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Abstract. We consider function field analogues of the conjecture of Győry, Sárközy and
Stewart (1996) on the greatest prime divisor of the product (ab+1)(ac+1)(bc+1) for distinct
positive integers a, b and c. In particular, we show that, under some natural conditions on
rational functions F,G,H ∈ C(X), the number of distinct zeros and poles of the shifted
products FH+1 and GH+1 grows linearly with degH if degH > max{degF,degG}. We
also obtain a version of this result for rational functions over a finite field.
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1. Motivation and main result

Let P (k) denote the largest prime divisor of an integer k > 2. The conjecture of
Győry, Sárközy and Stewart (see [12]) asserts that for integers a > b > c > 1 we have
P ((ab + 1)(ac + 1)(bc + 1)) → ∞ as a → ∞. This conjecture has been established
by Corvaja and Zannier in [7] and then refined and extended in various directions
in [6], [14].
Here we apply some results of Corvaja and Zannier (see [8], [10]) to establish

explicit and essentially optimal function field analogues of this conjecture for only
two shifted pairwise products FH + 1 and GH + 1 for F , G and H from a wide
class of rational functions over an arbitrary field, which, for example, includes all
nontrivial polynomial functions. This result applies when the degree of H is larger
than the degrees of F and G. Furthermore, we also use some results and ideas of
Ostafe (see [17]) to study this problem without any restriction on the degrees of F , G
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and H . Finally, in a special case when F , G and H are polynomials and the degree
of H is much larger than the other two, we use a result of Bernstein (see [2]) to
derive a stronger bound.

Namely, let K be a field. We use charK to denote the characteristic of K.

For a rational function Q ∈ K(X) we denote by Z(Q) the set of distinct zeros and
poles of Q in the algebraic closure of K and also define

Z(Q) = #Z(Q)

as the number of zeros and poles of Q.

We write Q = f/g for relatively prime polynomials f, g ∈ K[X ] (and always
assume that f is monic) and then define

num(Q) = f and den(Q) = g.

We say that two rational functions Q,R ∈ K(X) are disjoint if the set of zeros
and poles of each of them is disjoint from the set of zeros and poles of the other.

Furthermore, we say that a rational function Q ∈ K(X) is quasipolynomial if
deg num(Q) > deg den(Q). In particular, for a quasipolynomial rational function,

degQ = max{deg num(Q), deg den(Q)} = deg num(Q).

We define QK as the set of quasipolynomial functions Q ∈ K(X) (which is obvi-
ously closed under multiplication). For example, we obviously have (K[X ]\K)⊆QK .

Furthermore, for an integer d > 1 we define Nd(K) as the smallest value of
Z(FH+1)+Z(GH+1) over all triples of pairwise distinct and disjoint nonconstant
quasipolynomial functions F,G,H ∈ K(X), when

(1) d = degH > degF, degG > 1,

that is

Nd(K) = min{Z(FH + 1) + Z(GH + 1):

F,G,H ∈ QK \K pairwise disjoint, satisfying (1)}.

We note that such products of integers have been studied in [7].

We remark that the example of the functions

(2) F (X) = −Xd + 1, G(X) = −Xd − 1, H(X) = 1/Xd,
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for which

FG+ 1 = X2d, FH + 1 = 1/Xd, GH + 1 = −1/Xd,

shows that at least some conditions on the degrees of the numerators and denomi-
nators of F , G and H are necessary. In particular, the set QK seems to be a natural
family of functions to consider.

2. Main results

First, using results of Corvaja and Zannier (see [8], [10]), we establish the following
general estimate.

Theorem 1. There is an absolute constant c0 > 0 such that for any algebraically

closed field K we have Nd(K) > c0d for any d if charK = 0 and for d 6 c0p if

p = charK > 0.

We also consider an analogue of Nd(K), where we relax condition (1) as

(3) d = degH > degF − degG > 0

if all functions F,G,H ∈ K[X ] are polynomials, and drop it completely if at least
one of these functions has a finite pole, but instead we have to fix the set of possible
zeros and poles.
We consider this only in the case of the field K = C of complex numbers.

Theorem 2. For any fixed finite set X ⊆ C there is a constant D(X ) such that

for any pairwise disjoint F,G,H ∈ QK \K, which in the case where F,G,H ∈ K[X ]

also satisfy (3), if

Z(FH + 1),Z(GH + 1) ⊆ X ,

then degH 6 D(X ).

The example of the set X = {0} and polynomials

(4) F (X) = X2d +Xd + 1, G(X) = Xd + 1, H(X) = Xd − 1,

which are disjoint, but for any d we have

Z(FH + 1) = Z(GH + 1) = X ,
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shows that some conditions of the type (3) are necessary in order to have a variant
of Theorem 2 for polynomials F,G,H ∈ K[X ].
Finally, we use a result of Bernstein from [2] to obtain an explicit lower bound on

Z ((FH + 1)(GH + 1)) for polynomials F,G,H ∈ K[X ] over an arbitrary field K of
characteristic zero in the case where degH is substantially larger than degF and
degG. This bound is of the same flavour as that of Stewart and Tijdeman in [19],
Theorem 1.

Theorem 3. Let charK = 0. Then for arbitrary pairwise distinct polynomials

F,G,H ∈ K[X ] we have

Z ((FH + 1)(GH + 1)) > degH −max{degF, degG}.

Note that Z(FH + 1) + Z(GH + 1) > Z ((FH + 1)(GH + 1)).

3. Preliminary results

As usual, we use Gk
m to denote the k-dimensional multiplicative torus, that is,

Gk
m = (C∗)k. We need a result on the finiteness of the number of points on the
intersection of a curve with algebraic subgroups of Gk

m of codimension at least 2,
which is due to Bombieri, Masser and Zannier in [5] for curves over C, which also
extends the previous result of Maurin in [16] that applies only to curves over Q (that
is, over the algebraic closure of Q). We also refer to [1], [3], [4], [13] for several
related results and further references. Although we apply it only to straight lines,
we present it in full generality.

Lemma 4. Let C ⊆ Ck, k > 2, be an irreducible curve over C. Assume that for

every nonzero vector (r1, . . . , rk) ∈ Zk the monomial Xr1
1 . . .Xrk

k is not identically 1

on C. Then there are only finitely many points (x1, . . . , xk) ∈ C for which there exist

linearly independent vectors (a1, . . . , ak), (b1, . . . , bk) in Zk such that

xa1

1 . . . xak

k = xb11 . . . xbkk = 1.

We also use a very special case of the bound of Ostafe, see [17], Lemma 2.9, on
the multiplicity of zeros in shifts of rational functions, which in turn is based on the
polynomial ABC theorem of Stothers in [20], see also [15], [18].

Lemma 5. For any rational function Q(X) ∈ C(X), the largest multiplicity of

the zeros of Q(X)− 1 is at most Z(Q).
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We say that two rational functions U, V ∈ K(X) are multiplicatively independent
in K(X)/K∗ if the function UkV m with k,m ∈ Z is a constant only for k = m = 0.
We first recall the following result of Corvaja and Zannier in [8], Corollary 2.3, see

also [9], Theorem CZ, or [21], Theorem 2.2. Furthermore, Zannier in [21], Section 2.4,
also gives several applications of this result.

Lemma 6. Let charK = 0. Then for any two rational functions U, V ∈ K(X)

that are multiplicatively independent in K(X)/K∗, we have

deg gcd (num(U − 1), num(V − 1)) 6 C 3

√

degU deg V (Z(U) + Z(V )),

where C is some absolute constant.

We also use the following simplified version of [10], Theorem 2:

Lemma 7. Let charK = p. Then for any two rational functions U, V ∈ K(X)

that are multiplicatively independent in K(X)/K∗, we have

deg gcd (num(U − 1), num(V − 1))

6 Cmax
{

3

√

degU deg V (Z(U) + Z(V )),
degU degV

p

}

,

where C is some absolute constant.

In order to apply Lemmas 6 and 7 we need to show that the rational functions
FH + 1 and GH + 1 are multiplicatively independent in K(X)/K∗.

Lemma 8. If F,G,H ∈ QK \ K are pairwise disjoint and in the case where

F,G,H ∈ K[X ] they also satisfy (3), then the rational functions FH+1 and GH+1

are multiplicatively independent in K(X)/K∗.

P r o o f. Assume that FH+1 and GH+1 are multiplicatively dependent. Then
for some α, β ∈ K∗ and a rational function Q ∈ K(X) we have

FH + 1 = αQλ and GH + 1 = βQµ.

First we note that λ 6= µ. Indeed, otherwise we have α 6= β and the relation

(βF − αG)H = α− β ∈ K∗

contradicts the disjointness of F , G and H and the fact that H ∈ QK and thus has
a zero.
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Clearly FH + 1, GH + 1 ∈ QK . Hence, we can assume that Q ∈ QK and also
λ > µ > 0.

Since F and H are disjoint, we see from FH + 1 = αQλ that the poles of H
are also poles of Qλ and appear with the same multiplicities as in H . However the
same argument also applies to GH + 1 = βQµ. Since λ 6= µ, this means that H is
a polynomial and furthermore, H and Q have no common zeros. Since F , G and H
are disjoint, we see that Q is a polynomial and so F and G are polynomials as well.

Hence, we can now assume that F,G,H ∈ K[X ] and thus satisfy (3).

Now, from (F − G)H = Qµ
(

αQλ−µ − β
)

and since H and Q have no common
zeros, we conclude that Qµ divides F −G, which is impossible as

degQµ = degG+ degH > deg(F −G)

due to assumption (3). �

We remark that example (4) shows that some version of condition (3) is needed
in the polynomial case of Lemma 8.

Finally, we recall an extension of the polynomial ABC theorem due to Bernstein
in [2], Theorem 2.1:

Lemma 9. Let charK = 0. Then for arbitrary nonconstant polynomial H ∈

K[X ] pairwise distinct nonzero polynomials P,Q,R ∈ K[X ] without a common zero

and with P ≡ Q ≡ R (mod H), we have

max{degP, degQ, degR} > 2 degH − Z(PQR).

4. Proof of Theorem 1

Let F,G,H ∈ C(X) be nonconstant pairwise disjoint quasipolynomials with (1)
and with

Z(FH + 1) + Z(GH + 1) = Nd.

By Lemma 8, since obviously (1) implies (3), we see that FH +1 and GH +1 are
multiplicatively independent in K(X)/K∗.

If charK = p > 0, then we can apply Lemma 7 with the rational functions
U = FH + 1 and V = GH + 1. Hence, noticing that

degU 6 2 degH, deg V 6 2 degH
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and
Z(U) + Z(V ) 6 Nd(K)

and recalling that H ∈ QK , we derive:

d = deg num(H)

6 Cmax
{

3

√

degU degV (Z(U) + Z(V )),
degU deg V

p

}

6 Cmax
{

3

√

4d2Nd(K),
4d2

p

}

.

Now we see that if

(5) 3

√

4d2Nd(K) 6
4d2

p
,

then d 6 4Cd2p−1. Hence, taking c0 < 1
4C

−1, we conclude that (5) is impossible.
Otherwise, that is if (5) fails, we have

C 3

√

4d2Nd(K) > d.

Hence, taking c0 < 1
4C

−3, we obtain the result in the case of positive characteristic.
If charK = 0, then we can apply Lemma 6 and follow the same argument except

that we do not have to consider (5). �

5. Proof of Theorem 2

Let F,G,H ∈ C(X) be rational functions satisfying (3) and with Z(FH + 1),

Z(GH + 1) ⊆ X . Denote M = #X .
Our goal is to estimate d = degH in terms of X . We do this in two steps: we

first estimate the number Z of distinct zeros of H and then we estimate the largest
multiplicity µ of zeros of H .
Write

(6) FH + 1 = α
∏

a∈A

(X − a)ma

∏

c∈C

(X − c)rc ,

GH + 1 = β
∏

b∈B

(X − b)nb

∏

c∈C

(X − c)sc ,

where α, β ∈ C∗ and A,B, C ⊆ X are pairwise disjoint sets and ma, nb, rc and sc are
nonzero exponents.
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Let A, B and C be the cardinalities of A, B and C, respectively. In particular
M > A+B + C. Consider the parametric line

L : ({γa(t− a)}a∈A, {γb(t− b)}b∈B, {(t− c)}c∈C : t ∈ C) ∈ C
M

with arbitrarily chosen coefficients {γa}a∈A and {γb}b∈B, satisfying

∏

a∈A

γma

a = α and
∏

b∈B

γnb

b = β.

We now consider the vectors

~m = (ma)a∈A, ~n = (nb)b∈B, ~r = (rc)c∈C , ~s = (sc)c∈C

and also the vectors

(7) (~m,~0, ~r), (~0, ~n,~s) ∈ Z
A × Z

B × Z
C .

We note that if one of the integers A, B or C vanishes, then the corresponding parts
of these vectors are not present (for example, if A = 0 but B,C 6= 0, vectors (7) take
form (~0, ~r), (~n,~s)).
We remark that vectors (7) are linearly independent as otherwise the rational

functions FH+1 and GH+1 are multiplicatively dependent in C(X)/C∗, while this
is impossible by Lemma 8.
Since vectors (7) are linearly independent, by Lemma 4 applied to the line L, we

see that there are at most C0(X ) values of t ∈ C such that

∏

a∈A

(γa(t− a))
ma

∏

c∈C

(t− c)rc =
∏

b∈B

(γb(t− b))
nb

∏

c∈C

(t− c)sc = 1

for some vectors ~n, ~m, ~r, ~s as above, where C0(X ) depends only on X . In particular,
we now see from (6) that the number Z0 of distinct zeros of H is at most

(8) Z0 6 C0(X ).

Furthermore, by Lemma 5, the largest multiplicity of the zeros of the rational
function

∏

a∈A

(γa(X − a))
ma

∏

c∈C

(X − c)rc − 1 ∈ C(X)

is at most A+C 6M . In particular, we now see from (6) that the largest multiplicity
of zeros of H is at most

(9) µ 6M.

1074



Combining (8) and (9), we obtain

d = deg num(H) 6 µZ0 6MC0(X ).

Thus, d is bounded in terms of X , which concludes the proof. �

6. Proof of Theorem 3

The result follows immediately from Lemma 9 applied to polynomials P = FH+1,
Q = GH + 1, R = 1, and the identity

max{degP, degQ, degR} = degH +max{degF, degG}.

�

7. Comments

We start with a remark that one can easily extend our results to multivariate
rational functions. In fact, using the Kronecker substitution, that is, Xi → X(d+1)i−1

,
i = 1, 2, . . ., where d is the largest degree of all functions involved, one can achieve
this without any additional arguments, however a more direct treatment may lead
to stronger results.

Most likely, these results can also be extended to rational functions on an algebraic
variety.

It is an interesting question to try to relax the condition of quasipolynomiality in
Theorems 1 and 2, however, as example (2) shows, it cannot be completely aban-
doned.

The arguments and results of this paper can probably be extended to more general
products FG+A1, FH+A2 and GH+A3 with some fixed nonzero rational functions
A1, A2, A3 ∈ K[X ].

Motivated by a conjecture of Győry and Sárközy in [11] on the largest value of
P ((ab+ 1)(ac+ 1)(bc+ 1)) taken over several triples (a, b, c) ∈ Z3, Bugeaud and
Luca in [6], Theorem 1, have proved that for any finite set T of such triples with
a > b > c > 0, we have

ω

(

∏

(a,b,c)∈T

(ab + 1)(bc+ 1)(ac+ 1)

)

> 10−6 log#T ,
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where ω(k) is the number of distinct prime divisors of an integer k > 1. It is also
interesting to study function field analogues of this result for finite sets W of triples
(F,G,H) of pairwise distinct rational functions and obtain a lower bound

Z

(

∏

(F,G,H)∈W

(FG+ 1)(FH + 1)(GH + 1)

)

> ψ(#W)

with some explicit (perhaps up to some constant factor) function ψ with ψ(z) → ∞

as z → ∞.
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