UNIFORM CONVEXITY AND ASSOCIATE SPACES

Petteri Harjulehto, Turku, Peter Hästö, Oulu, Turku

Received February 8, 2017. Published online April 13, 2018.

Abstract. We prove that the associate space of a generalized Orlicz space $L^{\varphi(\cdot)}$ is given by the conjugate modular φ^* even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling Φ -function is equivalent to a doubling Φ -function. As a consequence, we conclude that $L^{\varphi(\cdot)}$ is uniformly convex if φ and φ^* are weakly doubling.

MSC 2010: 46E30, 46A25

Keywords: generalized Orlicz space; Musielak-Orlicz space; nonstandard growth; variable exponent; double phase; uniform convexity; associate space

1. INTORDUCTION

Generalized Orlicz spaces $L^{\varphi(\cdot)}$ have been studied since the 1940s. A major synthesis of functional analysis in these spaces, based on work, e.g. of Hudzik, Kamińska and Musielak, is given in the monograph [16]. Following ideas of Maeda, Mizuta, Ohno and Shimomura (e.g. [15]), we have studied these spaces from a point-of-view which emphasizes the possibility of choosing the Φ -function generating the norm in the space appropriately [5], [9], [10], [12]. From this perspective, some classical concepts, like convexity of the Φ -function, are too rigid.

Renewed interest in the topic has arisen recently from studies of PDE with nonstandard growth, including the variable exponent case $\varphi(x,t) = t^{p(x)}$ and the double phase case $\varphi(x,t) = t^p + a(x)t^q$. Such problems have been studied e.g. in [2], [3], [4], [8], [17]. For a detailed motivation of our context and additional references we refer to the introduction of [11].

In this note, we tie up some loose ends concerning the basic functional analysis of generalized Orlicz spaces in our monograph [6]. In the book we relied on the assumption that all simple functions belong to our space. This excludes for instance

DOI: 10.21136/CMJ.2018.0054-17

the case $\varphi(x,t) := |x|^{-n}t^2$, where *n* is the dimension. We can now remove this assumption from the following result (cf. [6], Theorem 2.7.4). For simplicity, we consider only the Lebesgue measure on subsets of \mathbb{R}^n . See the next sections for definitions.

Theorem 1.1. Let $A \subset \mathbb{R}^n$ be measurable. If $\varphi \in \Phi_w(A)$, then $(L^{\varphi})' = L^{\varphi^*}$, i.e. for all measurable $f \colon A \to \mathbb{R}$

$$\|f\|_{\varphi(\cdot)} \approx \sup_{\|g\|_{\varphi^*}(\cdot) \leqslant 1} \int_A |f(x)g(x)| \, \mathrm{d}x.$$

The proof relies among other things on upgrading the weak Φ -function to a strong Φ -function based on our earlier work. The next result is of the same type, upgrading weak doubling to strong doubling.

Theorem 1.2. Let $A \subset \mathbb{R}^n$ be measurable. If $\varphi \in \Phi_w(A)$ satisfies Δ_2^w and ∇_2^w , then there exists $\psi \in \Phi_w(A)$ with $\varphi \sim \psi$ satisfying Δ_2 and ∇_2 .

Recall that a vector space X is uniformly convex if it has a norm $\|\cdot\|$ such that for every $\varepsilon > 0$ there exists $\delta > 0$ with

$$||x-y|| \ge \varepsilon$$
 or $||x+y|| \le 2(1-\delta)$

for all unit vectors x and y. In the Orlicz case, it is well known that the space L^{φ} is reflexive and uniformly convex if and only if φ and φ^* are doubling [18], Theorem 2, page 297. Hudzik in [13] showed in 1983 that the same conditions are sufficient for uniform convexity (see also [7], [14]). With the equivalence technique, we are able to give a very simple proof of this result.

Theorem 1.3. Let $A \subset \mathbb{R}^n$ be measurable and $\varphi \in \Phi_w(A)$. If φ satisfies Δ_2^w and ∇_2^w , then $L^{\varphi(\cdot)}$ is uniformly convex and reflexive.

2. Φ -functions

By $A \subset \mathbb{R}^n$ we denote a measurable set. The notation $f \leq g$ means that there exists a constant C > 0 such that $f \leq Cg$. The notation $f \approx g$ means that $f \leq g \leq f$. By c we denote a generic constant whose value may change between appearances. A function f is almost increasing if there exists a constant $L \geq 1$ such that $f(s) \leq Lf(t)$ for all $s \leq t$ (abbreviated L-almost increasing). Almost decreasing is defined analogously. **Definition 2.1.** We say that $\varphi: A \times [0, \infty) \to [0, \infty]$ is a *weak* Φ -function, and write $\varphi \in \Phi_w(A)$, if the following conditions hold:

- ▷ For every $t \in [0, \infty)$ the function $x \mapsto \varphi(x, t)$ is measurable and for every $x \in A$ the function $t \mapsto \varphi(x, t)$ is non-decreasing and left-continuous.
- $\triangleright \ \varphi(x,0) = \lim_{t \to 0^+} \varphi(x,t) = 0 \text{ and } \lim_{t \to \infty} \varphi(x,t) = \infty \text{ for every } x \in A.$
- ▷ The function $t \mapsto \varphi(x,t)/t$ is *L*-almost increasing for t > 0 uniformly in *A*. "Uniformly" means that *L* is independent of *x*.

If $\varphi \in \Phi_w(A)$ is convex, then it is called a Φ -function, and we write $\varphi \in \Phi(A)$. If $\varphi \in \Phi(A)$ is continuous as a function into the extended real line $[0, \infty]$, then it is a strong Φ -function, and we write $\varphi \in \Phi_s(A)$.

We say that $\varphi, \psi \in \Phi_w(A)$ are weakly equivalent, $\varphi \sim \psi$, if there exist D > 1 and $h \in L^1(A)$ such that

$$\varphi(x,t) \leqslant \psi(x,Dt) + h(x) \text{ and } \psi(x,t) \leqslant \varphi(x,Dt) + h(x)$$

Two functions φ and ψ are *equivalent*, $\varphi \simeq \psi$, if the previous conditions hold with $h \equiv 0$. Note that $\varphi \sim \psi$ if and only if $L^{\varphi(\cdot)} = L^{\psi(\cdot)}$. In the case $\varphi, \psi \in \Phi$, this has been proved in [6], Theorem 2.8.1. For the weak Φ -functions the proof is the same.

We define the doubling condition Δ_2 and the weak doubling condition Δ_2^w by

$$\varphi(x,2t) \lesssim \varphi(x,t), \quad \varphi(x,2t) \lesssim \varphi(x,t) + h(x),$$

respectively, where $h \in L^1$ and the implicit constant are independent of x. If $\varphi \in \Phi_w(A)$, then we define a conjugate Φ -function by

$$\varphi^*(x,t) := \sup_{s \ge 0} (st - \varphi(x,s)).$$

We say that φ satisfies ∇_2 or ∇_2^w if φ^* satisfies Δ_2 or Δ_2^w , respectively. All these assumptions are invariant under equivalence, \simeq , of Φ -functions.

In some situations, it is useful to have a more quantitative version of the Δ_2 and ∇_2 conditions. It can be shown that (aDec) is equivalent to Δ_2 and (aInc) to ∇_2 (cf. [11], Lemma 2.6, and [5], Proposition 3.6), where (aInc) and (aDec) means the following:

- (aInc) There exist $\gamma^- > 1$ and $L \ge 1$ such that $t \mapsto \varphi(x, t)/t^{\gamma^-}$ is L-almost increasing in $(0, \infty)$.
- (aDec) There exist $\gamma^+ > 1$ and $L \ge 1$ such that $t \mapsto \varphi(x, t)/t^{\gamma^+}$ is L-almost decreasing in $(0, \infty)$.

Note that the optimal γ^- and γ^+ correspond to the lower and upper Matuszewska-Orlicz indexes, respectively.

Let us start by showing that weak doubling can be upgraded to strong doubling via weak equivalence of Φ -functions. For this we will use the *left-inverse* of a weak Φ -function, defined by the formula

$$\varphi^{-1}(x,\tau) := \inf\{t > 0 \colon \varphi(x,t) \ge \tau\}.$$

We point out that if $\varphi \in \Phi_s(\Omega)$, then by [9], page 4, we have for every t that

(2.1)
$$\varphi(x,\varphi^{-1}(x,t)) = t.$$

Proof of Theorem 1.2. By [10], Proposition 2.3, we may assume without loss of generality that $\varphi \in \Phi_s(A)$. By assumption,

$$\varphi(x,2t) \leq D\varphi(x,t) + h(x), \quad \varphi^*(x,2t) \leq D\varphi^*(x,t) + h(x)$$

for some D > 2, $h \in L^1$ and all $x \in A$ and $t \ge 0$. Using $\varphi = \varphi^{**}$ (see [6], Corollary 2.6.3), and the definition of the conjugate Φ -function, we obtain from the second inequality that

$$\begin{split} \varphi(x,2t) &= \sup_{u \ge 0} (2tu - \varphi^*(x,u)) \leqslant \sup_{u \ge 0} \left(2tu - \frac{1}{D} (\varphi^*(x,2u) - h(x)) \right) \\ &= \sup_{u \ge 0} \left(2tu - \frac{1}{D} \varphi^*(x,2u) \right) + \frac{1}{D} h(x) = \frac{1}{D} \sup_{u \ge 0} (Dt2u - \varphi^*(x,2u)) + \frac{1}{D} h(x) \\ &= \frac{1}{D} \varphi(x,Dt) + \frac{1}{D} h(x). \end{split}$$

Define $t_x := \varphi^{-1}(x, h(x))$ and suppose that $t \ge t_x$ so that $h(x) \le \varphi(x, t)$. By convexity, we conclude that $Dh(x) \le D\varphi(x, t) \le \varphi(x, Dt)$. Hence in the case $t \ge t_x$ we have

$$\varphi(x,2t) \leqslant (D+1)\varphi(x,t), \quad \varphi(x,2t) \leqslant \frac{D+1}{D^2}\varphi(x,Dt).$$

Let $p := \log_2(D+1)$ and

$$q := \frac{\log(D^2/(D+1))}{\log(D/2)}$$

Note that q > 1 since $D^2/(D+1) > D/2$. Divide the first inequality by $(2t)^p$ and the second one by $(2t)^q$:

$$\begin{aligned} \frac{\varphi(x,2t)}{(2t)^p} &\leqslant \frac{D+1}{2^p} \frac{\varphi(x,t)}{t^p} = \frac{\varphi(x,t)}{t^p}, \\ \frac{\varphi(x,2t)}{(2t)^q} &\leqslant \frac{(D+1)D^q}{D^2 2^q} \frac{\varphi(x,Dt)}{(Dt)^q} = \frac{\varphi(x,Dt)}{(Dt)^q} \end{aligned}$$

Let $s > t \ge t_x$. Then there exists $k \in \mathbb{N}$ such that $2^k t < s \le 2^{k+1} t$. Hence

$$\frac{\varphi(x,s)}{s^p} \leqslant \frac{\varphi(x,2^{k+1}t)}{(2^kt)^p} = 2^p \frac{\varphi(x,2^{k+1}t)}{(2^{k+1}t)^p} \leqslant 2^p \frac{\varphi(x,2^kt)}{(2^kt)^p} \leqslant \dots \leqslant 2^p \frac{\varphi(x,t)}{t^p},$$

so φ satisfies (aDec) with $\gamma^+ = p$ for $t \ge t_x$. Similarly, we find that φ satisfies (aInc) with $\gamma^- = q$ for $t \ge t_x$.

Define

$$\psi(x,t) := \begin{cases} \varphi(x,t) & \text{for } t \ge t_x, \\ c_x t^2 & \text{otherwise,} \end{cases}$$

where c_x is chosen so that ψ is continuous at t_x . Then ψ satisfies (aDec) on $[0, t_x]$ and $[t_x, \infty)$, hence on the whole real axis with $\gamma^+ = \max\{p, 2\}$, similarly for (aInc) with $\gamma^- = \min\{q, 2\}$.

Furthermore, $\varphi(x,t) = \psi(x,t)$ when $t \ge t_x$, and so it follows that $|\varphi(x,t) - \psi(x,t)| \le \varphi(x,t_x) = h(x)$, where (2.1) is used for the last step. Since $h \in L^1$, this means that $\varphi \sim \psi$, so ψ is the required function.

Remark 2.2. From the proof of the previous theorem, we see that the two conditions are not interdependent, i.e. if $\varphi \in \Phi_w(A)$ satisfies Δ_2^w , then there exists $\psi \in \Phi_w(A)$ with $\varphi \sim \psi$ satisfying Δ_2 ; similarly for only ∇_2^w and ∇_2 .

3. Associate spaces

We denote by $L^0(A)$ the set of measurable functions in A.

Definition 3.1. Let $\varphi \in \Phi_w(A)$ and define the *modular* $\varrho_{\varphi(\cdot)}$ for $f \in L^0(A)$ by

$$\varrho_{\varphi(\cdot)}(f) := \int_A \varphi(x, |f(x)|) \,\mathrm{d}x.$$

The generalized Orlicz space, also called Musielak-Orlicz space, is defined as the set

$$L^{\varphi(\cdot)}(A) := \{ f \in L^0(A) \colon \lim_{\lambda \to 0^+} \varrho_{\varphi(\cdot)}(\lambda f) = 0 \}$$

equipped with the (Luxemburg) quasinorm

$$||f||_{\varphi(\cdot)} := \inf \left\{ \lambda > 0 \colon \varrho_{\varphi(\cdot)}\left(\frac{f}{\lambda}\right) \leqslant 1 \right\}.$$

Let us start with a lemma which shows that we can approximate the function 1 with a monotonically increasing sequence of functions in the generalized Orlicz space. Note that the next lemma is trivial if $L^{\infty} \subset L^{\varphi(\cdot)}$, as was assumed in [6] when dealing with associate spaces.

Lemma 3.2. Let $\varphi \in \Phi_w(A)$. There exists positive $h_k \in L^{\varphi(\cdot)}(A)$, $k \in \mathbb{N}$, such that $h_k \nearrow 1$ and $\{h_k = 1\} \nearrow A$.

Proof. For $k \ge 1$ we define

$$E_k := \{x \colon \varphi(x, 2^{-k}) \leq 1\}$$

Since $\varphi(\cdot, t)$ is assumed to be measurable, E_k is a measurable set. Since $\lim_{t\to 0^+} \varphi(x,t) = 0$, there exists for every $x \in A$ an index k_x such that $x \in E_{k_x}$. And since φ is non-decreasing, it follows that $E_k \nearrow A$ as $k \to \infty$. We define

$$h(x) := \sum_{i=0}^{\infty} 2^{-i-1} \chi_{E_i}(x).$$

Then $h(x) \in (0,1]$ for every x, and h is measurable. Suppose that $x \in E_{k+1} \setminus E_k$ for some $k \in \mathbb{N}$. Then

$$h(x) = \sum_{i=k+1}^{\infty} 2^{-i-1} = 2^{-(k+1)}$$

Hence, by the definition of E_{k+1} , we find that $\varphi(x, h(x)) \leq 1$. Since $A = \bigcup_k E_k$, we have $\varphi(x, h(x)) \leq 1$ in A. (The function h can alternatively be constructed using the left-inverse of φ , as in the previous section.)

Let us define $h_k := \min\{kh\chi_{B(0,k)\cap A}, 1\}$. Then

$$\varrho_{\varphi(\cdot)}(k^{-1}h_k) \leqslant \int_{B(0,k)\cap A} \varphi(x,h) \,\mathrm{d}x \leqslant |B(0,k)| < \infty,$$

so that $h_k \in L^{\varphi(\cdot)}(A)$. Since h > 0, it follows that $kh\chi_{B(0,k)\cap A} \nearrow \infty$ for every x, and so $h_k \nearrow 1$, as required.

We define the associate space by $(L^{\varphi(\cdot)})'(A) := \{f \in L^0(A) \colon \|f\|_{(L^{\varphi(\cdot)})'} < \infty\},\$ where

$$\|f\|_{(L^{\varphi})'} := \sup_{\|g\|_{\varphi(\cdot)} \leqslant 1} \int_A fg \,\mathrm{d}x.$$

If $g \in (L^{\varphi})'$ and $f \in L^{\varphi}$, then $fg \in L^1$ by the definition of the associate space. In particular, the integral $\int_A fg \, dx$ is well defined and

$$\left|\int_A fg \,\mathrm{d} x\right| \leqslant \|g\|_{(L^\varphi)'} \|f\|_{\varphi(\cdot)}.$$

Hölder's inequality holds in generalized Orlicz spaces with constant 2, without restrictions on the Φ_w -function ([6], Lemma 2.6.5):

(3.1)
$$\int_{A} |f| |g| \, \mathrm{d}x \leq 2 \|f\|_{\varphi(\cdot)} \|g\|_{\varphi^{*}(\cdot)}$$

Here φ^* is the conjugate Φ -function defined in the previous section. Furthermore, we can define a conjugate modular on the dual space by the formula

$$(\varrho_{\varphi(\cdot)})^*(J) := \sup_{f \in L^{\varphi(\cdot)}} (J(f) - \varrho_{\varphi(\cdot)}(f))$$

for $J \in (L^{\varphi(\cdot)})^*$, i.e. $J \colon L^{\varphi(\cdot)} \to \mathbb{R}$ is a bounded linear functional. By J_f we denote the functional $g \mapsto \int fg \, dx$.

Proof of Theorem 1.1. We follow the outlines of [6], Theorem 2.7.4, but use Lemma 3.2 to get rid of the extraneous assumption that simple functions belong to the space. The inequality $||f||_{(L^{\varphi})'} \leq 2||f||_{\varphi^*(\cdot)}$ follows from (3.1).

Let then $f \in (L^{\varphi})'$ and $\varepsilon > 0$. Let $\{q_1, q_2, \ldots\}$ be an enumeration of non-negative rational numbers with $q_1 = 0$. For $k \in \mathbb{N}$ and $x \in A$ define

$$r_k(x) := \max_{j=1,\dots,k} q_j |f(x)| - \varphi(x, q_j).$$

The special choice $q_1 = 0$ implies $r_k(x) \ge 0$ for all $x \ge 0$. Since \mathbb{Q} is dense in $[0, \infty)$ and $\varphi(x, \cdot)$ is left-continuous, $r_k(x) \nearrow \varphi^*(x, |f(x)|)$ for every $x \in A$ as $k \to \infty$.

Since f and $\varphi(\cdot, t)$ are measurable functions, the sets

$$E_{i,k} := \{ x \in A \colon q_i | f(x) | - \varphi(x, q_i) = \max_{j=1,\dots,k} (q_j | f(x) | - \varphi(x, q_j)) \}$$

are measurable. Let $F_{i,k} := E_{i,k} \setminus (E_{1,k} \cup \ldots \cup E_{i-1,k})$. Define

$$g_k := \sum_{i=1}^k q_i \chi_{F_{i,k}}$$

Then g_k is measurable and bounded and

$$r_k(x) = g_k(x)|f(x)| - \varphi(x, g_k(x))$$

for all $x \in A$.

Let $h_k \in L^{\varphi(\cdot)}(A)$ be as in Lemma 3.2, i.e. $\{h_k = 1\} \nearrow A$ and $0 < h_k \leq 1$. Since g_k is bounded, it follows that $w := \operatorname{sgn} f h_k g_k \in L^{\varphi(\cdot)}$. Denote $E := \{fw \ge \varphi(x, w)\}$.

Since the conjugate modular is defined as a supremum over functions in $L^{\varphi(\cdot)}$, we get a lower bound by using the particular function $w\chi_E$. Thus

$$(\varrho_{\varphi(\cdot)})^*(J_f) \ge J_f(w\chi_E) - \varrho_{\varphi(\cdot)}(w\chi_E) = \int_E fw - \varphi(x,w) \,\mathrm{d}x$$
$$\ge \int_{\{h_k=1\}} g_k |f| - \varphi(x,g_k) \,\mathrm{d}x = \int_A r_k \chi_{\{h_k=1\}} \,\mathrm{d}x.$$

Since $r_k \chi_{\{h_k=1\}} \nearrow \varphi^*(x, |f|)$, it follows by monotone convergence that $(\varrho_{\varphi(\cdot)})^*(J_f) \ge \varrho_{\varphi^*(\cdot)}(f)$. From the definitions of $(\varrho_{\varphi(\cdot)})^*$ and $\varrho_{\varphi^*(\cdot)}$,

$$(\varrho_{\varphi(\cdot)})^*(J_f) = \sup_{g \in L^{\varphi(\cdot)}} \int_A fg - \varphi(x,g) \, \mathrm{d}x \leqslant \int_A \varphi^*(x,f) \, \mathrm{d}x = \varrho_{\varphi^*(\cdot)}(f).$$

Hence $(\varrho_{\varphi(\cdot)})^*(J_f) = \varrho_{\varphi^*(\cdot)}(f).$

Since $f \mapsto J_f$ is linear, it follows that $(\varrho_{\varphi(\cdot)})^*(\lambda J_f) = \varrho_{\varphi^*(\cdot)}(\lambda f)$ for every $\lambda > 0$ and therefore $\|f\|_{\varphi^*(\cdot)} = \|J_f\|_{(\varrho_{\varphi(\cdot)})^*} \leq \|J_f\|_{(L^{\varphi(\cdot)})^*} = \|f\|_{(L^{\varphi(\cdot)})'}$, where the second step follows from [6], Theorem 2.2.10.

Taking into account that $\varphi^{**} \simeq \varphi$, we have shown that $L^{\varphi(\cdot)} = (L^{\varphi^*(\cdot)})'$. By the definition of the associate space norm, this means that

$$||f||_{\varphi(\cdot)} \approx \sup_{||g||_{\varphi^*}(\cdot) \leqslant 1} \int |f| |g| \, \mathrm{d}x$$

for $f \in L^{\varphi(\cdot)}$. In the case $f \in L^0 \setminus L^{\varphi(\cdot)}$, we can approximate $h_k \min\{|f|, k\} \nearrow |f|$ with h_k as before. Since $h_k \min\{|f|, k\} \in L^{\varphi(\cdot)}$, the previous result implies that the formula holds, in the form $\infty = \infty$, when $f \in L^0 \setminus L^{\varphi(\cdot)}$.

4. UNIFORM CONVEXITY

The function $\varphi \in \Phi_w(\mathbb{R}^n)$ is uniformly convex if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\varphi\left(x, \frac{s+t}{2}\right) \leqslant (1-\delta)\frac{\varphi(x,s) + \varphi(x,t)}{2}$$

for every $x \in \mathbb{R}^n$ whenever $|s - t| \ge \varepsilon \max\{|s|, |t|\}$.

Theorem 4.1. The function $\varphi \in \Phi_w(A)$ is equivalent to a uniformly convex Φ -function if and only if it satisfies (aInc).

Proof. Assume first that φ satisfies (aInc) with $\gamma^- = p > 1$. By [10], Lemma 2.2, there exists $\psi \in \Phi(A)$ such that $\varphi \simeq \psi$ and $\psi^{1/p}$ is convex for some p > 1. The claim follows once we show that ψ is uniformly convex. Let $\varepsilon \in (0, 1)$ and $s - t \ge \varepsilon s$ with s > t > 0. Since $\psi^{1/p}$ is convex,

$$\psi\left(x, \frac{s+t}{2}\right)^{1/p} \leqslant \frac{\psi(x,s)^{1/p} + \psi(x,t)^{1/p}}{2}.$$

Since $t \leq (1-\varepsilon)s$ and ψ is convex, we find that $\psi(x,t) \leq \psi(x,(1-\varepsilon)s) \leq (1-\varepsilon)\psi(x,s)$. Therefore $\psi(x,t)^{1/p} \leq (1-\varepsilon')\psi(x,s)^{1/p}$ for some $\varepsilon' > 0$. Since t^p is uniformly convex, we obtain that

$$\left(\frac{\psi(x,s)^{1/p} + \psi(x,t)^{1/p}}{2}\right)^p \leqslant (1-\delta)\frac{\psi(x,s) + \psi(x,t)}{2}.$$

Combined with the previous estimate, this shows that ψ is uniformly convex.

Assume now conversely that $\varphi \simeq \psi$ and ψ is uniformly convex. Choose $\varepsilon = \frac{1}{2}$ and t = 0 in the definition of uniform convexity:

$$\psi(x, s/2) \leq \frac{1}{2}(1-\delta)\psi(x, s).$$

Divide this equation by $(s/2)^p$, where p is chosen so that $2^{p-1}(1-\delta) = 1$:

$$\frac{\psi(x, s/2)}{(s/2)^p} \leqslant 2^{p-1}(1-\delta)\frac{\psi(x, s)}{s^p} = \frac{\psi(x, s)}{s^p}$$

The previous inequality holds for every s > 0. If 0 < t < s, then we can choose $k \in \mathbb{N}$ such that $2^k t \leq s < 2^{k+1} t$. Then by the previous inequality and monotonicity of ψ ,

$$\frac{\psi(x,t)}{t^p} \leqslant \frac{\psi(x,2t)}{(2t)^p} \leqslant \ldots \leqslant \frac{\psi(x,2^kt)}{(2^kt)^p} \leqslant 2^p \frac{\psi(x,s)}{s^p}.$$

Hence, ψ satisfies (aInc) with $\gamma^- = p$. Since this property is invariant under equivalence, it holds for φ as well.

We can now prove the uniform convexity of the space.

Proof of Theorem 1.3. By Theorem 1.2, Δ_2^w and ∇_2^w imply Δ_2 and ∇_2 . If φ satisfies (aInc), then it follows from Theorem 4.1 that it is equivalent to a uniformly convex Φ -function ψ . By (aDec), also ψ is doubling. Hence by [16], Theorem 11.6 (see also [6], Theorem 2.4.14), $L^{\psi(\cdot)}$ is uniformly convex. Since $\varphi \simeq \psi$, $L^{\varphi(\cdot)} = L^{\psi(\cdot)}$, and hence we have proved $L^{\varphi(\cdot)}$ is uniformly convex. Furthermore, every uniformly convex Banach space is reflexive [1], Chapter 1.

Acknowledgement. We would like to thank the referees for their valuable comments.

References

[1]	<i>R. Adams</i> : Sobolev Spaces. Pure and Applied Mathematics 65, Academic Press, New York, 1975.	zbl MR
[2]	<i>M. Avci, A. Pankov</i> : Multivalued elliptic operators with nonstandard growth. Adv. Non- linear Anal. 7 (2018), 35–48.	zbl <mark>MR</mark> doi
[3]	P. Baroni, M. Colombo, G. Mingione: Non-autonomous functionals, borderline cases and related function classes. St. Petersbg. Math. J. 27 (2016), 347–379; translation from Algebra Anal. 27 (2015), 6–50.	
[4]	M. Colombo, G. Mingione: Regularity for double phase variational problems. Arch. Ra-	
[5]	tion. Mech. Anal. 215 (2015), 443–496. D. Cruz-Uribe, P. Hästö: Extrapolation and interpolation in generalized Orlicz spaces. Trans. Am. Math. Soc. 370 (2018), 4323–4349.	zbl <mark>MR</mark> doi zbl doi
[6]	L. Diening, P. Harjulehto, P. Hästö, M. Růžička: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017, Springer, Berlin, 2011.	zbl <mark>MR</mark> doi
[7]	XL. Fan, CX. Guan: Uniform convexity of Musielak-Orlicz-Sobolev spaces and appli- cations. Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 163–175.	zbl <mark>MR</mark> doi
[8]	P. Gwiazda, P. Wittbold, A. Wróblewska-Kamińska, A. Zimmermann: Renormalized so- lutions to nonlinear parabolic problems in generalized Musielak-Orlicz spaces. Nonlinear	
[9]	Anal., Theory Methods Appl., Ser. A 129 (2015), 1–36. P. Harjulehto, P. Hästö: Riesz potential in generalized Orlicz spaces. Forum Math. 29	
[10]	(2017), 229–244. P. Harjulehto, P. Hästö, R. Klén: Generalized Orlicz spaces and related PDE. Nonlinear	MR doi
[11]	Anal., Theory Methods Appl., Ser. A 143 (2016), 155–173. P. Harjulehto, P. Hästö, O. Toivanen: Hölder regularity of quasiminimizers under gen- eralized growth conditions. Calc. Var. Partial Differ. Equ. 56 (2017), Article No. 2,	
[12]	26 pages. P. Hästö: The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 269 (2015), 4038–4048.	zbl <mark>MR</mark> doi zbl <mark>MR</mark> doi
[13]	<i>H. Hudzik</i> : Uniform convexity of Musielak-Orlicz spaces with Luxemburg's norm. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 23 (1983), 21–32.	zbl MR
[14]	<i>H. Hudzik</i> : A criterion of uniform convexity of Musielak-Orlicz spaces with Luxemburg norm. Bull. Pol. Acad. Sci., Math. 32 (1984), 303–313.	zbl MR
[15]	FY. Maeda, Y. Mizuta, T. Ohno, T. Shimomura: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137 (2013),	
[16]	76–96. J. Musielak: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034, Springer, Berlin, 1983.	zbl <mark>MR</mark> doi zbl <mark>MR</mark> doi
[17]	-m()	
[18]	<i>M. M. Rao, Z. D. Ren</i> : Theory of Orlicz Spaces. Pure and Applied Mathematics 146, Marcel Dekker, New York, 1991.	zbl MR

Authors' addresses: Petteri Harjulehto, Department of Mathematics and Statistics, FI-20014 University of Turku, Finland, e-mail: petteri.harjulehto@utu.fi; Peter Hästö, Department of Mathematics and Statistics, FI-20014 University of Turku, Finland, and Department of Mathematical Sciences, FI-90014 University of Oulu, Finland, e-mail: peter.hasto@oulu.fi.