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1. Introduction

Let a0 be a primitive root of a prime number p > 2. We know that for every

b0 ∈ {1, 2, . . . , p− 1} there exists a unique integer np modulo p− 1 satisfying

(1.1) a
np

0 ≡ b0 (mod p).

np is called the discrete logarithm or index of b0 to the base a0 modulo p. Given a0

and b0 modulo p, finding np modulo (p− 1) is called the discrete logarithm problem

(DLP) over the prime field Fp. The DLP is believed to be computationally difficult if

p is a randomly chosen large prime. There are various algorithms to compute the DLP

like the baby step—giant step method, Pollard’s ̺-method, Pohlig-Hellman attack

and the index calculus method. The Pohlig-Hellman algorithm works in polynomial

time if all the prime factors of p−1 are ‘small’. The other algorithms are exponential

or sub-exponential time algorithms, see [6], [15]. There are no known polynomial time

algorithms to compute the discrete logarithm for a large prime p. The computational

intractability of the DLP is the basis of the famous Diffie-Hellman key exchange

protocol which is the first public key cryptographic algorithm, see [5]. Variants of
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this protocol are used in the Internet security standards provided by IEEE P1363,

RFC 2631, ANSI X9.42, NIST etc.

The DLP can be generalized to the multiplicative group of a finite field, elliptic

curves and hyperelliptic curves over a finite field. An elliptic curve E modulo a prime

p is called anomalous if the number of points on E modulo p is equal to the modulus p.

These curves should not be used for cryptographic purpose as there is a linear time

algorithm to compute the discrete logarithm on such curves and this was done almost

simultaneously by Smart in [21], Semaev in [19], Satoh and Araki in [18]. There

are two steps in their attack: The first step is to lift the elliptic curve discrete

logarithm problem (ECDLP) modulo p2 and the second step is to take the p-adic

elliptic logarithm.

The aim of this paper is to generalize their argument to the DLP over a prime

field. There are two tools we use in which the first is the Teichmüller lifting which

we explain now. By Fermat’s little theorem we have

(1.2) xp
0 ≡ x0 (mod p)

for any integer x0 ∈ {0, 1, 2, . . . , p− 1}. We can write this as

(1.3) xp
0 ≡ x0 + x1p (mod p2).

Here x0 + x1p is the Teichmüller expansion of x0 modulo p
2. When gcd(x0, p) = 1,

then

(1.4) (x0 + x1p)
p−1 ≡ 1 (mod p2),

by Euler’s theorem of congruences. As x1 = (xp
0 − x0)/p (mod p), and xp

0 (mod p2)

can be computed in polynomial time using the repeated square and multiply algo-

rithm, see [11], one can compute x1 in polynomial time.

Similarly xp2

0 ≡ x0 + x1p + x2p
2 (mod p3) is the Teichmüller expansion of x0

modulo p3 and (x0 + x1p + x2p
2)p−1 ≡ 1 (mod p3) when gcd(x0, p) = 1. Thus

one gets the Teichmüller representative T (x0) of x0 as a p-adic integer which is

represented by

(1.5) T (x0) = lim
k→∞

xpk

0 .

Note that

(1.6) T (x0)
p−1 = 1

for any x0 6≡ 0 (mod p).
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One can also get the Teichmüller expansions using Hensel lifting with the poly-

nomial f(x) = xp−1 − 1. We will obtain the Teichmüller expansion modulo p2 as

follows. Note that f ′(x) = (p − 1)xp−2 and hence f ′(x0) ≡ −x−1
0 (mod p), and by

Fermat’s little theorem f(x0) ≡ xp−1
0 − 1 ≡ 0 (mod p) and thus the Hensel lifting

x0 − f(x0)/f
′(x0) of x0 gives precisely x0 + x1p (mod p2).

The second tool is the Iwasawa logarithm which is defined as follows. For a p-adic

integer x = x0 + x1p + x2p
2 + . . . with gcd(x0, p) = 1, the Iwasawa logarithm of x

is denoted by Log x and is defined as (p − 1)−1 log xp−1. Note that the Iwasawa

logarithm of the Teichmüller representative satisfies LogT (x) = 0. See [17], [23]

and [22] for these two topics.

In [8] the authors lifted the DLP (1.1) modulo p2. This is got by raising both sides

of (1.1) to the power p:

(1.7) a
npp

0 ≡ bp0 (mod p2),

which can be written with the notation used in (1.3) as

(1.8) (a0 + a1p)
np ≡ b0 + b1p (mod p2).

Finding the Iwasawa logarithm of both sides of this equation modulo p2 is the same

as raising both sides by p−1. Unfortunately both sides become 1 modulo p2 by (1.4)

and we could not find np but a formula

(1.9) np ≡
(b1 − βnp

)/b0

a1/a0
(mod p)

was obtained where βnp
is the carry

(1.10) a
np

0 ≡ b0 + βnp
p (mod p2).

Kontsevich in [12] and Riesel in [16] point out that the difficulty arises because the

problem is stated modulo p and the solution is needed modulo p − 1. Hence we go

to the discrete logarithm problem modulo the composite modulus p(p − 1). In this

connection, see Bach [1].

In this paper we consider primes p of the form 2q+ 1 where q is a prime number.

Prime p is called a safe prime as it is believed that the discrete logarithm problem

is computationally difficult in this case when p is ‘large’. In order to explain our

attack, a few lemmas are required which we state and prove in Section 2 and give

the main idea in Section 3.
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2. Lemmas

We need some definitions and notation before we prove our lemmas. In [14]

Lerch defined the Fermat quotient for a composite modulus. Let x be such that

gcd(x, n) = 1. Then q(x) defined by

(2.1) xϕ(n) ≡ 1 + q(x)n (mod n2)

is called the Fermat quotient of x modulo n. We replace Euler’s ϕ-function by

Carmichael’s λ function. The λ(n) is defined as follows (see [4], [3]): λ(1) = 1,

λ(2) = 1, λ(4) = 2 and

(2.2) λ(n) =











ϕ(P r) if n = P r,

2r−2 if n = 2r, r > 3,

lcm(λ(pr11 ), λ(pr22 ), . . . , λ(prkk )) if n = pr11 pr22 . . . prkk ,

where P > 2, p1, . . . , pk are primes.

With our assumptions on p and q, ϕ(p2q2) = 2pq2ϕ(q) and λ(p2q2) = pqϕ(q). In

other words the order of the group of units modulo p2q2 is ϕ(p2q2) whereas λ(p2q2)

is the order of the largest cyclic group modulo p2q2. Hence we define Q(x) by the

congruence

(2.3) xλ(p2q2) ≡ xpqϕ(q) ≡ 1 +Q(x)p2q2 (mod p3q3).

Lemma 1. Let a0 be a primitive root of p and q. Let gcd(b0, q) = 1. Then the

congruence a
np

0 ≡ b0 (mod p) can be extended to

(2.4) an0 ≡ b0 (mod pq)

if and only if the Legendre symbols satisfy

(2.5)
(b0
p

)

=
(b0
q

)

.

P r o o f. an0 ≡ b0 (mod pq) if and only if

an0 ≡ a
np

0 ≡ b0 (mod p) and

an0 ≡ a
nq

0 ≡ b0 (mod q).

This happens if and only if

n ≡ np (mod p− 1) and(2.6)

n ≡ nq (mod q − 1).(2.7)
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This is possible if and only if

(2.8) 2 = gcd(p− 1, q − 1) | np − nq,

where we have used the Chinese remainder theorem when the moduli are not rela-

tively prime, see [13]. That is

(2.9) np ≡ nq (mod 2).

In other words b0 is a quadratic residue or nonresidue modulo p and q simultaneously.

That is
(

b0
p

)

=
(

b0
q

)

. �

Lemma 2. Let an0 ≡ b0 (mod pq). Then the Teichmüller lifts of a0 and b0 modulo

p2q2 are a0 + a1pq and b0 + b1pq modulo p
2q2, respectively, and satisfy

(2.10) (a0 + a1pq)
n ≡ b0 + b1pq (mod p2q2),

where

(2.11) a1 = −
Q(a0)a0
ϕ(q)

(mod pq) and b1 = −
Q(b0)b0
ϕ(q)

(mod pq).

P r o o f. We want a1 and b1 to satisfy (2.11). Using the carry notation

(2.12) an0 ≡ b0 + βnpq (mod p2q2)

in (2.10) and expanding using the binomial theorem we get the equation

(2.13) βn + n
b0
a0

a1 ≡ b1 (mod pq).

Taking the power pqϕ(q) on both sides of (2.12) yields

(2.14) a
npqϕ(q)
0 ≡ (b0 + βnpq)

pqϕ(q) (mod p3q3)

and using (2.3) we get

(2.15) nQ(a0) ≡ Q(b0) +
βn

b0
ϕ(q) (mod pq).

Comparing (2.13) and (2.15) gives the desired values of a1 and b1. �
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Remarks.

(1) Note that a1, b1 and the Legendre symbols in (2.5) can be computed in poly-

nomial time.

(2) The order of (a0 + a1pq) is qϕ(q) modulo p
2q2.

(3) We are given b0 mod p. If (2.5) fails for the given b0 then we can do one of the

following:

(i) We can check the same for b0 + kp for k = 1, 2, 3, . . . until the condition is

satisfied or we can multiply b0 by a
k
0 for some k and check the condition. In the

first case np does not change and in the second case np becomes np + k modulo

p− 1.

(ii) We can take b20 mod pq and consider the new discrete logarithm problem

(2.16) an0 ≡ b20 (mod pq).

(iii) We can even relax the conditions in Lemma 1 as in our earlier preprint [7] as

follows. Let gcd(a0, q) = 1 and gcd(b0, q) = 1. Let a0 be a primitive root of p

and let a0 and b0 satisfy a
n
0 ≡ b0 (mod p). Then it is easy to see that

(2.17) a
nϕ(q)
0 ≡ b

ϕ(q)
0 (mod pq).

3. Main idea: non-canonical lifts

From (1.1) and with the assumptions made in Lemma 1 we can go to the discrete

logarithm problem

(3.1) an0 ≡ b0 (mod pq).

Here a0 generates a subgroup of order qϕ(q) modulo pq. From Lemma 2 we get

(3.2) (a0 + a1pq)
n ≡ b0 + b1pq (mod p2q2).

The order of the group generated by a0 + a1pq modulo p
2q2 is again qϕ(q). Also

(3.3) (a0 + a1pq)
qϕ(q) ≡ 1 (mod p2q3).

Expanding (3.2) using the binomial theorem, we get

(3.4) an0 + nan−1
0 a1pq ≡ b0 + b1pq (mod p2q2).
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Writing

(3.5) an0 ≡ b0 + βnpq (mod p2q2)

gives

(3.6) βn + n
b0
a0

a1 ≡ b1 (mod pq).

Here βn is the carry of a
n
0 modulo p

2q2; note that n and βn are the two unknowns

in the above linear congruence.

The summary of what we have done so far is that there are three problems when

we try to solve the DLP modulo p:

(1) The problem is given modulo p and the solution is needed modulo p− 1.

(2) The Iwasawa logarithm of the Teichmüller representative is 0.

(3) The binomial theorem on the Teichmüller expansion modulo p2 gives ‘carry’.

We overcome the first problem by going to a DLP modulo pq. The fact that we

cannot get n arises from two possibilities being blocked as in the modulo p case.

The analogue of the Teichmüller lift modulo p2q2 does not have a nonzero logarithm

(see (3.3)) and if the binomial theorem is used, a carry occurs as in the case of mod p,

see (3.6).

However, if we can construct a non-canonical lift modulo p2q2 then the problems

dissolve. Thus solving the discrete logarithm problem is equivalent to the construc-

tion of a non-canonical lift.

Non-canonical lifts exist and can be written in the form

(3.7) (a0 + (a1 + k)pq)n ≡ b0 + (b1 + l)pq (mod p2q2).

When k = k1p for some k1 6≡ 0 mod q, then l = l1p for some l1 mod q. In this case

the order of the group is qϕ(q). For the other k 6≡ 0 and l modulo pq the order of

the group will be pqϕ(q). On expanding (3.7) using the binomial theorem, one gets

(3.8) (a0 + a1pq)
n + n(a0 + a1pq)

n−1kpq ≡ (b0 + b1pq) + l pq (mod p2q2)

and using (3.2) we get

(3.9) n ≡
l1/b0
k1/a0

(mod q)

in the first case and

(3.10) n ≡
l/b0
k/a0

(mod pq)

in the second case.

1121



If we use the notation da0 for k1 and db0 for l1 then

(3.11) n ≡
db0/b0
da0/a0

(mod q)

and if we use the notation da0 for k and db0 for l then

(3.12) n ≡
db0/b0
da0/a0

(mod pq).

Thus n can be thought of as the logarithmic derivative. The non-canonical extensions

(modulo p2q2) of the subgroup generated by a0 (mod pq) are labeled by da0. As

p = 2q + 1, once we get n (mod q), n (mod p − 1) would be either n or n + q

(mod p− 1) which can be checked in polynomial time.

Note that we can get (3.9) and (3.10) by raising (3.7) to the powers qϕ(q) and

pqϕ(q), respectively. In the second case we get

(3.13)
(

(a0 + (a1 + k)pq)pqϕ(q)
)n

≡ (b0 + (b1 + l)pq)pqϕ(q) (mod p3q3),

which on expanding and using the notation in Section 2 gives

(3.14) 1 + n
(

q(a0) +
(a1 + k)

a0
ϕ(q)

)

p2q2

≡ 1 +
(

q(b0) +
(b1 + l)

b0
ϕ(q)

)

p2q2 (mod p3q3).

Using the formula for a1 and b1 one gets (3.10). This way of getting n is analogous

to the attack on anomalous elliptic curves by Smart in [21], Semaev in [19], Satoh

and Araki in [18].

Remark. If we consider the DLP (2.17) given in Remark 5, then the formulae

corresponding to (3.11) and (3.12) would be

(3.15) n ≡
db0
da0

(mod q)

and

(3.16) n ≡
db0/b

ϕ(q)
0

da0/a
ϕ(q)
0

(mod pq).

We would like to comment that derivatives of numbers have been studied histori-

cally for a long time starting from Kummer, see [9], [24], Weil (expanded by Kawada)

in [10] and more recently by Buium in [2]. Hence the problem which is standing in

isolation being studied only by cryptologists gets connected to mainstream algebra

and number theory.
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4. Conclusion

When p = 2q + 1 where p and q > 2 are primes, the Euler function ϕ(p2q2) =

2pq2ϕ(q) and the Carmichael function λ(p2q2) = pqϕ(q) are not equal. Also

λ(p2q2) | ϕ(p2q2) and hence many non-canonical lifts exist. As is well known this

would involve a suitable choice of the polynomial for lifting. Recall that the poly-

nomials are xp−1 − 1 and xpqϕ(q) − 1 in the cases of Teichmüller lifting modulo p2

and p2q2, respectively. This attack can be generalized to ECDLP over prime fields

where q will be connected to the order of the group. See [20] for various ways of

lifting the elliptic curve discrete logarithm problem.
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