# RECOGNITION OF CHARACTERISTICALLY SIMPLE GROUP $A_{5} \times A_{5}$ BY CHARACTER DEGREE GRAPH AND ORDER 

Maryam Khademi, Behrooz Khosravi, Tehran

Received March 23, 2017. Published online May 14, 2018.


#### Abstract

The character degree graph of a finite group $G$ is the graph whose vertices are the prime divisors of the irreducible character degrees of $G$ and two vertices $p$ and $q$ are joined by an edge if $p q$ divides some irreducible character degree of $G$. It is proved that some simple groups are uniquely determined by their orders and their character degree graphs. But since the character degree graphs of the characteristically simple groups are complete, there are very narrow class of characteristically simple groups which are characterizable by this method.

We prove that the characteristically simple group $A_{5} \times A_{5}$ is uniquely determined by its order and its character degree graph. We note that this is the first example of a non simple group which is determined by order and character degree graph. As a consequence of our result we conclude that $A_{5} \times A_{5}$ is uniquely determined by its complex group algebra.


Keywords: character degree graph; irreducible character; characteristically simple group; complex group algebra

MSC 2010: 20D60, 20D05, 20D08, 20C15

## 1. Introduction and Preliminary Results

Let $G$ be a finite group, $\operatorname{Irr}(G)$ be the set of irreducible characters of $G$, and denote by $\operatorname{cd}(G)$ the set of irreducible character degrees of $G$.

One of the main questions in the representation theory is the relation between the irreducible character degrees of $G$ and the structure of $G$. In [1], Problem 2*, Brauer asked whether two groups $G$ and $H$ are isomorphic given that two group algebras $\mathbb{F} G$ and $\mathbb{F} H$ are isomorphic for all fields $\mathbb{F}$. This is false in general. In fact, Dade in [3] constructed two non-isomorphic metabelian groups $G$ and $H$ such that $\mathbb{F} G \cong \mathbb{F} H$ for all fields $\mathbb{F}$. Kimmerle in $[16]$ proved that if $G$ is a group and $H$ is a nonabelian simple group such that $\mathbb{F} G \cong \mathbb{F} H$ for all fields $\mathbb{F}$, then $G \cong H$. In [23], Tong-Viet
proved that each classical simple group is uniquely determined by its complex group algebra. Also he posed the following question:

Question. Which groups can be uniquely determined by the structure of their complex group algebras?

It was shown in [20], [21] that the symmetric groups are uniquely determined by the structure of their complex group algebras. In [16], [19], [22], [24] it is proved that all nonabelian simple groups are uniquely determined by the structure of their complex group algebras. We note that abelian groups are not determined by the structure of their complex group algebras. In fact, the complex group algebras of any two abelian groups of the same orders are isomorphic. There are also examples of nonabelian $p$-groups with isomorphic complex group algebras, for example the dihedral group of order 8 and the quaternion group of order 8. In [10], [11] and [13] it is proved that some extensions of $\operatorname{PSL}(2, q)$ are uniquely determined by their complex group algebras.

A finite group $G$ is called a $K_{3}$-group if $|G|$ has exactly three distinct prime divisors. Chen et al. in [26] and [27] proved that all simple $K_{3}$-groups and the Mathieu groups are uniquely determined by their orders and one or both of their largest and the second largest irreducible character degrees.

The character degree graph of $G$, which is denoted by $\Gamma(G)$, is defined as follows: the vertices of this graph are the prime divisors of the irreducible character degrees of the group $G$ and two distinct vertices $p_{1}$ and $p_{2}$ are joined by an edge if there exists an irreducible character degree of $G$ which is divisible by $p_{1} p_{2}$. This graph was introduced in [18] and studied by many authors (see [17], [25]).

Let $p$ be an odd prime number. In [9] the authors proved that the simple group $\operatorname{PSL}(2, p)$ is uniquely determined by its order and its largest and the second largest irreducible character degrees. In [14] it is proved that the simple group PSL( $2, p^{2}$ ) is uniquely determined by its character degree graph and its order.

In [12], [15] it is proved that some simple groups are uniquely determined by their orders and their character degree graphs. In this paper, as the first example, we give a characteristically simple group which is uniquely determined by its order and its character degree graph.

If $N \unlhd G$ and $\theta \in \operatorname{Irr}(N)$, then the inertia group of $\theta$ in $G$ is $I_{G}(\theta)=\{g \in G$ : $\left.\theta^{g}=\theta\right\}$. If the character $\chi=\sum_{i=1}^{k} e_{i} \chi_{i}$, where for each $1 \leqslant i \leqslant k, \chi_{i} \in \operatorname{Irr}(G)$ and $e_{i}$ is a natural number, then each $\chi_{i}$ is called an irreducible constituent of $\chi$.

Lemma 1.1 (Itô's Theorem, see [6], Theorem 6.15). Let $A \unlhd G$ be abelian. Then $\chi(1)$ divides $|G: A|$ for all $\chi \in \operatorname{Irr}(G)$.

Lemma 1.2 ([6], Theorems 6.2, 6.8, 11.29). Let $N \unlhd G$ and let $\chi \in \operatorname{Irr}(\mathrm{G})$. Let $\theta$ be an irreducible constituent of $\chi_{N}$ and suppose $\theta_{1}=\theta, \ldots, \theta_{t}$ are the distinct conjugates of $\theta$ in $G$. Then $\chi_{N}=e \sum_{i=1}^{t} \theta_{i}$, where $e=\left[\chi_{N}, \theta\right]$ and $t=\left|G: I_{G}(\theta)\right|$. Also $\theta(1) \mid \chi(1)$ and $\chi(1) / \theta(1)| | G: N \mid$.

Lemma 1.3 (Itô-Michler Theorem, see [5]). Let $\varrho(G)$ be the set of all prime divisors of the elements of $\operatorname{cd}(G)$. Then $p \notin \varrho(G)$ if and only if $G$ has a normal abelian Sylow $p$-subgroup.

Lemma 1.4 ([26], Lemma 1). Let $G$ be a nonsolvable group. Then $G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $K / H$ is a direct product of isomorphic nonabelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$.

Lemma 1.5 (Gallagher's Theorem, see [6], Corollary 6.17). Let $N \unlhd G$ and let $\chi \in \operatorname{Irr}(G)$ be such that $\chi_{N}=\theta \in \operatorname{Irr}(N)$. Then the characters $\beta \chi$ for $\beta \in \operatorname{Irr}(G / N)$ are irreducible distinct for distinct $\beta$ and all of the irreducible constituents of $\theta^{G}$.

Lemma 1.6 ([27], Lemma 2). Let $G$ be a finite solvable group of order $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \times$ $p_{n}^{\alpha_{n}}$, where $p_{1}, p_{2}, \ldots, p_{n}$ are distinct primes. If $k p_{n}+1 \nmid p_{i}^{\alpha_{i}}$ for each $i \leqslant n-1$ and $k>0$, then the Sylow $p_{n}$-subgroup is normal in $G$.

Lemma 1.7 ([8], Theorem 3.1). Let $G$ be a finite group and $K$ any normal subgroup. Set $H=G / K$. Then $|M(H)|$ divides $|M(G)| \cdot\left|G^{\prime} \cap K\right|$, where $|M(G)|$ is the Schur multiplier of $G$.

Lemma 1.8 ([8], Theorem 3.2). Let $G$ be a finite group and $B$ a central subgroup. Set $A=G / B$. Then $|M(G)| \cdot\left|G^{\prime} \cap B\right|$ divides $|M(A)| \cdot|M(B)| \cdot|A \otimes B|$.

If $n$ is an integer and $r$ is a prime number, then we write $r^{\alpha} \| n$ when $r^{\alpha} \mid n$ but $r^{\alpha+1} \nmid n$. Also if $r$ is a prime number, we denote by $\operatorname{Syl}_{r}(G)$ the set of Sylow $r$-subgroups of $G$ and we denote by $n_{r}(G)$ the number of elements of $\operatorname{Syl}_{r}(G)$. If $H$ is a subgroup of $G$, then $H_{G}$, the core of $H$ in $G$, is the largest normal subgroup of $G$ that is contained in $H$. If $H$ is a characteristic subgroup of $G$, we write $H$ ch $G$. All other notations are standard and we refer to [2].

## 2. MAIN RESULTS

In this section we prove that the characteristically simple group $A_{5} \times A_{5}$ is uniquely determined by its order and its character degree graph.

Theorem 2.1. Let $G$ be a finite group such that $\Gamma(G)=\Gamma\left(A_{5} \times A_{5}\right)$ and $|G|=$ 3600. Then $G \cong A_{5} \times A_{5}$. In other words, $A_{5} \times A_{5}$ is characterizable by its order and its character degree graph.

Proof. First we prove that the finite group $G$ is not a solvable group. On the contrary let $G$ be a solvable group of order $2^{4} 3^{2} 5^{2}$ and $N$ be a normal minimal subgroup of $G$. In the sequel we consider the following cases:
(i) Let $N$ be a 2-elementary abelian group. Hence $|N|=2^{i}$, where $1 \leqslant i \leqslant 3$, by Itô-Michler theorem, since 2 is a vertex of $\Gamma(G)$. So $|G / N|=2^{4-i} 3^{2} 5^{2}$ and by Lemma 1.6 it follows that $Q / N \in \operatorname{Syl}_{5}(G / N)$ is a normal subgroup of $G / N$. Therefore $Q \triangleleft G$ and $|Q|=2^{i} 5^{2}$. Again, since $i \leqslant 3$, by Lemma 1.6 we get that $P \in \operatorname{Syl}_{5}(Q)$ is a normal subgroup of $G$ which is a contradiction by Itô-Michler theorem since $5 \in \varrho(G)$.
(ii) Let $N$ be a 5 -elementary abelian group. By assumptions we get that $|N|=5$. Now suppose that $L / N$ is a normal minimal subgroup of $G / N$. Obviously $L / N$ is not a 5 -group. In the sequel we consider two subcases:
(a) If $L / N$ is a 2 -group, then there exists $1 \leqslant i \leqslant 4$ such that $|L|=2^{i} 5$ and $|G / L|=2^{4-i} 3^{2} 5$. By Lemma 1.6 we get that $Q / L \triangleleft G / L$, where $Q / L \in \operatorname{Syl}_{5}(G / L)$. Hence $|Q|=2^{i} 5^{2}$ and $Q \triangleleft G$. Now $P$, a Sylow 5 -subgroup of $Q$, is not a normal subgroup of $Q$ and so $i=4$ and $n_{5}(Q)=\left|Q: N_{Q}(P)\right|=16$. Therefore $P=N_{Q}(P)$ and so $P \subseteq Z\left(N_{Q}(P)\right)$. Then by Burnside $p$-complement theorem we get that $P$ has a normal 5 -complement $R$ in $Q$, which is the Sylow 2-subgroup of $G$. We note that $L / N$ is a 2-elementary abelian group of order $2^{4}$. Since $L=R N$, we get that $L / N \cong R N / N \cong R$, and so $R$ is normal and abelian, which is a contradiction.
(b) If $L / N$ is a 3 -group, then $|L|=3^{j} 5$, where $1 \leqslant j \leqslant 2$. By Lemma 1.6 we get that $|L|=15$ and $L \triangleleft G$. Hence $T / L$, a normal minimal subgroup of $G / L$, is a 2-elementary abelian group and $|T / L|=2^{i}$, where $1 \leqslant i \leqslant 4$. Therefore $|T|=2^{i} \times 15$ and $|G / T|=2^{4-i} \times 15$. Let $Q / T \in \operatorname{Syl}_{5}(G / T)$. Then $Q \triangleleft G$ and $|Q|=2^{i} 5^{2} 3$. Since a Sylow 5-subgroup of $G$ is not a normal subgroup, we get that $|Q|=2^{4} 5^{2} 3$. Let $K$ be a Hall subgroup of $Q$ such that $|Q: K|=3$. Then $Q / K_{Q} \hookrightarrow S_{3}$, where $K_{Q}=\operatorname{core}_{Q}(K)$, and so $\left|K_{Q}\right|=2^{3} 5^{2}$ or $\left|K_{Q}\right|=2^{4} 5^{2}$. If $\left|K_{Q}\right|=2^{3} 5^{2}$, then the Sylow 5-subgroup of $G$ is a normal subgroup of $G$, which is a contradiction. If $\left|K_{Q}\right|=2^{4} 5^{2}$, then $n_{5}\left(K_{Q}\right)=16$ and so $P \subseteq Z\left(N_{K_{Q}}(P)\right)$, where $P \in \operatorname{Syl}_{5}\left(K_{Q}\right)$. Then by Burnside $p$-complement theorem we get that $P$ has a normal

5 -complement $R$ in $K_{Q}$, which is the Sylow 2-subgroup of $G$. Now $L / N \cong R$ implies that $R$ is normal and abelian, which is a contradiction.
(iii) Let $N$ be a 3-elementary abelian group. Then $|N|=3$ and $|G / N|=2^{4} 5^{2} 3$. By considering $L / N$, where $|G / N: L / N|=3$, we get a normal subgroup $M$ of $G$ such that $|M|=2^{4} 5^{2} 3$ or $|M|=2^{3} 5^{2} 3$. In case (ii) we proved that $|M|=2^{4} 5^{2} 3$ is impossible and so $|M|=2^{3} 5^{2} 3$. Then the Sylow 5 -subgroup of $M$ is a normal subgroup of $M$, which is a contradiction.

Therefore $G$ is not a solvable group and so $G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $K / H$ is isomorphic to a direct product of $m$ copies of a simple group $S$ and $|G / K|\left||\operatorname{Out}(K / H)|\right.$. Using [2] we get that $K / H \cong A_{5}, A_{6}$ or $A_{5} \times A_{5}$. Now we consider each possibility for $K / H$ separately.

Step 1. Let $K / H \cong A_{5}$. Then $|H|=30$ or $|H|=60$.
(1.1) Let $|H|=30$ and $|G / K|=2$.

Each finite group of order 30 is solvable and we know that $H$ has a normal subgroup $T$ of order 15 which is cyclic and $T \triangleleft K$. Therefore $n_{3}(H)=1$ and $n_{5}(H)=1$. Since the Sylow 3 -subgroup and the Sylow 5 -subgroup of $H$ are normal and abelian, by Lemma 1.3 we get that $3 \notin \varrho(H), 5 \notin \varrho(H)$. Therefore $\varrho(H) \subseteq\{2\}$. We claim that in this case there exists no $\chi \in \operatorname{Irr}(G)$ such that $15 \mid \chi(1)$. On the contrary, let $\chi \in \operatorname{Irr}(G)$ and $15 \mid \chi(1)$. Since $K \triangleleft G$ and $|G: K|=2$, there exists $\eta \in \operatorname{Irr}(K)$ such that $15 \mid \eta(1)$. Using Lemma 1.2, there exists $\theta \in \operatorname{Irr}(T)$ such that

$$
\eta_{T}=e \sum_{i=1}^{t} \theta_{i}
$$

where $t=\left|K: I_{K}(\theta)\right|$ and $\theta_{1}, \ldots, \theta_{t}$ are all conjugates of $\theta$ in $K$. Also by assumptions we know that $9\left|\left|C_{G}(T)\right|\right.$ and 25$|\left|C_{G}(T)\right|$. Therefore $t=\left|K: I_{K}(\theta)\right|$ is a divisor of 8 . On the other hand, $15 \mid \eta(1)$ and so $15 \mid$ et which implies that $15 \mid e$. We know that $15^{2} \leqslant e^{2} \leqslant|K: T|=8 \times 15$, which is a contradiction. Therefore this case is impossible.
(1.2) Let $|H|=60$ and so $G=K$.

First suppose that $H$ is a solvable group. Again we prove that there exists no irreducible character $\chi$ of $G$ such that $15 \mid \chi(1)$.

For this purpose let $X=O^{2}(G)$. Then since $X \triangleleft G$ and $|G: X|=2^{\alpha}$ for some $\alpha \geqslant 0$, by Clifford's theorem we get that it is enough to prove that there is no $\theta \in \operatorname{Irr}(X)$ such that $15 \mid \theta(1)$. On the contrary, let there exist $\theta \in \operatorname{Irr}(X)$ and $15 \mid \theta(1)$. If $R$ is a Sylow 5 -subgroup of $X$ or a Sylow 3 -subgroup of $X$, then $R$ is abelian and by transfer (see [7], Theorem 5.3) we get that $R \cap X^{\prime} \cap Z(X)=1$. On the other hand, $H X / H \triangleleft G / H$ and since $G / H \cong A_{5}$ and $X \nsubseteq H$, we get that $G=H X$.

By assumptions, $G / X$ is a 2-group and since $G / X \cong H X / X \cong H /(H \cap X)$, we get that $[G: X] \mid 4$. Let $L$ be the terminal member of the derived series of $G$. Then $L^{\prime}=L$ and since $L X / X$ is abelian, we get that $L \leqslant X$. Therefore $L \leqslant X^{\prime}$. Since $H$ is a solvable group, by Lemma 1.6 we get that the Sylow 5 -subgroup of $H$ is a normal subgroup of $H$.

In the sequel we consider two subcases. First suppose that the Sylow 3-subgroup of $H$ is a normal subgroup of $H$. Then $H$ has a cyclic subgroup $M$ of order 15, which is normal in $G$. Also $M \leqslant Z(X)$ since $\operatorname{Aut}(M)$ is a group of order 8 and $M \triangleleft G$. Therefore $M \cap X^{\prime}=1$ and so $M \cap L=1$. Hence $|L| \leqslant 240$. By the table in [4], Section 5.4 we get that $L \cong A_{5}$ or $L \cong \mathrm{SL}(2,5)$. This implies that $X \cong L M \cong L \times M$ has no irreducible character $\chi$ such that $15 \mid \chi(1)$ and since $|G: L M| \mid 4$, we get that $3 \nsim 5$ in $\Gamma(G)$, a contradiction.

Hence $Q$, a Sylow 3 -subgroup of $H$, is not a normal subgroup of $H$. By assumptions, $P \triangleleft G$ and so $\left|G: C_{G}(P)\right| \mid 4$. Therefore $X \subseteq C_{G}(P)$ and so $P \leqslant Z(X)$. By transfer we get that $P \cap X^{\prime}=1$. Therefore $P \cap L=1$ and so $|L| \mid 720$ and $L H \triangleleft G$, which implies that $L H=H$ or $L H=G$. Since $H$ is solvable and $L^{\prime}=L$, we get that $L \nless H$. Therefore $L H=G$ and $A_{5} \cong G / H=L H / H \cong L /(L \cap H)$. Since $|L| \mid 720$, by the table in [4], Section 5.4 we get that $L$ is isomorphic to $A_{5}, \mathrm{SL}(2,5)$ or $A_{6}$. Hence $L \cong A_{5}$ or $L \cong \mathrm{SL}(2,5)$. If $L \cong A_{5}$, then $|L \cap H|=1$ and $G \cong L \times H \cong A_{5} \times H$, which is a contradiction. If $L \cong \operatorname{SL}(2,5)$, then $|L \cap H|=2$ and $L \cap H \triangleleft H$, which implies that $L \cap H \subseteq Z(H)$, and this is a contradiction.

Therefore $H$ is not solvable and so $H \cong A_{5}$ and $G / H \cong A_{5}$. Since $H$ is a nonabelian simple group, we get that $H \cap C_{G}(H)=1$. Also $H C_{G}(H) \cong H \times C_{G}(H)$ and $C_{G}(H) \cong H C_{G}(H) / H \triangleleft G / H \cong A_{5}$. Therefore $G \cong H \times C_{G}(H) \cong A_{5} \times A_{5}$.

Step 2. If $K / H \cong A_{6}$, then $|H|=5$ or $|H|=10$.
If $|H|=5$, then $|G / K|=2$. Hence $K / C_{K}(H) \hookrightarrow \operatorname{Aut}(H)$, which implies that $H \leqslant$ $Z(K)$. Also the Schur multiplier of $A_{6}$ is 6 , which implies that $K \cong A_{6} \times \mathbb{Z}_{5}$. Since $|G: K|=2$, we get that 3 and 5 are not adjacent in $\Gamma(G)$, which is a contradiction.

If $|H|=10$, then $G=K$ and $H \cong D_{10}$ or $H \cong Z_{10}$.
If $H \cong D_{10}$, then $Z(H)=1$ and so $H \cap C_{G}(H)=1$. On the other hand, $C_{G}(H) \cong H C_{G}(H) / H \triangleleft G / H$ and $G / H \cong A_{6}$, which implies that $C_{G}(H) \cong A_{6}$ and $G=H C_{G}(H)$. Therefore $G \cong H \times C_{G}(H) \cong D_{10} \times A_{6}$. Hence $\Gamma(G)$ is not complete and we get a contradiction.

If $H \cong \mathbb{Z}_{10}$, then obviously $H \leqslant C_{G}(H)$ and $G / C_{G}(H) \hookrightarrow \operatorname{Aut}\left(\mathbb{Z}_{10}\right)$. Since $G / H \cong A_{6}$, we get that $C_{G}(H) \cong G$. Hence $H \leqslant Z(G)$. Let $A$ be the Sylow 5 -subgroup of $H$. Then $(G / A) /(H / A) \cong A_{6}$ and $|H / A|=2$. Hence $G / A$ is the central extension of $\mathbb{Z}_{2}$ by $A_{6}$, which implies that $G / A=2 \cdot A_{6}=\operatorname{SL}(2,9)$ or $G / A=\mathbb{Z}_{2} \times A_{6}$.

If $G / A \cong \mathrm{SL}(2,9)$, then by Lemmas 1.7 and $1.8,6=|M(G / A)|| | M(G)|\cdot| G^{\prime} \cap A \mid$ and $|M(G)| \cdot\left|G^{\prime} \cap A\right|$ is a divisor of $|M(G / A)| \cdot|M(A)| \cdot|A \otimes \mathrm{SL}(2,9)|$. Now since $\mathrm{SL}(2,9)$ is a perfect group, we get that $G^{\prime} \cap A=1$ and $M(G)=6$. On the other hand, $G / A \cong \mathrm{SL}(2,9)$, and so $G^{\prime} A / A \cong \mathrm{SL}(2,9)$, which implies that $G \cong G^{\prime} A \cong G^{\prime} \times A$. We know that $G^{\prime} \cong G^{\prime} A / A \cong \mathrm{SL}(2,9)$, and so $G \cong \mathrm{SL}(2,9) \times \mathbb{Z}_{5}$, which is a contradiction since $\Gamma(G)$ is not a complete graph.

Finally, if $G / A \cong \mathbb{Z}_{2} \times A_{6}$, then there exists a normal subgroup $T / A$ of $G / A$ such that $|G: T|=2$ and $T / A \cong A_{6}$.

Similarly to the previous discussion we get that $T \cong \mathbb{Z}_{5} \times A_{6}$ since $\left|M\left(A_{6}\right)\right|=6$ and so we get a contradiction.

Step 3. If $K / H \cong A_{5} \times A_{5}$, then obviously $G \cong A_{5} \times A_{5}$ and we get the result.
Remark. As a consequence of our result it is proved that the charactertically simple group $A_{5} \times A_{5}$ is uniquely determined by its complex group algebra.

Remark. If $M$ is any group of order 36 , we see that $M \times A_{5} \times A_{5}$ has the same order as $A_{6} \times A_{6}$. Also the character degree graph of this group is the complete graph on the vertex set $\{2,3,5\}$. Therefore $A_{6} \times A_{6}$ is not charactertizable by order and the character degree graph. Similarly, it is not difficult to see that for $5<n<20$ there exists no $n$ such that $A_{n} \times A_{n}$ is characterizable by order and the character degree graph.

Acknowledgements. The authors would like to thank the referee for valuable comments and suggestions which improved the manuscript significantly. Also they are grateful to Professor G. Robinson and Professor Salemkar for their help and comments.

## References

[1] R. Brauer: Representations of finite groups. Lectures on Modern Mathematics, Vol. I. Wiley, New York, 1963, pp. 133-175.
[2] J. H. Conway, R.T.Curtis, S. P. Norton, R. A. Parker, R. A. Wilson: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. Clarendon Press, Oxford, 1985.
[3] E. C. Dade: Deux groupes finis distincts ayant la môme algêbre de groupe sur tout corps. Math. Z. 119 (1971), 345-348. (In French.)
zbl MR doi
[4] D. F. Holt, W. Plesken: Perfect Groups. Oxford Mathematical Monographs, Clarendon Press, Oxford, 1989.
[5] B. Huppert: Character Theory of Finite Groups. De Gruyter Expositions in Mathematics 25, Walter de Gruyter, Berlin, 1998.
zbl MR doi
[6] I. M. Isaacs: Character Theory of Finite Groups. Pure and Applied Mathematics 69, Academic Press, New York, 1976.
[7] I. M. Isaacs: Finite Group Theory. Graduate Studies in Mathematics 92, American Mathematical Society, Providence, 2008.
[8] M. R. Jones: Some inequalities for the multiplicator of finite group. Proc. Am. Math. Soc. 39 (1973), 450-456.
zbl MR doi
[9] B. Khosravi, B. Khosravi, B. Khosravi: Recognition of PSL $(2, p)$ by order and some information on its character degrees where $p$ is a prime. Monatsh. Math. 175 (2014), 277-282.
[10] B. Khosravi, B. Khosravi, B. Khosravi: Some extensions of $\operatorname{PSL}\left(2, p^{2}\right)$ are uniquely determined by their complex group algebras. Commun. Algebra 43 (2015), 3330-3341.
[11] B. Khosravi, B. Khosravi, B. Khosravi: A new characterization for some extensions of $\operatorname{PSL}(2, q)$ for some $q$ by some character degrees. Proc. Indian Acad. Sci., Math. Sci. 126 (2016), 49-59.
zbl MR doi
[12] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen: Recognition by character degree graph and order of the simple groups of order less than 6000. Miskolc Math. Notes 15 (2014), 537-544.
zbl MR doi
[13] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen: A new characterization for the simple group PSL $\left(2, p^{2}\right)$ by order and some character degrees. Czech. Math. J. 64 (2015), 271-280.
[14] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen: Recognition of the simple group $\operatorname{PSL}\left(2, p^{2}\right)$ by character degree graph and order. Monatsh. Math. 178 (2015), 251-257.
[15] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen: Recognition of some simple groups by character degree graph and order. Math. Rep., Buchar. 18 (68) (2016), 51-61.
zbl MR
[16] W. Kimmerle: Group rings of finite simple groups. Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 261-278.
zbl MR
[17] M. L. Lewis: An overview of graphs associated with character degrees and conjugacy class sizes in finite groups. Rocky Mt. J. Math. 38 (2008), 175-211.
zbl MR doi
[18] O. Manz, R. Staszewski, W. Willems: On the number of components of a graph related to character degrees. Proc. Am. Math. Soc. 103 (1988), 31-37.
zbl MR doi
[19] M. Nagl: Über das Isomorphieproblem von Gruppenalgebren endlicher einfacher Gruppen. Diplomarbeit. Universität Stuttgart, 2008. (In German.)
[20] M. Nagl: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra. Stuttgarter Mathematische Berichte 2011. Universität Stuttgart. Fachbereich Mathematik, Stuttgart, 2011, pp. 18, Preprint ID 2011-007. Avaible at http:// www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-007.pdf. (In German.)
[21] H. P. Tong-Viet: Symmetric groups are determined by their character degrees. J. Algebra 334 (2011), 275-284.
zbl MR doi
[22] H. P. Tong-Viet: Alternating and sporadic simple groups are determined by their character degrees. Algebr. Represent. Theory 15 (2012), 379-389.
zbl MR doi
[23] H. P. Tong-Viet: Simple classical groups of Lie type are determined by their character degrees. J. Algebra 357 (2012), 61-68.
zbl MR doi
[24] H. P. Tong-Viet: Simple exceptional groups of Lie type are determined by their character degrees. Monatsh. Math. 166 (2012), 559-577.
zbl MR doi
[25] D. L. White: Degree graphs of simple groups. Rocky Mt. J. Math. 39 (2009), 1713-1739. zbl MR doi
[26] H. Xu, G. Chen, Y. Yan: A new characterization of simple $K_{3}$-groups by their orders and large degrees of their irreducible characters. Commun. Algebra 42 (2014), 5374-5380.
zbl MR doi
[27] H. Xu, Y. Yan, G. Chen: A new characterization of Mathieu-groups by the order and one irreducible character degree. J. Inequal. Appl. Paper No. 209 (2013), 6 pages. Zbl MR doi

Authors' addresses: Maryam Khademi, Department of Applied Mathematics, Faculty of Engineering Science, Islamic Azad University, South Tehran Branch, No. 209, North Iranshahr St., Tehran 11365-4435, Iran, e-mail: khademi@azad.ac.ir; Behrooz Khosravi, Department of Pure Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 424, Hafez Ave., Tehran 15914, Iran, e-mail: khosravibbb@yahoo.com.

