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Abstract. We prove that the associate space of a generalized Orlicz space Lϕ(·) is given by
the conjugate modular ϕ∗ even without the assumption that simple functions belong to the
space. Second, we show that every weakly doubling Φ-function is equivalent to a doubling

Φ-function. As a consequence, we conclude that Lϕ(·) is uniformly convex if ϕ and ϕ∗ are
weakly doubling.
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1. Intorduction

Generalized Orlicz spaces Lϕ(·) have been studied since the 1940s. A major syn-

thesis of functional analysis in these spaces, based on work, e.g. of Hudzik, Kamińska

and Musielak, is given in the monograph [16]. Following ideas of Maeda, Mizuta,

Ohno and Shimomura (e.g. [15]), we have studied these spaces from a point-of-view

which emphasizes the possibility of choosing the Φ-function generating the norm

in the space appropriately [5], [9], [10], [12]. From this perspective, some classical

concepts, like convexity of the Φ-function, are too rigid.

Renewed interest in the topic has arisen recently from studies of PDE with non-

standard growth, including the variable exponent case ϕ(x, t) = tp(x) and the double

phase case ϕ(x, t) = tp+ a(x)tq. Such problems have been studied e.g. in [2], [3], [4],

[8], [17]. For a detailed motivation of our context and additional references we refer

to the introduction of [11].

In this note, we tie up some loose ends concerning the basic functional analysis

of generalized Orlicz spaces in our monograph [6]. In the book we relied on the

assumption that all simple functions belong to our space. This excludes for instance

DOI: 10.21136/CMJ.2018.0054-17 1011

http://dx.doi.org/10.21136/CMJ.2018.0054-17


the case ϕ(x, t) := |x|−nt2, where n is the dimension. We can now remove this

assumption from the following result (cf. [6], Theorem 2.7.4). For simplicity, we

consider only the Lebesgue measure on subsets of Rn. See the next sections for

definitions.

Theorem 1.1. Let A ⊂ Rn be measurable. If ϕ ∈ Φw(A), then (Lϕ)′ = Lϕ
∗

,

i.e. for all measurable f : A→ R

‖f‖ϕ(·) ≈ sup
‖g‖ϕ∗(·)61

∫

A

|f(x)g(x)| dx.

The proof relies among other things on upgrading the weak Φ-function to a strong

Φ-function based on our earlier work. The next result is of the same type, upgrading

weak doubling to strong doubling.

Theorem 1.2. Let A ⊂ Rn be measurable. If ϕ ∈ Φw(A) satisfies ∆
w
2 and ∇w

2 ,

then there exists ψ ∈ Φw(A) with ϕ ∼ ψ satisfying ∆2 and ∇2.

Recall that a vector space X is uniformly convex if it has a norm ‖·‖ such that

for every ε > 0 there exists δ > 0 with

‖x− y‖ > ε or ‖x+ y‖ 6 2(1− δ)

for all unit vectors x and y. In the Orlicz case, it is well known that the space Lϕ is

reflexive and uniformly convex if and only if ϕ and ϕ∗ are doubling [18], Theorem 2,

page 297. Hudzik in [13] showed in 1983 that the same conditions are sufficient for

uniform convexity (see also [7], [14]). With the equivalence technique, we are able

to give a very simple proof of this result.

Theorem 1.3. Let A ⊂ Rn be measurable and ϕ ∈ Φw(A). If ϕ satisfies ∆
w
2

and ∇w
2 , then L

ϕ(·) is uniformly convex and reflexive.

2. Φ-functions

By A ⊂ Rn we denote a measurable set. The notation f . g means that there

exists a constant C > 0 such that f 6 Cg. The notation f ≈ g means that f . g . f .

By c we denote a generic constant whose value may change between appearances.

A function f is almost increasing if there exists a constant L > 1 such that f(s) 6

Lf(t) for all s 6 t (abbreviated L-almost increasing). Almost decreasing is defined

analogously.
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Definition 2.1. We say that ϕ : A× [0,∞) → [0,∞] is a weak Φ-function, and

write ϕ ∈ Φw(A), if the following conditions hold:

⊲ For every t ∈ [0,∞) the function x 7→ ϕ(x, t) is measurable and for every x ∈ A

the function t 7→ ϕ(x, t) is non-decreasing and left-continuous.

⊲ ϕ(x, 0) = lim
t→0+

ϕ(x, t) = 0 and lim
t→∞

ϕ(x, t) = ∞ for every x ∈ A.

⊲ The function t 7→ ϕ(x, t)/t is L-almost increasing for t > 0 uniformly in A. “Uni-

formly” means that L is independent of x.

If ϕ ∈ Φw(A) is convex, then it is called a Φ-function, and we write ϕ ∈ Φ(A). If

ϕ ∈ Φ(A) is continuous as a function into the extended real line [0,∞], then it is

a strong Φ-function, and we write ϕ ∈ Φs(A).

We say that ϕ, ψ ∈ Φw(A) are weakly equivalent, ϕ ∼ ψ, if there exist D > 1 and

h ∈ L1(A) such that

ϕ(x, t) 6 ψ(x,Dt) + h(x) and ψ(x, t) 6 ϕ(x,Dt) + h(x).

Two functions ϕ and ψ are equivalent, ϕ ≃ ψ, if the previous conditions hold with

h ≡ 0. Note that ϕ ∼ ψ if and only if Lϕ(·) = Lψ(·). In the case ϕ, ψ ∈ Φ, this has

been proved in [6], Theorem 2.8.1. For the weak Φ-functions the proof is the same.

We define the doubling condition ∆2 and the weak doubling condition ∆w
2 by

ϕ(x, 2t) . ϕ(x, t), ϕ(x, 2t) . ϕ(x, t) + h(x),

respectively, where h ∈ L1 and the implicit constant are independent of x. If ϕ ∈

Φw(A), then we define a conjugate Φ-function by

ϕ∗(x, t) := sup
s>0

(st− ϕ(x, s)).

We say that ϕ satisfies ∇2 or ∇
w
2 if ϕ

∗ satisfies ∆2 or ∆
w
2 , respectively. All these

assumptions are invariant under equivalence, ≃, of Φ-functions.

In some situations, it is useful to have a more quantitative version of the ∆2 and

∇2 conditions. It can be shown that (aDec) is equivalent to ∆2 and (aInc) to ∇2

(cf. [11], Lemma 2.6, and [5], Proposition 3.6), where (aInc) and (aDec) means the

following:

(aInc) There exist γ− > 1 and L > 1 such that t 7→ ϕ(x, t)/tγ
−

is L-almost increas-

ing in (0,∞).

(aDec) There exist γ+ > 1 and L > 1 such that t 7→ ϕ(x, t)/tγ
+

is L-almost decreas-

ing in (0,∞).

Note that the optimal γ− and γ+ correspond to the lower and upper Matuszewska-

Orlicz indexes, respectively.

1013



Let us start by showing that weak doubling can be upgraded to strong doubling

via weak equivalence of Φ-functions. For this we will use the left-inverse of a weak

Φ-function, defined by the formula

ϕ−1(x, τ) := inf{t > 0: ϕ(x, t) > τ}.

We point out that if ϕ ∈ Φs(Ω), then by [9], page 4, we have for every t that

(2.1) ϕ(x, ϕ−1(x, t)) = t.

P r o o f of Theorem 1.2. By [10], Proposition 2.3, we may assume without loss

of generality that ϕ ∈ Φs(A). By assumption,

ϕ(x, 2t) 6 Dϕ(x, t) + h(x), ϕ∗(x, 2t) 6 Dϕ∗(x, t) + h(x)

for some D > 2, h ∈ L1 and all x ∈ A and t > 0. Using ϕ = ϕ∗∗ (see [6],

Corollary 2.6.3), and the definition of the conjugate Φ-function, we obtain from the

second inequality that

ϕ(x, 2t) = sup
u>0

(2tu− ϕ∗(x, u)) 6 sup
u>0

(

2tu−
1

D
(ϕ∗(x, 2u)− h(x))

)

= sup
u>0

(

2tu−
1

D
ϕ∗(x, 2u)

)

+
1

D
h(x) =

1

D
sup
u>0

(Dt2u− ϕ∗(x, 2u)) +
1

D
h(x)

=
1

D
ϕ(x,Dt) +

1

D
h(x).

Define tx := ϕ−1(x, h(x)) and suppose that t > tx so that h(x) 6 ϕ(x, t). By

convexity, we conclude that Dh(x) 6 Dϕ(x, t) 6 ϕ(x,Dt). Hence in the case t > tx
we have

ϕ(x, 2t) 6 (D + 1)ϕ(x, t), ϕ(x, 2t) 6
D + 1

D2
ϕ(x,Dt).

Let p := log2(D + 1) and

q :=
log(D2/(D + 1))

log(D/2)
.

Note that q > 1 since D2/(D + 1) > D/2. Divide the first inequality by (2t)p and

the second one by (2t)q:

ϕ(x, 2t)

(2t)p
6
D + 1

2p
ϕ(x, t)

tp
=
ϕ(x, t)

tp
,

ϕ(x, 2t)

(2t)q
6

(D + 1)Dq

D22q
ϕ(x,Dt)

(Dt)q
=
ϕ(x,Dt)

(Dt)q
.
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Let s > t > tx. Then there exists k ∈ N such that 2kt < s 6 2k+1t. Hence

ϕ(x, s)

sp
6
ϕ(x, 2k+1t)

(2kt)p
= 2p

ϕ(x, 2k+1t)

(2k+1t)p
6 2p

ϕ(x, 2kt)

(2kt)p
6 . . . 6 2p

ϕ(x, t)

tp
,

so ϕ satisfies (aDec) with γ+ = p for t > tx. Similarly, we find that ϕ satisfies (aInc)

with γ− = q for t > tx.

Define

ψ(x, t) :=

{

ϕ(x, t) for t > tx,

cxt
2 otherwise,

where cx is chosen so that ψ is continuous at tx. Then ψ satisfies (aDec) on [0, tx]

and [tx,∞), hence on the whole real axis with γ+ = max{p, 2}, similarly for (aInc)

with γ− = min{q, 2}.

Furthermore, ϕ(x, t) = ψ(x, t) when t > tx, and so it follows that |ϕ(x, t) −

ψ(x, t)| 6 ϕ(x, tx) = h(x), where (2.1) is used for the last step. Since h ∈ L1, this

means that ϕ ∼ ψ, so ψ is the required function. �

Remark 2.2. From the proof of the previous theorem, we see that the two

conditions are not interdependent, i.e. if ϕ ∈ Φw(A) satisfies ∆
w
2 , then there exists

ψ ∈ Φw(A) with ϕ ∼ ψ satisfying ∆2; similarly for only ∇
w
2 and ∇2.

3. Associate spaces

We denote by L0(A) the set of measurable functions in A.

Definition 3.1. Let ϕ ∈ Φw(A) and define the modular ̺ϕ(·) for f ∈ L0(A) by

̺ϕ(·)(f) :=

∫

A

ϕ(x, |f(x)|) dx.

The generalized Orlicz space, also called Musielak-Orlicz space, is defined as the set

Lϕ(·)(A) := {f ∈ L0(A) : lim
λ→0+

̺ϕ(·)(λf) = 0}

equipped with the (Luxemburg) quasinorm

‖f‖ϕ(·) := inf
{

λ > 0: ̺ϕ(·)

(f

λ

)

6 1
}

.

Let us start with a lemma which shows that we can approximate the function 1

with a monotonically increasing sequence of functions in the generalized Orlicz space.

Note that the next lemma is trivial if L∞ ⊂ Lϕ(·), as was assumed in [6] when dealing

with associate spaces.

Lemma 3.2. Let ϕ ∈ Φw(A). There exists positive hk ∈ Lϕ(·)(A), k ∈ N, such

that hk ր 1 and {hk = 1} ր A.
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P r o o f. For k > 1 we define

Ek := {x : ϕ(x, 2−k) 6 1}.

Since ϕ(·, t) is assumed to be measurable, Ek is a measurable set. Since

lim
t→0+

ϕ(x, t) = 0, there exists for every x ∈ A an index kx such that x ∈ Ekx .

And since ϕ is non-decreasing, it follows that Ek ր A as k → ∞. We define

h(x) :=

∞
∑

i=0

2−i−1χEi
(x).

Then h(x) ∈ (0, 1] for every x, and h is measurable. Suppose that x ∈ Ek+1 \Ek for

some k ∈ N. Then

h(x) =

∞
∑

i=k+1

2−i−1 = 2−(k+1).

Hence, by the definition of Ek+1, we find that ϕ(x, h(x)) 6 1. Since A =
⋃

k

Ek, we

have ϕ(x, h(x)) 6 1 in A. (The function h can alternatively be constructed using

the left-inverse of ϕ, as in the previous section.)

Let us define hk := min{khχB(0,k)∩A, 1}. Then

̺ϕ(·)(k
−1hk) 6

∫

B(0,k)∩A

ϕ(x, h) dx 6 |B(0, k)| <∞,

so that hk ∈ Lϕ(·)(A). Since h > 0, it follows that khχB(0,k)∩A ր ∞ for every x,

and so hk ր 1, as required. �

We define the associate space by (Lϕ(·))′(A) := {f ∈ L0(A) : ‖f‖(Lϕ(·))′ < ∞},

where

‖f‖(Lϕ)′ := sup
‖g‖ϕ(·)61

∫

A

fg dx.

If g ∈ (Lϕ)′ and f ∈ Lϕ, then fg ∈ L1 by the definition of the associate space. In

particular, the integral
∫

A
fg dx is well defined and

∣

∣

∣

∣

∫

A

fg dx

∣

∣

∣

∣

6 ‖g‖(Lϕ)′‖f‖ϕ(·).

Hölder’s inequality holds in generalized Orlicz spaces with constant 2, without

restrictions on the Φw-function ([6], Lemma 2.6.5):

(3.1)

∫

A

|f | |g| dx 6 2‖f‖ϕ(·)‖g‖ϕ∗(·).
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Here ϕ∗ is the conjugate Φ-function defined in the previous section. Furthermore,

we can define a conjugate modular on the dual space by the formula

(̺ϕ(·))
∗(J) := sup

f∈Lϕ(·)

(J(f)− ̺ϕ(·)(f))

for J ∈ (Lϕ(·))∗, i.e. J : Lϕ(·) → R is a bounded linear functional. By Jf we denote

the functional g 7→
∫

fg dx.

P r o o f of Theorem 1.1. We follow the outlines of [6], Theorem 2.7.4, but use

Lemma 3.2 to get rid of the extraneous assumption that simple functions belong to

the space. The inequality ‖f‖(Lϕ)′ 6 2‖f‖ϕ∗(·) follows from (3.1).

Let then f ∈ (Lϕ)′ and ε > 0. Let {q1, q2, . . .} be an enumeration of non-negative

rational numbers with q1 = 0. For k ∈ N and x ∈ A define

rk(x) := max
j=1,...,k

qj |f(x)| − ϕ(x, qj).

The special choice q1 = 0 implies rk(x) > 0 for all x > 0. Since Q is dense in [0,∞)

and ϕ(x, ·) is left-continuous, rk(x) ր ϕ∗(x, |f(x)|) for every x ∈ A as k → ∞.

Since f and ϕ(·, t) are measurable functions, the sets

Ei,k := {x ∈ A : qi|f(x)| − ϕ(x, qi) = max
j=1,...,k

(qj |f(x)| − ϕ(x, qj))}

are measurable. Let Fi,k := Ei,k \ (E1,k ∪ . . . ∪Ei−1,k). Define

gk :=

k
∑

i=1

qiχFi,k
.

Then gk is measurable and bounded and

rk(x) = gk(x)|f(x)| − ϕ(x, gk(x))

for all x ∈ A.

Let hk ∈ Lϕ(·)(A) be as in Lemma 3.2, i.e. {hk = 1} ր A and 0 < hk 6 1. Since gk

is bounded, it follows that w := sgn f hkgk ∈ Lϕ(·). Denote E := {fw > ϕ(x,w)}.

Since the conjugate modular is defined as a supremum over functions in Lϕ(·), we

get a lower bound by using the particular function wχE . Thus

(̺ϕ(·))
∗(Jf ) > Jf (wχE)− ̺ϕ(·)(wχE) =

∫

E

fw − ϕ(x,w) dx

>

∫

{hk=1}

gk|f | − ϕ(x, gk) dx =

∫

A

rkχ{hk=1} dx.
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Since rkχ{hk=1} ր ϕ∗(x, |f |), it follows by monotone convergence that (̺ϕ(·))
∗(Jf ) >

̺ϕ∗(·)(f). From the definitions of (̺ϕ(·))
∗ and ̺ϕ∗(·),

(̺ϕ(·))
∗(Jf ) = sup

g∈Lϕ(·)

∫

A

fg − ϕ(x, g) dx 6

∫

A

ϕ∗(x, f) dx = ̺ϕ∗(·)(f).

Hence (̺ϕ(·))
∗(Jf ) = ̺ϕ∗(·)(f).

Since f 7→ Jf is linear, it follows that (̺ϕ(·))
∗(λJf ) = ̺ϕ∗(·)(λf) for every λ > 0

and therefore ‖f‖ϕ∗(·) = ‖Jf‖(̺ϕ(·))∗ 6 ‖Jf‖(Lϕ(·))∗ = ‖f‖(Lϕ(·))′ , where the second

step follows from [6], Theorem 2.2.10.

Taking into account that ϕ∗∗ ≃ ϕ, we have shown that Lϕ(·) = (Lϕ
∗(·))′. By the

definition of the associate space norm, this means that

‖f‖ϕ(·) ≈ sup
‖g‖ϕ∗(·)61

∫

|f | |g| dx

for f ∈ Lϕ(·). In the case f ∈ L0 \ Lϕ(·), we can approximate hkmin{|f |, k} ր |f |

with hk as before. Since hkmin{|f |, k} ∈ Lϕ(·), the previous result implies that the

formula holds, in the form ∞ = ∞, when f ∈ L0 \ Lϕ(·). �

4. Uniform convexity

The function ϕ ∈ Φw(R
n) is uniformly convex if for every ε > 0 there exists δ > 0

such that

ϕ
(

x,
s+ t

2

)

6 (1 − δ)
ϕ(x, s) + ϕ(x, t)

2

for every x ∈ Rn whenever |s− t| > εmax{|s|, |t|}.

Theorem 4.1. The function ϕ ∈ Φw(A) is equivalent to a uniformly convex

Φ-function if and only if it satisfies (aInc).

P r o o f. Assume first that ϕ satisfies (aInc) with γ− = p > 1. By [10],

Lemma 2.2, there exists ψ ∈ Φ(A) such that ϕ ≃ ψ and ψ1/p is convex for some

p > 1. The claim follows once we show that ψ is uniformly convex. Let ε ∈ (0, 1)

and s− t > εs with s > t > 0. Since ψ1/p is convex,

ψ
(

x,
s+ t

2

)1/p

6
ψ(x, s)1/p + ψ(x, t)1/p

2
.

Since t 6 (1−ε)s and ψ is convex, we find that ψ(x, t) 6 ψ(x, (1−ε)s) 6 (1−ε)ψ(x, s).

Therefore ψ(x, t)1/p 6 (1−ε′)ψ(x, s)1/p for some ε′ > 0. Since tp is uniformly convex,
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we obtain that

(ψ(x, s)1/p + ψ(x, t)1/p

2

)p

6 (1− δ)
ψ(x, s) + ψ(x, t)

2
.

Combined with the previous estimate, this shows that ψ is uniformly convex.

Assume now conversely that ϕ ≃ ψ and ψ is uniformly convex. Choose ε = 1
2 and

t = 0 in the definition of uniform convexity:

ψ(x, s/2) 6 1
2 (1− δ)ψ(x, s).

Divide this equation by (s/2)p, where p is chosen so that 2p−1(1− δ) = 1:

ψ(x, s/2)

(s/2)p
6 2p−1(1 − δ)

ψ(x, s)

sp
=
ψ(x, s)

sp
.

The previous inequality holds for every s > 0. If 0 < t < s, then we can choose

k ∈ N such that 2kt 6 s < 2k+1t. Then by the previous inequality and monotonicity

of ψ,

ψ(x, t)

tp
6
ψ(x, 2t)

(2t)p
6 . . . 6

ψ(x, 2kt)

(2kt)p
6 2p

ψ(x, s)

sp
.

Hence, ψ satisfies (aInc) with γ− = p. Since this property is invariant under equiv-

alence, it holds for ϕ as well. �

We can now prove the uniform convexity of the space.

P r o o f of Theorem 1.3. By Theorem 1.2, ∆w
2 and ∇w

2 imply ∆2 and ∇2. If ϕ

satisfies (aInc), then it follows from Theorem 4.1 that it is equivalent to a uniformly

convex Φ-function ψ. By (aDec), also ψ is doubling. Hence by [16], Theorem 11.6

(see also [6], Theorem 2.4.14), Lψ(·) is uniformly convex. Since ϕ ≃ ψ, Lϕ(·) = Lψ(·),

and hence we have proved Lϕ(·) is uniformly convex. Furthermore, every uniformly

convex Banach space is reflexive [1], Chapter 1. �
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