ON ALMOST EVERYWHERE DIFFERENTIABILITY OF THE METRIC PROJECTION ON CLOSED SETS IN $l^p(\mathbb{R}^n)$, 2

TORD SJÖDIN, Umeå

Received January 30, 2017. Published online May 3, 2018.

Abstract. Let F be a closed subset of \mathbb{R}^n and let P(x) denote the metric projection (closest point mapping) of $x \in \mathbb{R}^n$ onto F in l^p -norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in \mathbb{R}^n in the Euclidean case p = 2. We consider the case 2 and prove that the*i* $th component <math>P_i(x)$ of P(x) is differentiable a.e. if $P_i(x) \neq x_i$ and satisfies Hölder condition of order 1/(p-1) if $P_i(x) = x_i$.

Keywords: normed space; uniform convexity; closed set; metric projection; l^p -space; Fréchet differential; Lipschitz condition

MSC 2010: 26E25, 46B20, 49J50

1. INTRODUCTION

Let $\|\cdot\|$ be a norm on \mathbb{R}^n and let F be a closed subset of \mathbb{R}^n . For every $x \in \mathbb{R}^n$ we let P(x) denote the metric projection of x onto the set F, i.e. P(x) is the set of points $\underline{P}(x)$ in F satisfying

(1)
$$||\underline{P}(x) - x|| = \inf_{y \in F} ||y - x|| = \operatorname{dist}(x, F)$$

and dist(x, F) is the distance from x to F. It was proved by Asplund [2] that P(x) is Fréchet differentiable almost everywhere (a.e.) in \mathbb{R}^n with the Euclidean norm. The key to the proof was Alexandroff's theorem in [10] stating that convex functions have second order differentials a.e. (Abazoglou in [1], Theorem 2, and Zajíček in [12], Theorem 4), extended this result to norms that are close to being Euclidean. In the two-dimensional case, P is known to be Fréchet differentiable a.e. for any strictly convex norm, see [12], Theorem 3, which includes the l^p -norm, $1 . The present paper treats the <math>l^p$ -norm, 2 , in spaces of dimension at least three, which is not covered by the results mentioned above.

DOI: 10.21136/CMJ.2018.0038-17

The metric projection (closest point mapping) in finite dimensional spaces was studied at some length by Phelps in [8], [9]. The problem of the differentiability of P(x) seems to first have been considered by Kruskal in [7]. He asked if the set of points $x \in \mathbb{R}^n$ and directions $v \in S^{n-1}$ such that P(x) has a directional derivative at x in the direction v, is dense in $\mathbb{R}^n \times S^{n-1}$. See Shapiro [11] and the references contained there for more on directional differentiability of the metric projection. Differentiability of metric projections in general Hilbert spaces is studied in [5]. Asplunds result gives an affirmative answer to Kruskal's question in the Euclidean case. It is the purpose of this paper to give a partial extension of Asplund's result to $2 . We prove that <math>P_i(x)$ is differentiable for a.e. x such that $P_i(x) - x_i \neq 0$ and that $P_i(x)$ satisfies Lipschitz condition if $P_i(x) - x_i = 0$, where $P_i(x)$ is the *i*th coordinate of P(x). We state our result as follows.

Theorem 1. Let $2 , let F be a closed subset of <math>\mathbb{R}^n$ and let P(x) denote the metric projection onto F defined in (1) by the l^p -norm. Then P(x) is single valued and continuous for a.e. x in \mathbb{R}^n . Further,

- (a) $P_i(x)$ is Fréchet differentiable for a.e. x such that $P_i(x) x_i \neq 0$,
- (b) $P_i(x)$ satisfies $P_i(x+h) P_i(x) = O(||h||_p^{1/(p-1)})$, as $h \to 0$, for a.e. x such that $P_i(x) x_i = 0$.

Remark. It remains an open question if $P_i(x)$ is differentiable a.e. for closed sets F or at least for convex sets, when $P_i(x) - x_i = 0$.

The proof of the theorem uses Asplund's idea to define a convex auxiliary function whose differential is closely connected to P(x). The new idea is the map $D_p: \mathbb{R}^n \to \mathbb{R}^n$ and its differentiability properties.

The organisation of this paper is as follows. Section 2 gives our notation, definitions and three propositions. The proof of the theorem is given in Section 4 after some lemmas have been proved in Section 3.

2. Preliminaries

We consider \mathbb{R}^n with points $x = (x_1, \ldots, x_n)$ and let $l^p = l^p(\mathbb{R}^n)$, $1 , denote <math>\mathbb{R}^n$ with the norm

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Then l^p is an *n*-dimensional and uniformly convex Banach space with dual space l^q , $p^{-1} + q^{-1} = 1$, see [3] and [6]. Let *F* be a closed set in \mathbb{R}^n and define the metric projection P(x) onto *F* by (1). The map P(x) is in general multiple valued and we denote by $\underline{P}(x)$ any choice of an element in P(x). We say that P(x) is continuous at the point x if P(x) is single valued at x and $\underline{P}(x+h) = P(x) + o(1)$, as $h \to 0$, for all $\underline{P}(x+h)$ in P(x+h). Similarly, P(x) is Fréchet differentiable at x if P(x) is single valued at x and there is an $n \times n$ -matrix M such that

(2)
$$\underline{P}(x+h) = P(x) + M \cdot h + o(||h||_p), \text{ as } h \to 0$$

for all $\underline{P}(x+h)$ in P(x+h). In the following, differentiability always means Fréchet differentiability in this sense. Before we prove Theorem 1 we prepare the way by a series of propositions, which we give in a more general form than is actually needed for the proof. In the following three propositions we assume that $\|\cdot\|$ is any uniformly convex norm on \mathbb{R}^n and that $\|x\|$ is differentiable for $x \neq 0$. We denote any such space $(\mathbb{R}^n, \|\cdot\|)$ by B. Let P(x) be the metric projection defined by (1) onto a closed set F and let $f(x) = \|P(x) - x\|$ be the distance between x and F. Then f satisfies Lipschitz condition $|f(x) - f(y)| \leq \|x - y\|$ and hence f is differentiable a.e. in \mathbb{R}^n by the Rademacher-Stepanoff theorem in [4], p. 216.

Proposition 1. For a.e. $x \in F$ we have f'(x) = 0 and P'(x) = I, the identity $n \times n$ matrix.

Proof. Let *x* ∈ *F* be a point where f'(x) exists, then $0 \le ||P(x+h) - x - h|| = f(x+h) - f(x) = f'(x)h + o(||h||)$ gives f'(x) = 0, P(x+h) - x - h = o(||h||), as $h \to 0$, and P'(x) = I.

Proposition 1 shows that P(x) is differentiable a.e. on F. Let B^* be the dual space of B with norm $\|\cdot\|_*$ and denote the pairing between B and B^* by $\langle\cdot,\cdot\rangle$. For any $x \neq 0$ in B there is $x^* \in B^*$ such that $\langle x^*, x \rangle = \|x\|$ and $\|x^*\|_* = 1$ by the Hahn-Banach theorem. We call x^* the support functional of x. It is easy to prove that x^* is unique and is given by the formula

$$\langle x^{\star}, y \rangle = \lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}, \quad y \in \mathbb{R}^n.$$

An immediate consequence of Proposition 1 and the definition of x^* is the following formula connecting f'(x) and P(x), cf. [1], Lemma 4.

Proposition 2. Let $x \in \mathbb{R}^n \setminus F$ be a point where f is differentiable. Then P(x) is single valued and continuous at x and $f'(x) = (x - P(x))^*$.

Proof. It is proved in [1], Lemma 4 that P(x) is single valued and $f'(x) = (x - P(x))^*$. We show that P(x) is continuous at x. Choose sequences $(x_i)_1^{\infty}$ and

 $(z_i)_1^\infty$ such that $x_i \to x$ and $z_i \in P(x_i)$, as $i \to \infty$. Then $(z_i)_1^\infty$ is bounded and we may assume that $(z_i)_1^\infty$ converges to $z \in F$. We get

$$||x - P(x)|| \le ||x - z|| \le ||x - x_i|| + ||x_i - z_i|| + ||z_i - z||$$

= $||x - x_i|| + f(x_i) + ||z_i - z|| \to f(x) = ||x - P(x)||,$

as $i \to \infty$. Thus z = P(x), since P(x) is single valued, and P(x) is continuous at x.

3. Some technical lemmas

This section contains a number of technical lemmas. Lemma 6 and 7 constitute the basis for the proof of Theorem 1 in the next section. We begin with an elementary inequality.

Lemma 1. Let $1 . Then there is <math>C_p \ge 1$ such that

$$2^{p-1} \cdot |t|^p + 2^{p-1} - |t+1|^p \leq C_p \cdot (t-1)^2, \quad -1 \leq t \leq 1,$$

where $C_p = p/2$, $1 and <math>C_p = 2^{p-2} \cdot {p \choose 2}$, $2 \leq p < \infty$. The constant C_p for $2 \leq p < \infty$ is best possible.

Proof. Define

$$g_p(t) = 2^{p-1} \cdot |t|^p + 2^{p-1} - |t+1|^p - C_p \cdot (t-1)^2, \quad -1 \le t \le 1.$$

We first let $2 , noting that <math>g_2(t) \equiv 0$. If 0 < t < 1, an easy calculation shows that $g''_p(t) < 0$ and $g'_p(t) \ge g'_p(1) = 0$. Hence, $g_p(t) \le g_p(1) = 0$, for $0 \le t \le 1$. If -1 < t < 0, then $g_p^{(3)}(t) < 0$, $g''_p(t)$ has a unique zero at t_0 in (-1,0) and $g'_p(t)$ has its maximum at t_0 . Since both $g'_p(0)$ and $g'_p(-1)$ are positive, we have $g'_p(t) > 0$ and hence $g_p(t) \le g_p(0) < 0$ for $-1 \le t \le 0$. The case 1 is proved in $a similar way. To show that <math>C_p$ is best possible for $2 \le p < \infty$, take t = 1 - h and let $h \to 0$.

Lemma 2. Let $2 \leq p < \infty$. Then

$$2^{p-1} \cdot |x|^p + 2^{p-1} \cdot |y|^p - |x+y|^p \leqslant C_p \cdot R^{p-2} \cdot |x-y|^2$$

for all real numbers x, y such that $|x| \leq R$ and $|y| \leq R$, where C_p is the constant in Lemma 1.

Proof. Assume that $|x| \leq |y|$ and take t = x/y in Lemma 1.

For any nonzero vector x in $l^p(\mathbb{R}^n)$, $1 , the dual vector <math>x^*$ is given by $x^* = \|x\|_p^{1-p} \cdot (|x_1|^{p-2} \cdot x_1, \ldots, |x_n|^{p-2} \cdot x_n)$. The following closely related map D_p will be used in our proof of Theorem 1. Let $1 and define a one-to-one map <math>D_p$ of \mathbb{R}^n onto \mathbb{R}^n by $D_p(0) = 0$ and

$$D_p(x) = \left(\frac{1}{p} \cdot ||x||_p^p\right)' = (|x_1|^{p-2} \cdot x_1, \dots, |x_n|^{p-2} \cdot x_n)$$

for $x \neq 0$, where $|x_i|^{p-2} \cdot x_i = 0$ if $x_i = 0$. Note that D_2 is the identity map.

Lemma 3. Let $1 . Then <math>D_p$ is an injective map of \mathbb{R}^n onto \mathbb{R}^n with inverse $D_p^{-1}(x) = D_q(x)$ and $\|D_p(x)\|_q^q = \|x\|_p^p$, where 1/p + 1/q = 1.

Proof. It is clear that $D_p(x) = 0$ if only if x = 0. Let $x \neq 0$ and $D_p(x) = y$, then

$$|x_i|^{p-2} \cdot x_i = y_i, \quad |x_i| = |y_i|^{q-1}$$

and $x_i = |y_i|^{q-2} \cdot y_i$, $1 \leq i \leq n$, i.e. $x = D_q(y)$. Further, $||y||_q^q = ||x||_p^p$, which completes the proof of Lemma 3.

Lemma 4. Let $2 \leq p < \infty$. Then $D_p(x)$ is Fréchet differentiable for all $x \in \mathbb{R}^n$ and $D'_p(x)$ is given by the diagonal matrix

$$D'_{p}(x) = (p-1) \cdot (|x_{i}|^{p-2} \cdot \delta_{i,j}),$$

where $\delta_{i,j}$ is the Dirac delta function.

Proof. This follows at once from the definition of $D_p(x)$.

Remark. Clearly, $D'_2(x)$ is simply the $n \times n$ identity matrix and $D'_p(x)$ is invertible at x if and only if x has all its coordinates nonzero. If $x \in \mathbb{R}^n$ and $x_i \neq 0$, then for the *i*th coordinate we have

$$D_p(x+h)_i = D_p(x)_i + (p-1) \cdot |x_i|^{p-2} \cdot h_i + o(||h||_2),$$

for any 1 .

Our main tool in the proof of Theorem 1 is the auxiliary function $K_p(x)$ defined as

(3)
$$K_p(x) = -\|x - P(x)\|_p^p + \lambda \cdot \|x\|_2^2,$$

where $\lambda > 0$ is to be defined below. Note the close relation between $K_p(x)$ and P(x). Then $K_p(x)$ coincides with the corresponding auxiliary functions in [2] and [1] for p = 2. The assumption on the norm in [1] is however not satisfied in the present case, since $(||x||_p^p)'' = p \cdot D'_p(x)$ is not always invertible. The main property of $K_p(x)$ is its local convexity for suitable choices of λ . More exactly, we have the following lemma.

Lemma 5. Let 2 . Then for every <math>R > 0 there is a number $\lambda = \lambda(F, p, R) > 0$ such that $K_p(x)$ is convex for $||x||_p < R$.

Proof. Since $K_p(x)$ is continuous, it is sufficient to prove that it is also midpoint convex. It turns out to be sufficient to prove that if $||x||_p < R$ and $||y||_p < R$, then

(4)
$$2^{p-1} \cdot \|x+z\|_p^p + 2^{p-1} \cdot \|y+z\|_p^p - \|x+y+2z\|_p^p \leq \lambda \cdot \|x-y\|_2^2$$

where $z = -\frac{1}{2}P(x+y)$, provided λ is large enough, cf. [1] Lemma 6. Then (4) follows from Lemma 2 applied to each coordinate separately with $\lambda = C_p \cdot R^{p-2} \cdot n$, since $\|x\|_p \leq R$ implies $|x_i| \leq R, 1 \leq i \leq n$.

The next two lemmas on the connection between $K_p(x)$ and P(x) are the keys to the proof of Theorem 1.

Lemma 6. Let $1 and let U be an open set where <math>K_p(x)$ is convex and let $\underline{P}(y)$ be any choice for $P(y), y \in U$. Define

$$\underline{K}'_{p}(y) = 2\lambda \cdot y - p \cdot D_{p}(y - \underline{P}(y)).$$

Then $\underline{K}'_p(y)$ is a subdifferential of $K_p(y)$.

Proof. Let $y \in U$ be fixed and choose $\{y_j\}_1^\infty$ in U such that $y_j \to y$, as $j \to \infty$, and f is differentiable at $y_j, j \ge 1$. Then by the convexity of K_p ,

$$K_p(y_j + h) \ge K_p(y_j) + K'_p(y_j) \cdot h$$

for all $j \ge 1$ and any sufficiently small h. Fix any such h, then clearly $K_p(y_j + h) \to K_p(y + h)$ and $K_p(y_j) \to K_p(y)$, as $j \to \infty$, by the continuity of K_p . The lemma follows from the continuity of D_p if for every $x \in \underline{P}(y)$ we can choose $\{y_j\}_1^\infty$ such that also $P(y_j) \to x$, as $j \to \infty$. We note that if z = y + t(x - y), 0 < t < 1, then P(z) = x and any w close to z has projection close to x, by the uniform convexity of the norm. This completes the proof of Lemma 6.

Lemma 7. Let $1 , let U be an open, convex set, where <math>K_p(y)$ is convex and let $\underline{K}'_p(y)$ be defined as in Lemma 7. Then if x is any point in U, where f is differentiable and $K''_p(x)$ exists, we have

$$\underline{K}'_p(x+h) = K'_p(x) + K''_p(x)h + o(\|h\|_2), \quad \text{as } h \to 0.$$

The following proof is found in [1], p. 495 and is due to Fitzpatrick.

Proof. Let R > 0 be arbitrary and choose λ as in Lemma 6 such that $K_p(x)$ is convex for $[[x]]_p < R$. Then $K_p(x)$ is a.e. twice differentiable for $||x||_p < R$ by Alexandrov's theorem. Fix any such point x, then for every $0 < \varepsilon < 1$ there is $\delta > 0$ such that if $||y - x||_2 < \delta$, then

(5)
$$|K_p(y) - K_p(x) - \langle K'_p(x), y - x \rangle - \frac{1}{2} \langle K''_p(x)(y - x), y - x \rangle| \leq \varepsilon ||y - x||_2^2.$$

Let $||z||_2 = ||w||_2 = 1$, $0 < |t| < \delta$ and $\alpha = \sqrt{\varepsilon} \cdot t$. Then by properties of the subdifferential

$$\langle \underline{K}'_p(x+tw), \alpha z \rangle \leq K_p(x+tw+\alpha z) - K_p(x+tw)$$

and by (5) we get

$$K_p(x+tw+\alpha z) \leq 4\varepsilon |t|^2 + K_p(x) + \langle K'_p(x), tw+\alpha z \rangle + \frac{1}{2} \langle K''_p(x)(tw+\alpha z), tw+\alpha z \rangle$$

and

$$K_p(x+tw) \ge -\varepsilon |t|^2 + K_p(x) + \langle K'_p(x), tw \rangle + \frac{1}{2}K''_p(tw), tw \rangle.$$

Combining the last three inequalities we obtain

$$\begin{split} \langle \underline{K}'_{p}(x+tw), \alpha z \rangle &\leqslant 5\varepsilon |t|^{2} + \langle K_{p}(x), \alpha z \rangle + \frac{1}{2} \langle K''_{p}(x)(tw), \alpha z \rangle \\ &+ \frac{1}{2} \langle K''_{p}(x)(\alpha z), tw \rangle + \frac{1}{2} \langle K''_{p}(x)(\alpha z), \alpha z \rangle + 5\varepsilon |t|^{2} \\ &= \langle K'_{p}(x), \alpha z \langle + \rangle K''_{p}(x)(tw), \alpha z \rangle + 5\varepsilon |t|^{2} + \frac{1}{2} \alpha^{2} \langle K''_{p}(x)(z), z \rangle. \end{split}$$

Since $\alpha = \sqrt{\varepsilon} |t|^2$, we have

$$\langle \underline{K}'_p(x+tw) - K'_p(x) - K''_p(x)(tw), z \rangle \leqslant 5\sqrt{\varepsilon}|t| + \frac{1}{2}\sqrt{\varepsilon}|t| \langle K''_p(x)(z), z \rangle$$

and equivalently

$$\|\underline{K}'_{p}(x+tw) - K'_{p}(x) - K''_{p}(x)(tw)\|_{2} \leq \left(5 + \frac{1}{2} \|K''_{p}(x)\|_{2}\right) \sqrt{\varepsilon} |t| = o(|t|),$$

which proves Lemma 7.

949

4. Proof of Theorem 1

The proof of Theorem 1 is based on the properties of the auxiliary function $K_p(x)$ proved above and the map D_p .

Proof of Theorem 1. We let F be a closed set in \mathbb{R}^n and let P(x) denote the metric projection onto F. Since P'(x) = I a.e. in F by Proposition 1, we assume that $x \in \mathbb{R}^n \setminus F$. Recall the distance function $f(x) = ||P(x) - x||_p$ and the auxiliary function $K_p(x)$ defined by (3). Let R > 0 be arbitrary and choose λ as in Lemma 6 such that $K_p(x)$ is convex for $||x||_p < R$. Then $K_p(x)$ has a second order differentiable a.e. in $||x||_p < R$ by Alexandrov's theorem, see [10].

In the following, we let x denote any point in $\mathbb{R}^n \setminus F$, where f is differentiable, $K_p(x)$ has a second order differential and $||x||_p < R$. Then by Lemma 3 and Lemma 6 we have

(6)
$$\underline{P}(x+h) = x+h - D_q \left(\frac{2\lambda}{p} \cdot (x+h) - \frac{1}{p} \cdot \underline{K}'_p(x+h)\right)$$

and further

(7)
$$\underline{P}(x+h) = x+h - D_q \left(\frac{2\lambda}{p} \cdot (x+h) - \frac{1}{p} \cdot K_p'(x) - \frac{1}{p} \cdot K_p''(x)h + o(||h||_2)\right)$$
$$= x+h - D_q \left(\frac{2\lambda}{p} \cdot x - \frac{1}{p} \cdot K_p'(x) + \frac{2\lambda}{p} \cdot h - \frac{1}{p} \cdot K_p''(x)h + o(||h||_2)\right)$$

as $h \to 0$, by Lemma 4 and Lemma 7. Now assume that $P_i(x) - x_i \neq 0$, then the *i*th coordinate of $2\lambda \cdot x - K'_p(x)$ is nonzero by Lemma 6. Let $z = (2\lambda x - K'_p(x))/p$, then the *i*th coordinate of the last term in (7) equals

$$D_q(z)_i + (q-1) \cdot |z_i|^{q-1} \cdot \left(\frac{2\lambda}{p} \cdot h_i - \frac{1}{p} \cdot (K_p''(x)h)_i\right) + o(||h||_2),$$

by the remark following Lemma 4. It follows that there exists a vector L_i in \mathbb{R}^n such that

(8)
$$\underline{P}_i(x+h) = P_i(x) + \langle L_i, h \rangle + \varphi_i(h),$$

where $\varphi_i(h) = o(||h||_2)$. More exactly, L_i is a linear combination of the *i*th unit row vector in \mathbb{R}^n and the *i*th row vector in $K_p''(x)$. Hence, P_i is differentiable at x, which proves statement (a) in Theorem 1. If $P_i(x) = x_i$, (7) only gives the weaker result $P_i(x+h) - P_i(x) = O(||h||_p^{q-1})$, as $h \to 0$, which proves (b).

Remark. It is tempting to guess that $P_i(x+h) - x_i - h_i = o(||h||_p)$, as $h \to 0$, when x is a density point of the set E where $P_i(x) = x_i$ for some $1 \le i \le n$. We have only the weaker result that the set $\{h: |\underline{P}_i(x+h) - x_i - h_i| \le \varepsilon \cdot ||h||_p\}$ has density one at h = 0 for every $\varepsilon > 0$. This is usually called an approximate derivative of P_i at x.

References

- T. Abatzoglow: Finite-dimensional Banach spaces with a.e. differentiable metric projection. Proc. Am. Math. Soc. 78 (1980), 492–496.
- [2] E. Asplund: Differentiability of the metric projection in finite dimensional metric spaces. Proc. Am. Math. Soc. 38 (1973), 218–219.
- [3] J. Clarkson: Uniformly convex spaces. Trans. Am. Math. Soc. 40 (1936), 396–414.
- [4] H. Federer: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153, Springer, Berlin, 1969.
- [5] S. Fitzpatrick, R. R. Phelps: Differentiability of metric projection in Hilbert space. Trans. Am. Math. Soc. 270 (1982), 483–501.
- [6] O. Hanner: On the uniform convexity of L^p and l^p . Ark. Mat. 3 (1956), 239–244.
- [7] J. B. Kruskal: Two convex counterexamples: A discontinuous envelope function and a non-differentiable nearest point mapping. Proc. Am. Math. Soc. 23 (1969), 697–703.
- [8] R. R. Phelps: Convex sets and nearest points. Proc. Am. Math. Soc. 8 (1957), 790–797. zbl MR doi
- [9] R. R. Phelps: Convex sets and nearest points II. Proc. Am. Math. Soc. 9 (1958), 867–873. zbl MR do
- [10] Ju. G. Rešetnyak: Generalized derivatives and differentiability almost everywhere. Mat. Sb., N. Ser. 75(117) (1968), 323–334. (In Russian.)
- [11] A. Shapiro: Differentiability properties of metric projection onto convex sets. J. Optim. Theory Appl. 169 (2016), 953–964.
- [12] L. Zajíček: On differentiation of metric projections in finite dimensional Banach spaces. Czech. Math. J. 33 (1983), 325–336.

Author's address: Tord Sjödin, Department of Mathematics, Umeå University, Umeå, 90187, Sweden, e-mail: tord.sjodin@math.umu.se.

zbl MR doi

zbl MR doi

zbl MR doi

zbl MR

zbl MR doi

zbl MR

zbl MR

zbl MR doi

 \mathbf{zbl}