1.3, we may obtain the following results.

Corollary 5.5. Let \mathfrak{F} be a saturated formation containing all supersoluble groups and let E be a normal subgroup of G with $G/E \in \mathfrak{F}$. Suppose that G is a σ -full group of Sylow type and $\mathcal{H} = \{H_1, H_2, \ldots, H_t\}$ is a complete Hall σ -set of G such that H_i is a nilpotent σ_i -subgroup for all $i = 1, \ldots, t$. If every maximal subgroup of any non-cyclic $H_i \cap E$ is σ -permutably embedded in G, then $G \in \mathfrak{F}$.

Corollary 5.6. Let \mathfrak{F} be a saturated formation containing all supersoluble groups and let E be a normal subgroup of G with $G/E \in \mathfrak{F}$. Suppose that G is a σ -full group of Sylow type and $\mathcal{H} = \{H_1, H_2, \ldots, H_t\}$ is a complete Hall σ -set of G such that H_i is a supersoluble σ_i -subgroup for all $i = 1, \ldots, t$. If every cyclic subgroup H of any non-cyclic $H_i \cap E$ of prime order and order 4 (if the Sylow 2-subgroup of E is non-abelian and $H \nleq Z_{\infty}(G)$) is σ -permutably embedded in G, then $G \in \mathfrak{F}$.

Theorems 1.2–1.3 and Corollaries 5.5–5.6 cover a lot of known results, in particular, [4], Theorem 4.1, [8], Corollary, [2], Theorem 1.3, [3], Theorem 3.3, [10], Theorem 3, [1], Theorem 3.1, [24], Theorem 3.3 and [7], Theorem 2 and Theorem 5.

Corollary 5.7. Let \mathfrak{F} be a saturated formation containing all supersoluble groups and let E be a normal subgroup of G with $G/E \in \mathfrak{F}$. Suppose that G is a σ -full group of Sylow type and $\mathcal{H} = \{H_1, H_2, \ldots, H_t\}$ is a complete Hall σ -set of G such that H_i is a nilpotent σ_i -subgroup for all $i = 1, \ldots, t$. If every maximal subgroup of any non-cyclic $H_i \cap F^*(E)$ is σ -permutable embedded in G, then $G \in \mathfrak{F}$.

Proof. By the hypothesis and Theorem 1.2, we have that $F^*(E)$ is hypercyclically embedded in G. Then E is hypercyclically embedded in G by Lemma 2.10. Therefore $G \in \mathfrak{F}$ by Lemma 2.11.

By using a similar argument as in the proof of Corollary 5.7, we deduce the following corollary from Theorem 1.3.

Corollary 5.8. Let \mathfrak{F} be a saturated formation containing all supersoluble groups and let E be a normal subgroup of G with $G/E \in \mathfrak{F}$. Suppose that G is a σ -full group of Sylow type and $\mathcal{H} = \{H_1, H_2, \ldots, H_t\}$ is a complete Hall σ -set of G such that H_i is a supersoluble σ_i -subgroup for all $i = 1, \ldots, t$. If every cyclic subgroup H of any non-cyclic $H_i \cap F^*(E)$ of prime order and order 4 (if the Sylow 2-subgroup of $F^*(E)$ is non-abelian and $H \nleq Z_{\infty}(G)$) is σ -permutably embedded in G, then $G \in \mathfrak{F}$.

Corollaries 5.7 and 5.8 also cover many known results, in particular, [24], Theorem 3.1, Theorem 3.4 and Corollary 3.5, [2], Theorem 1.4, [3], Corollary 3.4, [4], Theorem 3.2 and [8], Theorem 2.

References

[1]	M. Asaad: On the solvability of finite groups. Arch. Math. 51 (1988), 289–293.	zbl	MR do
[2]	M. Asaad: On maximal subgroups of Sylow subgroups of finite groups. Commun. Algebra		
	26 (1998), 3647–3652.	zbl	MR do
[3]	M. Asaad, A. A. Heliel: On S-quasinormally embedded subgroups of finite groups.		
	J. Pure Appl. Algebra 165 (2001), 129–135.	zbl	MR do
[4]	$M.$ Asaad, $M.$ Ramadan, $A.$ Shaalan: Influence of π -quasinormality on maximal sub-		
	groups of Sylow subgroups of Fitting subgroup of a finite group. Arch. Math. 56 (1991),		
	521–527.	zbl	MR do
[5]	A. Ballester-Bolinches: Permutably embedded subgroups of finite soluble groups. Arch.		
	Math. 65 (1995), 1–7.	zbl	MR do
[6]	A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad: Products of Finite Groups. De		
	Gruyter Expositions in Mathematics 53, Walter de Gruyter, Berlin, 2010.	zbl	${ m MR}$
[7]	A. Ballester-Bolinches, M. C. Pedraza-Aguilera: On minimal subgroups of finite groups.		
	Acta Math. Hung. 73 (1996), 335–342.	zbl	MR do
[8]	A. Ballester-Bolinches, M. C. Pedraza-Aguilera: Sufficient conditions for supersolubility		
	of finite groups. J. Pure Appl. Algebra 127 (1998), 113–118.	zbl	MR do
[9]] H. G. Bray, W. E. Deskins, D. Johnson, J. F. Humphreys, B. M. Puttaswamaiah, P. Ven-		
	zke, G. L. Walls: Between Nilpotent and Solvable. Polygonal Publ. House, Washington,		
	1982.	zbl	MR
[10]	J. T. Buckley: Finite groups whose minimal subgroups are normal. Math. Z. 116 (1970),		
	15–17.	zbl	MR do
[11]	X. Chen, W. Guo, A. N. Skiba: Some conditions under which a finite group belongs to		
	a Baer-local formation. Commun. Algebra 42 (2014), 4188–4203.	zbl	MR do:
[12]	K. Doerk, T. Hawkes: Finite Soluble Groups. De Gruyter Expositions in Mathematics		
	4, Walter de Gruyter, Berlin, 1992.	zbl	MR
[13]	D. Gorenstein: Finite Groups. Harper's Series in Modern Mathematics, Harper and Row,		
	Publishers, New York, 1968.	zbl	MR
[14]	W. Guo: The Theory of Classes of Groups. Mathematics and Its Applications 505,		
	Kluwer Academic Publishers, Dordrecht; Science Press, Beijing, 2000.	zbl	MR do

[15] W. Guo: Structure Theory for Canonical Classes of Finite Groups. Springer, Berlin, 2015.

zbl MR doi

MR doi

- [16] W. Guo, C. Cao, A. N. Skiba, D. A. Sinitsa: Finite groups with H-permutable subgroups. Commun. Math. Stat. 5 (2017), 83–92.
- [17] W. Guo, A. N. Skiba: Finite groups with generalized Ore supplement conditions for primary subgroups. J. Algebra 432 (2015), 205–227.
- [18] W. Guo, A. N. Skiba: Finite groups with permutable complete Wielandt sets of subgroups. J. Group Theory 18 (2015), 191–200.
- [19] W. Guo, A. N. Skiba: Groups with maximal subgroups of Sylow subgroups σ -permutably embedded. J. Group Theory 20 (2017), 169–183.
- embedded. J. Group Theory 20 (2017), 169–183.

 [20] W. Guo, A. N. Skiba: On Π-quasinormal subgroups of finite groups. Monatsh. Math. 185 (2018), 443–453.
- [21] B. Huppert: Endliche Gruppen I. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134. Springer, Berlin, 1967. (In German.)
- [22] B. Huppert, N. Blackburn: Finite groups III. Grundlehren der Mathematischen Wissenschaften 243, Springer, Berlin, 1982.
- [23] B. Li: On Π-property and Π-normality of subgroups of finite groups. J. Algebra 334 (2011), 321–337.
- [24] Y. Li, Y. Wang: On π -quasinormally embedded subgroups of finite group. J. Algebra 281 (2004), 109–123.
- [25] R. Schmidt: Subgroup Lattices of Groups. De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin, 1994.
- [26] A. N. Skiba: On weakly s-permutable subgroups of finite groups. J. Algebra 315 (2007), 192–209.
 Zbl MR doi
- [27] A. N. Skiba: On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups. J. Group Theory 13 (2010), 841–850.
- [28] A. N. Skiba: A characterization of the hypercyclically embedded subgroups of finite groups. J. Pure Appl. Algebra 215 (2011), 257–261.
- [29] A. N. Skiba: On σ -subnormal and σ -permutable subgroups of finite groups. J. Algebra 436 (2015), 1–16.
- [30] A. N. Skiba: On some results in the theory of finite partially soluble groups. Commun. Math. Stat. 4 (2016), 281–309.
- [31] S. Srinivasan: Two sufficient conditions for supersolvability of finite groups. Isr. J. Math. 35 (1980), 210–214.
- [32] C. Zhang, Z. Wu, W. Guo: On weakly σ -permutable subgroups of finite groups. Pub. Math. Debrecen. 91 (2017), 489–502.

Authors' address: Chenchen Cao (corresponding author), Wenbin Guo, Department of Mathematics, University of Science and Technology of China, No. 96 JinZhai Road, Baohe, Hefei, Anhui, 230026, P.R. China, e-mail: cccao@mail.ustc.edu.cn, wbguo @ustc.edu.cn; Li Zhang, School of Mathmatics and Physics, Anhui Jianzhu University, No. 856 Jin Tahi Road, Baohe, Hefei, Auhui, 230022, P.R. China, e-mail: zhang12@mail.ustc.edu.cn.