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Abstract. We prove that as n → ∞, the zeros of the polynomial

2F1

[

−n, αn+ 1

αn+ 2
; z

]

cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous
results of Boggs, Driver, Duren et al. (1999–2001) to the case of a complex parameter α
and partially proves a conjecture made by the authors in an earlier work.
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1. Introduction

The generalized hypergeometric function AFB with A numerator and B denomi-

nator parameters is defined by

(1) AFB

[

(a)A

(b)B
; z

]

= AFB

[

a1, a2, . . . , aA

b1, b2, . . . , bB
; z

]

=

∞
∑

k=0

∏j=A
j=1 (aj)k

∏j=B
j=1 (bj)k

zk

k!
,

where ai ∈ C, bj ∈ C\Z−

0 , 1 6 i 6 A, 1 6 j 6 B and (α)k = α(α+1) . . . (α+k−1) =

Γ(α+ k)/Γ(α) is the Pochhammer symbol. If any of the numerator parameters

is a negative integer, say a1 = −n, n ∈ N, the series terminates and reduces to
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a polynomial of degree n, called a generalized hypergeometric polynomial. In this

note, we consider the asymptotic zero distribution of the hypergeometric polynomial

(2) pn(z) = 2F1(−n, a2(n); b1(n); z)

with complex parameters depending linearly on n as n→ ∞.

In [1], based on our experimental evidence and results by previous authors, we

made a conjecture on the asymptotic behaviour of zeros of a certain class of such

hypergeometric polynomials. The purpose of the present note is to partially prove

this conjecture.

In [7], Driver and Duren studied the zeros of the hypergeometric polynomial

2F1(−n, kn + 1; kn + 2; z) for integers k, n > 0. They used the Euler integral rep-

resentation together with a general theorem of Borwein and Chen and proved the

following result.

Theorem 1. Given k and n ∈ N, the zeros of the hypergeometric polynomial

2F1(−n, kn+ 1; kn+ 2; z)

cluster on the loop of the lemniscate

{

z : |zk(z − 1)| =
kk

(k + 1)k+1
; Re(z) >

k

k + 1

}

as n→ ∞.

P r o o f. See [7], Theorem 1. �

In [4], Boggs and Duren gave the following extension of Theorem 1.

Theorem 2. For arbitrary k > 0 and l > 0, the zeros of the hypergeometric

polynomial

2F1(−n, kn+ l + 1; kn+ l + 2; z)

cluster when n→ ∞, on the loop of the lemniscate

|zk(z − 1)| =
kk

(k + 1)k+1
with Re(z) >

k

k + 1
.

P r o o f. See [4], Theorem 2. �
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Below, we study what happens when the parameters are allowed to be complex.

Our main result is as follows.

Theorem 3. Let α = η+iζ with η > 0 and ζ 6= 0. The zeros of the hypergeometric

polynomials

pn(z) = 2F1

[

−n, αn+ 1

αn+ 2
; z

]

cluster when n→ ∞, on the level curve

|zα(1− z)| =
∣

∣

∣

( α

α+ 1

)α

(α+ 1)−1
∣

∣

∣
.

In [1] it was proved (using an indirect method based on [5]) that a convergent

sequence of zeros clusters along a level curve of the function |zα(1 − z)|. The above

theorem identifies this curve as the unique level curve passing through the saddle

point of the function. In line with the earlier results of [1], [4] and [7], the zeros will

not cluster on the whole level curve. In Lemma 3 and Proposition 2, we describe

a zero-free region, which includes the left half plane. Following the above references,

our proof uses the Euler integral representation of hypergeometric polynomials and

the saddle point method.

2. Integral representation of the hypergeometric function

and the saddle point method

2.1. Integral representation of the hypergeometric function. The Gauss

hypergeometric function 2F1(a, b; c; z) has the following integral representation due

to Euler (see [2], Theorem 2.2.1). If Re(c) > Re(b) > 0, then

(3) 2F1

[

a, b

c
; z

]

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1 − t)c−b−1(1− tz)−a dt,

in the z plane cut from 1 to ∞ along the real axis. Here it is understood that

arg t = arg(1− t) = 0 and that (1− zt)−a takes its principal value.

Choosing a = −n, b = αn + 1 and c = b + 1, where n ∈ N and α is a complex

number, Re(α) > 0, we have

2F1

[

−n, αn+ 1

αn+ 2
; z

]

= (αn+ 1)

∫ 1

0

tαn(1− tz)n dt.

This identity is valid for z arbitrary, since the right-hand side is an entire function

of z when Re(α) > 0. We reiterate that the integrand uses the principal branch of
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the logarithm to define tα. Recall that this branch is defined in the complement to

the negative real axis, and coincides with the real logarithm on the positive real axis.

2.2. The saddle point method. Let γ be a contour in the complex plane and

suppose that the function ϕ is holomorphic in a neighborhood of this contour. We

study the asymptotics as n→ ∞ of an integral:

(4) In(z) =

∫

γ

enϕ(z) dz.

The idea of the saddle point method is to deform the contour to a contour following

the paths of steepest ascent/descent of ϕ(z) = u(x, y) + iv(x, y). It is an immediate

consequence of the Cauchy-Riemann equations that the gradient of u is given (as

a complex vector) by ϕ ′(z). It is orthogonal to the gradient of v, and hence if

ϕ′(z0) 6= 0, there is a unique curve through z0 characterized by both the property

that Imϕ(z) = Imϕ(z0) and that along this curve Reϕ(z) grows fastest. This curve

is called a curve of steepest ascent (or descent, if we reverse the direction). A simple

saddle point is a point t0 where ϕ
′(t0) = 0 and ϕ′′(t0) 6= 0. In a small neighborhood

of a simple saddle point t0, the level curve Imϕ(z) = Imϕ(t0) consists of two analytic

curves that intersect at t0 and separate the neighborhood of t0 into four sectors. Of

the four curve segments starting at t0, two, say γ1 and γ2, will satisfy the assumption

that Reϕ(z) < Reϕ(z0), if z0 6= z ∈ γi, i = 1, 2. These curves are called the curves

of steepest descent (or ascent, if we reverse the direction).

Proposition 1. Let t0 be the unique simple saddle point of ϕ. Suppose that for

two points a ∈ γ1, b ∈ γ2, the curve segments from a to t0 along γ1 and from t0 to b

along γ2 are finite. If γ is the curve from a to b along γ1 and γ2, then

In(z) =

√

2π

−ϕ′′(t0)
n−1/2enϕ(t0)(1 +O(n−1)).

P r o o f. See [3], 7.3.11, or [6]. �
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3. Main result

We apply the saddle point method to evaluate the asymptotic expansion of the

Euler integral

2F1

[

−n, αn+ 1

αn+ 2
; z

]

= (αn+ 1)

∫ 1

0

tαn(1− zt)n dt,

where α = η + iζ, η > 0 and ζ 6= 0. Set

pn =

∫ 1

0

[g(t)]n dt,

where g(t) = tα(1 − tz) (using the principal branch of the logarithm to define tα).

The function g(t) vanishes at 0 and 1/z, and has t = 0 as its only branch point.

3.1. The saddle point. Consider ϕ(t) = α log t + log(1 − zt), where possibly

different branches of the logarithm may be used for the two terms, depending on the

simply-connected domain U where ϕ is defined. For each fixed z 6= 0, the underlying

multi-valued function ϕ has two branch points, at t = 0 and t = 1/z. Since

(5) ϕ′(t) =
α− zt(α+ 1)

t(1− zt)
,

we see that ϕ′(t) = 0 ⇐⇒ t = t0 := α/(α+ 1)z. Since

ϕ′′(t) = −
(1 + α)3

α
z2,

t0 is a simple saddle point under the assumption α 6= −1 and z 6= 0. Note that the

derivative ϕ′ is defined (as a meromorphic function) in the whole C by (5). This

implies that paths of steepest ascent/descent are unambiguously defined through all

points (except the poles 0, 1/z and the saddle point t0) independently of posssible

choices of a branch of logarithm in the definition of ϕ(t). Namely, by the Cauchy-

Riemann equations, the gradient (considered as a complex number) at t of Reϕ is

given by ϕ′(t). We say that the descent picture of ϕ(t) is branch-independent.

Lemma 1. Let t0 = α/(α+ 1)z be the saddle point of ϕ(t), where α 6= −1 and

z 6= 0.

(i) There are exactly two paths of steepest descent, along which Reϕ(t) decreases.

Starting at the saddle point t0, one, say γ1, goes to 0 and the other, say γ2,

to 1/z.

1025



(ii) There are exactly two paths δ1 and δ2 of steepest ascent, along which Reϕ(t)

increases. Starting at the saddle point t0, both go to infinity. Together they split

the plane into two (closed) simply-connected regions D0 and D1/z , such that

if t ∈ D0, there is a path of steepest descent from t to 0, and correspondingly

for D1/z.

P r o o f. (i) Consider the local behavior of ϕ(t) around each of the points

t0, 0, 1/z. At t0, ϕ(t) is approximated by B(t − t0)
2, where B = 1

2ϕ
′′(t0) =

− 1
2z

2(α+ 1)3/α 6= 0. Hence, there are two paths with Imϕ(t) = Imϕ(t0), start-

ing at t = t0, along which Reϕ(t) decreases. They cannot escape to infinity, since

we assumed that α = η + ζi, with η > 0, so Reϕ(t) = (η + 1) log |t| + O(1) for

t≫ 0 (for any choice of U and a branch of ϕ). Hence, the curves of steepest ascent,

in a neighbourhood of infinity, approximate radial rays from the origin, and thus

a curve of steepest descent cannot approach infinity.

There is only one saddle point, so the paths cannot intersect, and have to end up

at either 0 or 1/z, which are the only points where Reϕ(t) = −∞ (again for any

choice of U and branch of ϕ). It remains to show that the paths do not end up at

the same point, and this follows easily by checking that locally there is at most one

path starting at either 0 or 1/z with constant value of Imϕ(t). Around t = 1/z the

function behaves as log(t− 1/z)+ δ for some δ ∈ C, and so there will be at most one

ray corresponding to constant imaginary value. This finishes the proof.

(ii) The second part follows similarly. �

Given z ∈ C, one of two cases may occur: either 1 ∈ D0 or 1 ∈ D1/z. Define

E := {z : 1 ∈ D1/z}.

If α ∈ R,

z ∈ E ⇐⇒ Re z >
α

α+ 1

(see [8]); but for a general α, we do not have a similar precise description. Instead,

we can use the descent picture of ψ(w) := logwα(1−w). This function has a unique

simple saddle point at α/(α+1), and (as in the lemma) the paths of steepest ascent

split the complex plane into two regions D̃0 and D̃1, containing the branch points 0

and 1 of the logarithm, respectively. Its descent picture is again branch-independent.

Lemma 2. E = D̃1.

P r o o f. We use the notation of the preceding lemma and the fact that the

descent pictures of ϕ and ψ only depend on the respective meromorphic derivative.

The intuition is that

zαg(t) = zαtα(1− tz) = wα(1 − w)
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with w = zt (using compatible determinations of log). We claim that there is a path

of steepest descent from t = 1 to t = 0 with respect to ϕ(t) = log g(t) if and only if

there is a path of steepest descent from w = z to w = 0, with respect to ψ. In detail,

zψ′(zt) = ϕ′(t). So if γ(s), s ∈ [0, 1], is a path from z = γ(1) to γ(0) = 0 such that

the tangent γ′(s) = −ψ′(γ(s)), then δ(s) = z−1γ(s) is a path from 1 to 0 such that

δ′(s) = −z−1ψ′(z−1γ(s)) = −|z|−2ϕ′(δ(s)). Clearly δ will be a parametrization of

a path of steepest descent for ϕ(t). Hence 1 ∈ D0 ⇐⇒ z ∈ D̃0, which proves the

lemma. �

From the assumption that η > 0 it follows that Ec (the complement of E) contains

the left half plane.

Lemma 3. Suppose that z = x+ iy with x 6 0. Then z ∈ Ec.

P r o o f. It suffices to show that the segment γ(s) = sz, s ∈ [0, 1] is an ascending

curve for the function ψ(w). For γ to be ascending from 0 it is enough to show

that Re(ψ′(γ(s))γ′(s)) > 0, which after some simplifications is equivalent to E(s) :=

η− 2ηxs+ (−x+ η(x2 + y2))s2 + (x2 + y2)s3 > 0. This is a cubic curve in the plane

and clearly lim
s→∞

E(s) = ∞, and it will have at most two stationary points, and an

inflection point between them. Now E′′(s) = 0 has the solution

s =
x− η(x2 + y2)

3(x2 + y2)
6 0,

by assumption. Since furthermore E′(0) = −2ηx > 0 and E(0) = η > 0, E(s) will

be strictly increasing with s > 0. �

3.2. Zero-free region. We sketch a proof of the fact that the complement to E

is a zero-free region.

Proposition 2. If z /∈ E, then z is not the limiting point of zeros of pn(z).

S k e t c h o f p r o o f. Assume that zn → z is a sequence such that pn(zn) = 0

and z /∈ E. Hence zn /∈ E for large enough n, and so there will be paths γn of

steepest ascent from 0 to 1, and this means, using standard Laplace-type techniques,

that the integral

0 =

(
∣

∣

∣

∣

∫ 1

0

(tα(1− tzn))
n dt

∣

∣

∣

∣

)1/n

will have limit |1− z| (compare the proof of Lemma 6). A contradiction. �
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3.3. The first integral. Now we start the actual proof of the main theorem.

Assume that z ∈ E. Then there is a path of steepest ascent from 1/z to 1, and

a path from 0 to 1/z, first as a path of steepest ascent to the saddle point, and

then as a path of steepest descent to 1/z. We accordingly deform the contour of

integration to get

(6)

∫ 1

0

[g(t)]n dt =

∫ 1/z

0

[g(t)]n dt+

∫ 1

1/z

[g(t))]n dt = I1 + I2.

We detail the path from 0 to 1/z in the first integral. Note that the spiral γ1
around 0 will intersect the line L between 0 and 1/z in an infinite set of points

clustering towards 0. Choose an arbitrary ε > 0. Start at 0, walk along L a distance

at most ε, until one of the intersection points wε with γ1 is reached. Call this part

Lε and continue along the part of γ1 that remains to z0 and then continue to 1/z

along γ2. Starting with the principal branch of the logarithm that is defined at

z0 = α/((α + 1)z) and at 1/z (by Lemma 3), we may analytically continue this

branch along γ1 to wε; we interpret t
α := eα log t in the integral in this sense. Now

if ε is small enough, for t ∈ Lε, |1 − zt| < 2. So there exists M > 0 such that

|tαn(1 − zt)n| < Mtη for t ∈ Lε. As a consequence, using that α = η + ζ i, with

η > 0, the integral has an estimate

(7)

∣

∣

∣

∣

∫ wε

0

tαn(1− zt)n dt

∣

∣

∣

∣

6
Mεη+1

η + 1
.

We estimate the remaining integral between wε and 1/z using the saddle point

method. Note that the paths γε and γ2 are finite.

Lemma 4. Let z 6= 0. For any ε > 0,

(8)

∣

∣

∣

∣

∫ 1/z

0

[g(t)]n dt

∣

∣

∣

∣

= g(z0)
n

√

2π

n|ϕ′′(t0)|
+O

( 1

n

)

+ ε.

P r o o f. Follows from Lemma 1 and (7). �

3.4. The second integral. Now we turn to the second integral

I2(z) =

∫ 1

1/z

[tα(1− zt)]n dt.

Since z ∈ E, we have a path of steepest ascent from 1/z to 1. Heuristically, the value

(1 − z)n at t = 1 asymptotically dominates the integral. We will now prove this.

Start with the following clever change of variables, that we have taken from [7].
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Define t = t(s) implicitly, using the relation

tα(1− zt) = s(1− z).

Note that s = 0 ⇔ t = 1/z and s = 1 ⇔ t = 1. We get a path ∆(s) = {t(s) : 0 6

s 6 1} from 1/z to 1.

Lemma 5.
∫ 1

1/z [g(t)]
n dt =

∫

∆[g(t)]
n dt.

P r o o f. Since |g(t)| = O(|t|η) and η > 0, the integral over a circle around the

origin goes to 0 as the radius of the circle decreases. Hence, we can move the path

of integration freely in the complex plane. �

We have that tα−1(α − (α+ 1)zt) dt = (1− z) ds. Hence,

I2 = (1 − z)n
∫ 1

0

t(1− zt)sn−1

α− (α+ 1)zt
ds = (1− z)nK(z),

(9) |I2|
1/n = |1− z||K(z)|1/n.

The calculation of the limit is completed by proving

(10) lim
n→∞

|K(z)|1/n = 1

and

lim inf
n→∞

|k(z)| > 1.

Indeed, set

f(s) =
t(1− zt)

α− (α+ 1)zt
.

Then (10) is a consequence of the following lemma.

Lemma 6. Assume that f(z) is a nonzero function, analytic in a domain D,

containing the unit interval [0, 1]. Then

lim
n→∞

∣

∣

∣

∣

∫ 1

0

f(s)sn−1 ds

∣

∣

∣

∣

1/n

= 1.

P r o o f. If f(z) is constant, it is trivial. Obviously, both Re f(z) and Im f(z)

cannot be identically zero on [0, 1]; assume that Re f(z) 6≡ 0. Let 0 6 δ < 1 be

minimal with respect to the property that h(z) := Re f(z) is of constant sign in [δ, 1],
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and assume that h(s) > 0 in [δ, 1]. For each C : 0 < C < max{h(s) : s ∈ [δ, 1]} there

is an interval [δ2, δ1] ⊂ [δ, 1] with δ1 6= δ2, such that δ2 6 s 6 δ1 =⇒ h(s) > C.

Set I(n) :=
∫ 1

0
f(s)sn−1 ds and M := sup{|h(s)| : s ∈ [0, 1]}. Then

Re I(n) >

∫ δ

0

h(s)sn−1 ds+

∫ 1

δ

h(s)sn−1 ds >

∫ δ

0

−Msn−1 ds+

∫ δ1

δ2

Csn−1 ds

= −M
δn

n
+ C

δn1
n

− C
δn2
n

=
δn1
n

(

−
( δ

δ1

)n

M −
(δ2
δ1

)n

C + C
)

.

Since δ/δ1 < 1 and δ2/δ1 < 1, there exists n0 such that for n > n0

Re I(n) >
δn1
n

C

2
=⇒ lim inf |I(n)|1/n > δ1.

But clearly lim
c→0

δ1 = 1. On the other hand, lim sup |I(n)|1/n 6 1, since f is bounded

on [0, 1]. This finishes the proof. �

3.5. Proof of the main theorem. By (6), a zero zn of the polynomial pn(z)

in (2) satisfies the equation I1 = −I2. If a sequence of zeros zn → z ∈ E, we get

lim
n→∞

|I1|
1/n = lim

n→∞

|I2|
1/n = |1− z|,

by (10) and (9.) It follows from formula (3) that z = 0 is not a zero of pn. Hence,

Lemma 1 and Lemma 4 apply and we have that

lim
n→∞

|I1|
1/n = |tα0 (1− zt0)|.

An easy calculation then shows that

∣

∣

∣

( α

α+ 1

)α

(α+ 1)−1
∣

∣

∣
= |zα||1 − z|.

(The form of the left-hand side is chosen to avoid problems with changing the branch

of the logarithm; note that α/(α + 1) is in the right half-plane, as well as z, by

Lemma 3.) This finishes the proof. �
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