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Abstract. Starting by the famous paper by Kirillov, local Lie algebras of functions over
smooth manifolds were studied very intensively by mathematicians and physicists. In the
present paper we study local Lie algebras of pairs of functions which generate infinitesimal
symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds.
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1. Introduction

The concept of a local Lie algebra over a smooth manifold was defined by Shiga

in [14], as follows. Let p : E → M be a smooth vector bundle over a smooth mani-

foldM. Let us denote by Γ(E) the sheaf of (local) sections of E. A local Lie algebra

over M is a Lie algebra in Γ(E) given by the bracket (bilinear, antisymmetric and

satisfying the Jacobi identity) [s1, s2], s1, s2 ∈ Γ(E), satisfying a continuity condition

and supp([s1, s2]) ⊂ supp(s1) ∩ supp(s2).

It is very well known (see [10]) that (1-dimensional) local Lie algebras of functions

on a (2n+1)-dimensional manifoldM are in one-to-one correspondence with Jacobi

structures on M given by a skew symmetric 2-vector field Λ and a vector field E

such that

[E,Λ] = 0, [Λ,Λ] = −2E ∧ Λ,

where [, ] is the Schouten-Nijenhuis bracket (see, for example, [16]) of skew symmetric

multi-vector fields.
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Then the Jacobi bracket

[f, h] = {f, h} − fE.h+ hE.f,

where {f, h} = Λ(df, dh) is the Poisson bracket, defines on the sheaf of functions

C∞(M) the structure of a local (Jacobi) Lie algebra.

Let us assume the subsheaf C∞
E (M) of functions constant on integral curves of

the vector field E, i.e. such that E.f = 0 (conserved functions in the terminology

of [9]). Then the restriction of the above Jacobi bracket defines the Lie subalgebra

(C∞
E (M); {,}) ⊂ (C∞(M); [, ]) of conserved functions. Indeed, if f, h ∈ C∞

E (M),

then

E.{f, h} = {E.f, h}+ {f, E.h} = 0.

Moreover, the Hamilton-Jacobi lift

Xf = df ♯ − fE

of a function f ∈ C∞
E (M) is an infinitesimal symmetry of (E,Λ), i.e. LXf

E =

[Xf , E] = 0 and LXf
Λ = [Xf ,Λ] = 0. In what follows we shall use the notation

Λ♯(α) := α♯ = iαΛ for any 1-form α.

If the pair (E,Λ) is regular (transitive in the terminology of [10]), i.e. E ∧Λn 6≡ 0,

then there exists the unique 1-form ω such that iEω = 1 and iωΛ = 0. Moreover,

ω is a contact form, i.e. ω ∧ dωn 6≡ 0 and E is the Reeb vector field of the contact

structure (ω,Ω = dω), i.e. iEΩ = 0. The pairs (ω,Ω) and (E,Λ) are said to be

mutually dual. It is easy to see that the Hamilton-Jacobi lift of a conserved function

is an infinitesimal symmetry of the contact pair (ω,Ω), i.e. LXf
ω = 0 and LXf

Ω = 0.

The Hamilton-Jacobi lift of conserved functions is a Lie algebra homomorphism

from the Lie algebra (C∞
E (M), {,}) to the Lie algebra (L(ω,Ω), [, ]) ⊂ (X (M), [, ])

of infinitesimal symmetries of the contact structure (ω,Ω) (respective to the Lie

algebra (L(E,Λ), [, ]) of infinitesimal symmetries of the Jacobi structure (E,Λ)).

Here (X (M), [, ]) is the Lie algebra of vector fields.

In [8] dual contact and Jacobi structures were generalized in the following sense.

An almost-cosymplectic-contact (regular) structure (pair) is given by a pair (ω,Ω)

such that

dΩ = 0, ω ∧ Ωn 6≡ 0.

According to [11] there exists a unique dual almost-coPoisson-Jacobi structure (pair)

given by a pair (E,Λ) such that

(Ω♭
|Im(Λ♯))

−1 = Λ♯
|Im(Ω♭), iEω = 1, iEΩ = 0, iωΛ = 0,
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where Ω♭ : TM → T ∗
M is given by Ω♭(X) := X♭ = iXΩ. Then (see [8])

[E,Λ] = −E ∧ Λ♯(LEω), [Λ,Λ] = 2E ∧ (Λ♯ ⊗ Λ♯)(dω).

Remark 1.1. The almost-cosymplectic-contact pair and the dual almost-

coPoisson-Jacobi pair generalize not only the contact and the dual Jacobi structures

but also cosymplectic structures. Indeed, if dω = 0, we obtain a cosymplectic pair

(see, for example, [1]). The corresponding dual pair is coPoisson pair (see [8]) given

by the pair (E,Λ) such that [E,Λ] = 0, [Λ,Λ] = 0.

Remark 1.2. For cosymplectic and contact structures we have distinguished

forms ω, Ω and vector fields E, Λ. But for an almost-cosymplectic-contact structure

we have distinguished forms ω, LEω, Ω, dω and distinguished vector fields E, (LEω)
♯,

Λ, (Λ♯ ⊗ Λ♯)(dω).

In what follows we assume an odd dimensional manifold M with a regular

almost-cosymplectic-contact structure (ω,Ω). We assume the dual (regular) almost-

coPoisson-Jacobi structure (E,Λ). Then we have Ker(ω) = Im(Λ♯) and Ker(E) =

Im(Ω♭) and we have the splitting

TM = Im(Λ♯)⊕ 〈E〉, T ∗
M = Im(Ω♭)⊕ 〈ω〉,

i.e. any vector field X and any 1-form β can be decomposed as

(1.1) X = X(α,h) = α♯ + hE, β = β(Y,f) = Y ♭ + fω,

where h, f ∈ C∞(M), α is a 1-form and Y is a vector field. Moreover, h = ω(X(α,h))

and f = β(Y,f)(E). Let us note that the splitting (1.1) is not defined uniquely; indeed

X(α1,h1) = X(α2,h2) if and only if α
♯
1 = α

♯
2 and h1 = h2, i.e. α

♯
1−α

♯
2 = 0, which means

that α1 − α2 ∈ 〈ω〉. Similarly, β(Y1,f1) = β(Y2,f2) if and only if Y1 − Y2 ∈ 〈E〉 and

f1 = f2.

The projections p2 : TM → 〈E〉 and p1 : TM → Im(Λ♯) = Ker(ω) are given by

X 7→ ω(X)E and X 7→ X − ω(X)E. Equivalently, the projections q2 : T ∗
M → 〈ω〉

and q1 : T ∗
M → Im(Ω♭) = Ker(E) are given by β 7→ β(E)ω and β 7→ β − β(E)ω.

Moreover, Λ♯ ◦ Ω♭ = p1 and Ω♭ ◦ Λ♯ = q1.

Remark 1.3. Let us consider the pair (ω, F ), where F = Ω + dω is a closed

2-form. Then the pair (ω, F ), is not generally an almost-cosymplectic-contact pair

because it may not be regular. We shall use the form F later in Theorem 3.1.
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In [5] we have studied infinitesimal symmetries of tensor fields ω, Ω, E, Λ gener-

ating the almost-cosymplectic-contact and the dual almost-coPoisson-Jacobi struc-

tures. Such symmetries are vector fields of the type X(α,h) = α♯ + hE, where α and

h meet certain conditions and the fact that they generate infinitesimal symmetries of

a tensor field defines a Lie algebra structure on some subsheaf of Ω1(M) × C∞(M)

of generators (α, h) of infinitesimal symmetries.

In this paper we shall study the situation where the 1-form α is locally exact,

i.e. α = df for f ∈ C∞(M). This leads to local Lie algebras of pairs of functions

generating infinitesimal symmetries of some tensor fields. Such Lie algebras are

2-dimensional local Lie algebras in the sense of [10], [14].

Generally, we can define local Lie algebra structure in C∞(M)×C∞(M) by a (dou-

ble) bracket [[(f1, h1); (f2, h2)]] in C∞(M) × C∞(M) satisfying the following condi-

tions:

(1) it defines a Lie algebra structure in C∞(M)× C∞(M) over R,

(2) [[(f1, h1); (f2, h2)]] is continuous in fi and hi, i = 1, 2,

(3) supp[[(f1, h1); (f2, h2)]] ⊂ supp(f1, h1) ∩ supp(f2, h2) for each (f1, h1) and

(f2, h2), where supp(fi, hi) = supp(fi) ∩ supp(hi).

As a simple example we can consider two Jacobi pairs (Ei,Λi), i = 1, 2, and the

corresponding Jacobi brackets [, ]i. Then the bracket

[[(f1, h1); (f2, h2)]] = ([f1, f2]1; [h1, h2]2)

defines the Lie algebra structure in C∞(M) × C∞(M). As far as we know, the

classification of local Lie algebras of pairs of functions is not known. In the paper we

shall describe several subsheafs of C∞(M) × C∞(M) with a Lie algebra structure

given by the fact that pairs of functions generate infinitesimal symmetries of basic

tensor fields ω,Ω, E,Λ given by the almost-cosymplectic-contact and the dual almost-

coPoisson-Jacobi structures.

All manifolds and mappings are assumed to be smooth.

2. Local Lie algebras of generators of infinitesimal symmetries

In this section we shall study local Lie algebras of pairs of functions which generate

infinitesimal symmetries of basic tensor fields.

For two functions f, h ∈ C∞(M) we define their pre-Hamiltonian lift to vector

fields onM by

(2.1) X(f,h) = df ♯ + hE.
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Lemma 2.1. Let (fi, hi) ∈ C∞(M)×C∞(M), i = 1, 2, be two pairs of functions

onM. Then

[X(f1,h1), X(f2,h2)] =
(
d{f1, f2}+ (E.f1)(Ldf♯

2
+ h2LE)ω(2.2)

− (E.f2)(Ldf
♯
1
+ h1LE)ω − h2d(E.f1) + h1d(E.f2)

)♯

+
(
{f1, h2} − {f2, h1} − dω(df ♯

1 , df
♯
2)

+ h1(E.h2 + Λ(LEω, df2))− h2(E.h1 + Λ(LEω, df1))
)
E.

P r o o f. We have (see [8])

[E, df ♯] =
(
d(E.f)− (E.f)(LEω)

)♯
+ Λ(LEω, df)E,(2.3)

[df ♯, dh♯] =
(
dΛ(df, dh) + (E.f)(idh♯dω)(2.4)

− (E.h)(idf♯dω)
)♯

− dω(df ♯, dh♯)E,

which implies (2.2). �

It is easy to see that the vector field (2.2) is not generally the pre-Hamiltonian lift

of a pair of functions. It is so in the case when the projection p1 : TM → Ker(ω)

of (2.2) is the Λ♯-lift of the differential of a function. We shall describe several

examples of subsheafs of C∞(M) × C∞(M) such that the Lie bracket of two pre-

Hamiltonian lifts of pairs of functions from the subsheaf is the pre-Hamiltonian lift

of a pair from the subsheaf. All such subsheafs are given by local generators of

infinitesimal symmetries of basic tensor fields.

2.1. Infinitesimal symmetries of ω and Ω generated by pairs of func-

tions.

Theorem 2.2. The pre-Hamiltonian lift (2.1) is an infinitesimal symmetry of ω

if and only if

(2.5) idf♯dω + hiEdω + dh = 0.

P r o o f. From iEω = 1 and idf♯ω = 0 we get

LX(f,h)
ω = idf♯dω + hiEdω + dh,

which proves Theorem 2.2. �
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Let us denote by LGen(ω) ⊂ C∞(M) × C∞(M) the subsheaf of pairs of func-

tions (f, h) on M which generate (locally) infinitesimal symmetries of ω, i.e. satisfy

condition (2.5).

Theorem 2.3. The Lie bracket of the pre-Hamiltonian lifts of two pairs (fi, hi) ∈

LGen(ω), i = 1, 2, is the pre-Hamiltonian lift of a pair of functions from LGen(ω).

P r o o f. If (2.5) is satisfied, then dhi = −(idf♯
i
+ hiiE)dω = −(Ldf♯

i
+ hiLE)ω

and E.hi + Λ(LEω, dfi) = 0, which follows by evaluating (2.5) on E. Then we can

rewrite (2.2) as

[X(f1,h1), X(f2,h2)] =
(
d({f1, f2} − h2(E.f1) + h1(E.f2))

)♯
(2.6)

+
(
{f1, h2} − {f2, h1} − dω(df ♯

1 , df
♯
2)
)
E,

which is the pre-Hamiltonian lift of the pair

(2.7)
(
{f1, f2} − h2(E.f1) + h1(E.f2); {f1, h2} − {f2, h1} − dω(df ♯

1 , df
♯
2)
)
.

The pair (2.7) is in LGen(ω), which follows from the fact that, according to The-

orem 2.2, the pre-Hamiltonian lifts (2.1) of pairs from LGen(ω) are infinitesimal

symmetries of ω. Then from L[X,Y ] = LXLY − LY LX , the Lie bracket (2.6) of two

pre-Hamiltonian lifts of pairs from LGen(ω) is an infinitesimal symmetry of ω and,

by Theorem 2.2, the pair (2.7) has to satisfy condition (2.5), i.e. it is in LGen(ω). �

As a consequence we obtain the Lie bracket

[[(f1, h1); (f2, h2)]] =
(
{f1, f2} − h2(E.f1) + h1(E.f2);(2.8)

{f1, h2} − {f2, h1} − dω(df ♯
1 , df

♯
2)
)
,

which defines the local Lie algebra structure on LGen(ω). Moreover, the pre-

Hamiltonian lift (2.1) is the Lie algebra homomorphism from the local Lie algebra

(LGen(ω); [[, ]]) to the Lie algebra (L(ω); [, ]) ⊂ (X (M); [, ]) of infinitesimal symmetries

of ω.

Now, we shall define a Lie algebra structure on the subsheaf C∞
E (M) × C∞(M)

of pairs (f, h) of functions, where f is conserved.

Theorem 2.4. The Lie bracket of the pre-Hamiltonian lifts of two pairs (fi, hi) ∈

C∞
E (M) × C∞(M), i = 1, 2, is the pre-Hamiltonian lift of a pair of functions from

C∞
E (M)× C∞(M).
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P r o o f. For E.fi = 0 the vector field (2.2) is expressed as

[X(f1,h1), X(f2,h2)] =
(
d{f1, f2}

)♯
+
(
{f1, h2} − {f2, h1} − dω(df ♯

1 , df
♯
2)

+ h1(E.h2 + Λ(LEω, df2))− h2(E.h1 + Λ(LEω, df1))
)
E.

This vector field is the pre-Hamiltonian lift (2.1) of the pair

(
{f1, f2}; {f1, h2} − {f2, h1} − dω(df ♯

1 , df
♯
2)

+ h1(E.h2 + Λ(LEω, df2))− h2(E.h1 + Λ(LEω, df1))
)
.

Moreover, the above pair is in C∞
E (M)× C∞(M). Indeed,

E.{f1, f2} = {E.f1, f2}+ {f1, E.f2}+ i[E,Λ](df1 ∧ df2)

= −iE∧(LEω)♯(df1 ∧ df2) = 0,

which proves Theorem 2.4. �

As a consequence, by observing Λ(LEω, df) = (LEω)
♯
.f , we obtained the Lie

bracket

[[(f1, h1); (f2, h2)]] =
(
{f1, f2}; {f1, h2} − {f2, h1} − dω(df ♯

1 , df
♯
2)(2.9)

+ h1(E.h2 + (LEω)
♯
.f2)− h2(E.h1 + (LEω)

♯
.f1)

)

of pairs of functions from C∞
E (M) × C∞(M), which defines the local Lie algebra

structure on C∞
E (M)× C∞(M).

In [2], [5] it was proved that all infinitesimal symmetries of Ω are vector fields

X(α,h) = α♯ + hE, where α is a closed 1-form such that α(E) = 0. Hence, locally

α = df for a function f ∈ C∞
E (M) and any infinitesimal symmetry of Ω is locally

the pre-Hamiltonian lift of a pair of functions from C∞
E (M) × C∞(M). So the

Lie algebra of local generators of infinitesimal symmetries of Ω is (LGen(Ω), [[, ]]) ≡

(C∞
E (M)×C∞(M), [[, ]]) with the Lie bracket (2.9). The pre-Hamiltonian lift (2.1) is

the Lie algebra homomorphism from the local Lie algebra (LGen(Ω); [[, ]]) to the Lie

algebra (L(Ω); [, ]) ⊂ (X (M); [, ]) of infinitesimal symmetries of Ω.

Theorem 2.5. A vector field X(f,h) is an infinitesimal symmetry of the almost-

cosymplectic-contact structure (ω,Ω) if and only if f ∈ C∞
E (M) and condition (2.5)

is satisfied.

P r o o f. It follows from Theorems 2.2 and the fact that X(f,h) is an infinitesimal

symmetry of Ω if and only if f ∈ C∞
E (M). �
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Lemma 2.6. A vector field X(f,h) is an infinitesimal symmetry of (ω,Ω) if and

only if the following conditions are satisfied:

(1) E.f = iEdf = 0,

(2) iEdh+ iEidf♯dω = E.h+ (LEω)
♯
.f = 0,

(3) dω(df ♯, β♯) + hdω(E, β♯) + dh(β♯) = 0 for any 1-form β, especially, if we put

β = dg for a g ∈ C∞(M), we get {g, h} = dω(dg♯, df ♯) + hdω(dg♯, E).

P r o o f. It is a consequence of Theorem 2.5 and Theorem 2.2, where we have

evaluated the 1-form on the left hand side of (2.5) on E (which gives condition (2))

and on β♯ for any 1-form β (which gives condition (3)). �

We denote the sheaf of pairs of functions which locally generate infinitesimal

symmetries of the almost-cosymplectic-contact structure (ω,Ω) as LGen(ω,Ω) =

LGen(ω) ∩ LGen(Ω). Brackets (2.8) and (2.9) restricted for generators of infinites-

imal symmetries of (ω,Ω) give the equivalet expressions of the bracket

[[(f1, h1); (f2, h2)]] =
(
{f1, f2}; {f1, h2} − {f2, h1} − dω(df ♯

1 , df
♯
2)
)

(2.10)

=
(
{f1, f2}; dω(df

♯
1 , df

♯
2) + h2(LEω)

♯
.f1 − h1(LEω)

♯
.f2

)

=
(
{f1, f2}; dω(df

♯
1 , df

♯
2) + h1E.h2 − h2E.h1

)
,

which defines the Lie algebra structure on LGen(ω,Ω).

Corollary 2.7. An infinitesimal symmetry of the cosymplectic structure (ω,Ω)

is of local type X(f,h) = df ♯ + hE, where f ∈ C∞
E (M) and h is a constant.

Then bracket (2.10) is reduced to

[[(f1, h1); (f2, h2)]] =
(
{f1, f2}, 0

)
.

I.e. we obtain the subalgebra (LGencos(ω,Ω); [[, ]]) = (C∞
E (M); {, })⊕ (R; [, ]) of local

generators of infinitesimal symmetries of the cosymplectic structure. Here [, ] is the

trivial Lie bracket in R.

P r o o f. It follows from dω = 0. Considering this from (2.5) we get dh = 0. �

Corollary 2.8. Any infinitesimal symmetry of the contact structure (ω,Ω = dω)

is of local type

X(f,−f) = df ♯ − fE,

where f ∈ C∞
E (M).

Then bracket (2.10) is reduced to

[[(f1,−f1); (f2,−f2)]] =
(
{f1, f2},−{f1, f2}

)
.
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I.e. we obtain the subalgebra (LGencon(ω); [[, ]]) ⊂ (LGen(ω,Ω); [[, ]]) of local generators

of infinitesimal symmetries of the contact structure. Moreover, (LGencon(ω); [[; ]]) ≡

(C∞
E (M), {, }).

P r o o f. It follows from dω = Ω, iEΩ = 0 and idf♯Ω = df . Considering this

from (2.5) we get df = −dh. �

2.2. Infinitesimal symmetries of E and Λ generated by pairs of func-

tions.

Theorem 2.9. The pre-Hamiltonian lift (2.1) is an infinitesimal symmetry of the

Reeb vector field E if and only if

(
d(E.f)− (E.f)LEω

)♯
= 0,(2.11)

(E.h) + (LEω)
♯
.f = 0.(2.12)

P r o o f. Let us assume that the pre-Hamiltonian lift of a pair (f, h) is an in-

finitesimal symmetry of the Reeb vector field. Then from (2.3)

0 = [X(f,h), E] = −
(
d(E.f)− (E.f)LEω

)♯
− ((E.h) + (LEω)

♯
.f)E,

which proves Theorem 2.9. �

If we have two pairs (fi, hi) generating infinitesimal symmetries of E, then the Lie

bracket of the corresponding pre-Hamiltonian lifts is

[X(f1,h1), X(f2,h2)] =
(
d{f1, f2}+ (E.f1)Ldf♯

2
ω − (E.f2)Ldf♯

1
ω
)♯

(2.13)

+
(
{f1, h2} − {f2, h1} − dω(df ♯

1 , df
♯
2)
)
E.

The above vector field (2.13) is not generally the pre-Hamiltonian lift of a pair of

functions. So, the sheaf of local generators of infinitesimal symmetries of E is not

a Lie algebra.

Theorem 2.10. The pre-Hamiltonian lift (2.1) is an infinitesimal symmetry of Λ,

i.e. LX(f,h)
Λ = [XX(f,h)

,Λ] = 0 if and only if the following condition is satisfied:

(2.14) [df ♯,Λ]− E ∧ (dh+ hLEω)
♯ = 0.

695



P r o o f. We have

LX(f,h)
Λ = [df ♯,Λ] + [hE,Λ].

Theorem 2.10 follows from

[hE,Λ] = h[E,Λ]− E ∧ dh♯ = −E ∧ (dh+ hLEω)
♯.

�

Lemma 2.11. A vector field X(f,h) is an infinitesimal symmetry of Λ if and only

if conditions

E.f = 0,(2.15)

dω(df ♯, β♯) + hdω(E, β♯) + dh(β♯) = 0,(2.16)

are satisfied for any 1-form β.

P r o o f. It is sufficient to evaluate the 2-vector field on the left hand side of

(2.14) on ω, β and β, γ, where β, γ are closed 1-forms. We get

i[df♯,Λ]−E∧(dh+hLEω)♯(ω ∧ β) = −Λ(idf♯dω + hLEω + dh, β),

which vanishes if and only if (2.16) is satisfied.

On the other hand,

i[df♯,Λ]−E∧(dh+hLEω)♯(β ∧ γ)

= Λ(df, dΛ(β, γ)) + Λ(β, dΛ(γ, df)) + Λ(γ, dΛ(df, β))

− β(E)Λ(hLEω + dh, γ) + γ(E)Λ(hLEω + dh, β),

which, using (2.16), can be rewritten as

i[df♯,Λ]−E∧(dh+hLEω)♯(β ∧ γ) = −
1

2
i[Λ,Λ](df ∧ β ∧ γ) + β(E)Λ(idf♯dω, γ)

− γ(E)Λ(idf♯dω, β)

= − iE∧(Λ♯⊗Λ♯)(dω)(df ∧ β ∧ γ)

+ β(E)Λ(idf♯dω, γ)− γ(E)Λ(idf♯dω, β)

= − df(E)dω(β♯, γ♯) = −(E.f)dω(β♯, γ♯),

which vanishes if and only if (2.15) is satisfied.

On the other hand, if (2.15) and (2.16) are satisfied, then the 2-vector field LX(f,h)
Λ

is the zero 2-vector field. �
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So, local generators of infinitesimal symmetries of Λ are from LGen(Ω) and generate

also infinitesimal symmetries of Ω, i.e. LGen(Λ) ⊂ LGen(Ω) and the Lie algebra of

local generators of infinitesimal symmetries of Λ is the subalgebra (LGen(Λ); [[, ]]) ⊂

(LGen(Ω); [[, ]]) with the bracket

[[(f1, h1); (f2, h2)]] =
(
{f1, f2}; dω(df

♯
1 , df

♯
2) + h1E.h2 − h2E.h1

)
,

which we obtain from bracket (2.9) restricted for functions satisfying (2.16).

Corollary 2.12. The Lie algebra of local generators of infinitesimal symmetries

of the almost-coPoisson-Jacobi pair (E,Λ) coincides with the local Lie algebra of

generators of infinitesimal symmetries of (ω,Ω).

P r o o f. From Theorem 2.9 and Lemma 2.11 the pre-Hamiltonian lift (2.1) is an

infinitesimal symmetry of the pair (E,Λ) if and only if conditions (1), (2) and (3) of

Lemma 2.6 are satisfied, i.e. if and only if it is an infinitesimal symmetry of the pair

(ω,Ω). �

Remark 2.1. Let us consider subsheaves of C∞(M)×C∞(M) given by conditions

(1), (2) and (3) of Lemma 2.6. The subsheaf LGen(Ω) is given by condition (1), the

subsheaf LGen(ω) is given by conditions (2) and (3) and the subsheaf LGen(Λ) is

given by conditions (1) and (3). If we assume the subsheaf given by conditions (1)

and (2), then from Theorem 2.9 it is the subsheaf LGen(E,Ω) of local generators

of infinitesimal symmetries of the Reeb vector field E and Ω. The corresponding

bracket will be

[[(f1, h1); (f2, h2)]] =
(
{f1, f2}; {f1, h2} − {f2, h1} − dω(df ♯

1 , df
♯
2)
)
.

So we obtain the following local Lie algebras of generators of infinitesimal symmetries:

(LGen(Ω), [[, ]]) (1), E.f = 0

(LGen(ω), [[, ]]) (2), E.h+ (LEω)
♯
.f = 0

(3), dω(df ♯, β♯) + hdω(E, β♯) + dh(β♯) = 0

(LGen(Λ), [[, ]]) (1) and (3)

(LGen(E,Ω), [[, ]]) (1) and (2)

(LGen(ω,Ω), [[, ]]) ≡ (LGen(E,Λ), [[, ]]) (1), (2) and (3)

Remark 2.2. In the Lie algebra (LGen(Ω); [[, ]]) we have the Abelian subalgebra

formed by pairs of constant functions K(M) = R × R ⊂ LGen(Ω). The centralizer

of the Lie subalgebra K(M) in LGen(Ω) is the Lie subalgebra (LGen(E,Ω); [[, ]]) ⊂

(LGen(Ω); [[, ]]) of generators of infinitesimal symmetries of E and Ω.
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Indeed, let (c, k) ∈ K(M) and (f, h) ∈ LGen(Ω) such that

(0; 0) = [[(c, k); (f, h)]] =
(
0;−k(E.h+ (LEω)

♯
.f)

)
.

Then from Theorem 2.9 it follows that the pair (f, h) generates an infinitesimal

symmetry of E.

2.3. Multiplicative algebra (LGen(Ω), ·).

In Section 2.1 we have defined the local Lie algebra structure on LGen(Ω). We

define the multiplication in LGen(Ω) by

(f1, h1)(f2, h2) = (f1f2, f1h2 + f2h1),

which defines on LGen(Ω) the structure of an associative commutative algebra with

the unit (1, 0). Indeed, it is easy to see that

(f1, h1)(f2, h2) = (f2, h2)(f1, h1),(
(f1, h1)(f2, h2)

)
(f3, h3) = (f1, h1)

(
(f2, h2)(f3, h3)

)
,

(1, 0)(f, h) = (f, h).

Lemma 2.13. We have

X(f1f2,f1h2+f2h1) = f1X(f2,h2) + f2X(f1,h1).

P r o o f. We have

X(f1f2,f1h2+f2h1) = d(f1f2)
♯ + (f1h2 + f2h1)E

= f1(df
♯
2 + h2E) + f2(df

♯
1 + h1E)

= f1X(f2,h2) + f2X(f1,h1).

�

From (2.9) it is easy to see that the bidifferential operator D on LGen(Ω) given by

D(f1,h1)(f2, h2) = [[(f1, h1); (f2, h2)]]

is of order 1.

From the Jacobi identity we get

D[[(f1,h1);(f2,h2)]](f3, h3) =
(
D(f1,h1)D(f2,h2) −D(f2,h2)D(f1,h1)

)
(f3, h3)
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and

D(f1,h1)[[(f2, h2); (f3, h3)]] = [[D(f1,h1)(f2, h2); (f3, h3)]] + [[(f2, h2);D(f1,h1)(f3, h3)]],

i.e. D(f,h) is a derivation on (LGen(Ω); [[, ]]).

Theorem 2.14. The 1st order differential operator

D(f,h) : LGen(Ω) → LGen(Ω)

is a derivation on (LGen(Ω), ·), i.e. for (fi, hi) ∈ LGen(Ω), i = 1, 2, 3, we have

D(f1,h1)

(
(f2, h2)(f3, h3)

)
= (f2, h2)D(f1,h1)(f3, h3) + (f3, h3)D(f1,h1)(f2, h2).

P r o o f. From (2.9) we can prove

[[(f1, h1); (f2, h2)(f3, h3)]] = (f2, h2)[[(f1, h1); (f3, h3)]]

+ (f3, h3)[[(f1, h1); (f2, h2)]],

which proves Theorem 2.14. �

2.4. Lie derivation of pairs of functions. We define the Lie derivation of

pairs of functions (f, h) ∈ C∞(M) × C∞(M) given by a vector field X on M by

LX(f, h) = (LXf, LXh) = (X.f,X.h). Generally LX is not an operator on LGen(Ω).

Lemma 2.15. Let X be a vector field onM such that LXE = [X,E] = 0. Then

for (f, h) ∈ LGen(Ω) the Lie derivation LX(f, h) ∈ LGen(Ω).

P r o o f. We have LEf = E.f = 0 and [X,E] = 0 which implies

0 = L[X,E]f = LXLEf − LELXf = −E.(LXf),

i.e. LXf ∈ C∞
E (M) and LX(f, h) ∈ LGen(Ω). �

Lemma 2.16. If a vector field X is an infinitesimal symmetry of E, then LX is

a derivation on (LGen(Ω), ·), i.e.

LX

(
(f1, h1)(f2, h2)

)
= (LXf1, LXh1)(f2, h2) + (f1, h1)(LXf2, LXh2).
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P r o o f. By Lemma 2.15, LX

(
(f1, h1)(f2, h2)

)
∈ LGen(Ω) and

LX

(
(f1, h1)(f2, h2)

)
= LX(f1f2, f1h2 + f2h1)

=
(
(LXf1)f2 + f1(LXf2);

(LXf1)h2 + f1(LXh2) + (LXf2)h1 + f2(LXh1)
)

= (LXf1, LXh1)(f2, h2) + (f1, h1)(LXf2, LXh2).

�

On the other hand, it is easy to see that if X is an infinitesimal symmetry of E,

then LX is not a derivation on the Lie algebra (LGen(Ω), [[, ]]). But we have:

Theorem 2.17. Let X be an infinitesimal symmetry of the almost-coPoisson-

Jacobi structure(E,Λ).ThenX is a Lie derivation on the Lie algebra(LGen(ω,Ω); [[, ]]).

P r o o f. LXE = 0 and LXΛ = 0 imply

LX{f1, f2} = {LXf1, f2}+ {f1, LXf2},

LELXω = 0, LELXf = LXLEf and LXdω = 0.

We have to prove that (LXf, LXh) ∈ LGen(ω,Ω) for any (f, h) ∈ LGen(ω,Ω).

First, from Lemma 2.15, LXf ∈ C∞
E (M). Further, we have to prove conditions (2)

and (3) of Lemma 2.6 for the pair of functions (LXf, LXh). Condition (2) can be

expressed as

0 = dh(E) + Λ(LEω, df).

If we apply LX on the above identity, we get from LXdf = dLXf ,

0 = (LXdh)(E) + dh(LXE) + (LXΛ)(LEω, df) + Λ(LXLEω, df) + Λ(LEω,LXdf)

= (dLXh)(E) + Λ(LEω, dLXf),

which is condition (2) for the pair (LXf, LXh).

Further, applying LX on condition (3) we get

0 = (LXdω)(df ♯, β♯) + dω(LXdf ♯, β♯) + dω(df ♯, LXβ♯)

+ (LXh)dω(E, β♯) + hdω(LXE, β♯) + hdω(E,LXβ♯)

+ (LXdh)(β♯) + dh(LXβ♯)

= dω(d(LXf)♯, β♯) + (LXh)dω(E, β♯) + (dLXh)(β♯),

which follows from LXdf ♯ = d(LXf)♯ (see [4], Lemma 2.15), and condition (3) for

the pair (LXf, LXh) is satisfied. Hence (LXf, LXh) ∈ LGen(ω,Ω).
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Finally, we assume bracket (2.10) in the form

[[(f1, h1); (f2, h2)]] =
(
{f1, f2}; dω(df

♯
1 , df

♯
2) + h1E.h2 − h2E.h1

)
.

Then

LX [[(f1, h1); (f2, h2)]] =
(
{LXf1, f2}+ {f1, LXf2}; dω(LXdf

♯
1 , df

♯
2) + dω(df ♯

1 , LXdf
♯
2)

+ LXh1LEh2 + h1LXLEh2 − LXh2LEh1 − h2LXLEh1

)
.

On the other hand,

[[(LXf1, LXh1); (f2, h2)]] + [[(f1, h1); (LXf2, LXh2)]]

=
(
{LXf1, f2}; dω(d(LXf1)

♯, df
♯
2) + LXh1LEh2 − h2LELXh1

)

+
(
{f1, LXf2}; dω(df

♯
1 , d(LXf2)

♯) + h1LELXh2 − LXh2LEh1

)

and from LXdf ♯ = d(LXf)♯ we get

LX [[(f1, h1); (f2, h2)]] = [[(LXf1, LXh1); (f2, h2)]] + [[(f1, h1); (LXf2, LXh2)]],

i.e. LX is a derivation on the Lie algebra (LGen(ω,Ω); [[, ]]). �

Remark 2.3. We have

(2.17) [[(f1, h1); (f2, h2)]] =
1

2

(
LX(f1,h1)

(f2, h2)− LX(f2,h2)
(f1, h1)

)
.

Indeed,

LX(f1,h1)
(f2, h2)− LX(f2,h2)

(f1, h1)

=
(
2{f1, f2); {f1, h2} − {f2, h1}+ h1E.h2 − h2E.h1

)

and from (2) and (3) of Lemma 2.6 we have

{f1, h2} − {f2, h1} = 2dω(df ♯
1 , df

♯
2) + h1E.h2 − h2E.h1,

which implies (2.17).
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3. Lie algebroid and infinitesimal symmetries

Let us assume a closed 2-form F onM and the vector bundle E = T M⊕MR → M.

Then sections of E are pairs (X, f) of vector fields on M and functions on M. We

define a bracket of sections of E by (see [6])

(3.1) [[(X1, f1); (X2, f2)]]F =
(
[X1, X2];X1.f2 −X2.f1 + F (X1, X2)

)
.

This bracket defines an F -Lie algebroid structure (see, for instance, [12]) on E with

the anchor given by the projection on the first component.

Indeed, bracket (3.1) is antisymmetric and from the closure of F the Jacobi identity

is satisfied. Moreover, for any h ∈ C∞(M) we get

[[(X1, f1);h(X2, f2)]]F = [[(X1, f1); (hX2, hf2)]]F

= h[[(X1, f1); (X2, f2)]]F + (X1.h)(X2, f2)

and the Leibniz-type formula is satisfied.

Now, let us assume the sheaf mapping from the local Lie algebra (LGen(ω,Ω); [[, ]])

to sections of the F -Lie algebroid given by pairs of vector fields onM and functions

onM given by

(3.2) s : (f, h) 7→ (X(f,h), f − h).

Theorem 3.1. For the closed 2-form

F = Ω+ dω,

the sheaf mapping

s : LGen(ω,Ω) → X (M)× C∞(M)

given by (3.2) is a Lie algebra morphism.

P r o o f. For (fi, hi) ∈ LGen(ω,Ω), i = 1, 2, we have

[[(f1, h1); (f2, h2)]] =
(
{f1, f2}; {f1, h2} − {f2, h1} − dω(df ♯

1 , df
♯
2)
)

7→
(
d{f1, f2}

♯ +
(
{f1, h2} − {f2, h1} − dω(df ♯

1 , df
♯
2)
)
E;

{f1, f2} − {f1, h2}+ {f2, h1}+ dω(df ♯
1 , df

♯
2)
)
.

On the other hand, we have

[[s(f1, h1); s(f2, h2)]]F =
(
d{f1, f2}

♯ +
(
{f1, h2} − {f2, h1} − dω(df ♯

1 , df
♯
2)
)
E;

2{f1, f2} − {f1, h2}+ {f2, h1} − h1E.h2 + h2E.h1

+ F (df ♯
1 + h1E, df

♯
2 + h2E)

)
.
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The first parts of the above pairs are equal. The second parts are equal if and only if

0 = {f1, f2} − dω(df ♯
1 , df

♯
2)− h1E.h2 + h2E.h1 + F (df ♯

1 + h1E, df
♯
2 + h2E),

which can be rewritten, using Ω(df ♯
1 , df

♯
2) = −Λ(df1, df2) = −{f1, f2} (see [8]), as

0 = −h1(E.h2 − F (E, df
♯
2)) + h2(E.h1 − F (E, df

♯
1)) + (F − dω − Ω)(df ♯

1 , df
♯
2).

From Ω(E, df
♯
i ) = 0, E.hi − dω(E, df

♯
i ) = 0 (see Lemma 2.6) it is equivalent to

0 = (F − dω − Ω)(X(f1,h1), X(f2,h2)),

which is satisfied for F = Ω+ dω. �

Lemma 3.2. Let us consider the F -Lie algebroid given by the closed 2-form

F = Ω + dω. Let (Xi, f̆i) ∈ X (M) × C∞(M), i = 1, 2, be pairs such that Xi are

infinitesimal symmetries of (ω,Ω) and E.f̆i = −E.(ω(Xi)). Then the bracket [[, ]]F

of these pairs satisfies the same conditions.

P r o o f. [X1, X2] is an infinitesimal symmetry of (ω,Ω), so it is sufficient to

prove that

E.
(
X1.f̆2 −X2.f̆1 + F (X1, X2)

)
= −E.(ω([X1, X2])),

which can be rewritten as

X1.(E.f̆2)−X2.(E.f̆1) + E.(F (X1, X2))

= − E.(X1.(ω(X2))−X2.(ω(X1)− dω(X1, X2)).

From the condition E.f̆i = −E.(ω(Xi)) this equation is satisfied if and only if

E.(F (X1, X2)) = E.(dω(X1, X2)),

which is satisfied for F = Ω+ dω because LEΩ = 0 and LEXi = [E,Xi] = 0. �

Theorem 3.3. Let us consider the F -Lie algebroid given by the closed 2-form

F = Ω + dω. Let (Xi, f̆i) ∈ X (M) × C∞(M), i = 1, 2, be pairs such that Xi are

infinitesimal symmetries of (ω,Ω) and E.f̆i = −E.(ω(Xi)). Then the sheaf mapping

r : X (M)× C∞(M) → C∞(M)× C∞(M)

given by

(3.3) r : (X, f̆) 7→ (ω(X) + f̆ , ω(X))

has values in LGen(ω,Ω) and it is a Lie algebra morphism inverse to s.

703



P r o o f. First we have to prove that mapping (3.3) has values in LGen(ω,Ω).

Let us assume that X is an infinitesimal symmetry of (ω,Ω). By Theorem 2.5,

X = df ♯ + hE, where E.f = 0 and condition (2.5) is satisfied. It is easy to see that

h = ω(X). Then

f = ω(X) + f̆

is a conserved function. So we have

(3.4) X = d(ω(X) + f̆)♯ + ω(X)E

and the pair (ω(X) + f̆ , ω(X)) is in LGen(ω,Ω).

Now we have

[[(X1, f̆1); (X2, f̆2)]]F 7→
(
ω([X1, X2]) +X1.f̆2 −X2.f̆1 +Ω(X1, X2)

+ dω(X1, X2);ω([X1, X2])
)
.

On the other hand,

[[r(X1, f̆1); r(X2, f̆2)]] =
(
{ω(X1) + f̆1, ω(X2) + f̆2}; {ω(X1) + f̆1, ω(X2)}

− {ω(X2) + f̆2, ω(X1)} − dω(d(ω(X1) + f̆1)
♯, d(ω(X2) + f̆2)

♯)
)
.

These expressions are equal if and only if the following two equations are satisfied:

ω([X1, X2]) +X1.f̆2 −X1.f̆2 +Ω(X1, X2) + dω(X1, X2)(3.5)

= {ω(X1) + f̆1, ω(X2) + f̆2},

ω([X1, X2]) = {ω(X1) + f̆1, ω(X2)} − {ω(X2) + f̆2, ω(X1)}(3.6)

− dω(d(ω(X1) + f̆1)
♯, d(ω(X2) + f̆2)

♯).

Using (3.4) and (Λ♯ ⊗ Λ♯)(Ω) = −Λ, we can rewrite the left hand side of (3.5) as

X1.(ω(X2) + f̆2)−X2.(ω(X1) + f̆1) + Ω(X1, X2)

= id(ω(X1)+f̆1)♯+ω(X1)E
d(ω(X2) + f̆2)

− id(ω(X2)+f̆2)♯+ω(X2)E
d(ω(X1) + f̆1)

+ Ω(d(ω(X1) + f̆1)
♯, d(ω(X2) + f̆2)

♯)

= {ω(X1) + f̆1, ω(X2) + f̆2} − {ω(X2) + f̆2, ω(X1) + f̆1}

− {ω(X1) + f̆1, ω(X2) + f̆2}

= {ω(X1) + f̆1, ω(X2) + f̆2}.
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Similarly, using iEd(ω(X)) = dω(E,X), we can rewrite the left hand side of (3.6) as

X1.(ω(X2))−X2.(ω(X1))− dω(X1, X2)

= id(ω(X1)+f̆1)♯+ω(X1)E
d(ω(X2))

− id(ω(X2)+f̆2)♯+ω(X2)E
d(ω(X1))− dω(X1, X2)

= {ω(X1) + f̆1, ω(X2)} − {ω(X2) + f̆2, ω(X1)}

− dω(X1 − ω(X1)E,X2 − ω(X2)E)

= {ω(X1) + f̆1, ω(X2)} − {ω(X2) + f̆2, ω(X1)}

− dω(d(ω(X1) + f̆1)
♯, d(ω(X2) + f̆2)

♯),

which proves that (3.3) is a Lie algebra morphism.

Finally, it is easy to see that (r ◦ s)(f, h) = (f, h) for all (f, h) ∈ LGen(ω,Ω). �

4. Examples

In this section we recall results obtained for structures of the classical phase space.

These results were the motivation of the paper.

We assume classical space-time to be an oriented and time oriented 4-dimensional

manifold E equipped with a Lorentzian metric g with signature (1, 3) (see [7]). We

denote by (xλ) = (x0, xi), λ = 0, 1, 2, 3, local coordinates on E such that ∂0 is

time-like and ∂i are space-like. A motion is defined to be a 1-dimensional time-

like submanifold of space-time. We define the classical (Einsteinian) phase space

to be the open subspace J1E ⊂ J1(E, 1) consisting of all 1-jets (1st order contact

elements) of motions. So elements of J1xE are classes of non-parametrized curves

which have in a point x ∈ E the same tangent line lying inside the light cone. Further,

π1
0 : J1E → E is a fibred manifold but not an affine bundle! We have the induced

coordinate chart (xλ, xi
0).

The metric g gives naturally the unscaled horizontal time form

τ̂ : J1E → T ∗
E, τ̂ = τ̂λdx

λ.

4.1. Infinitesimal symmetries of the gravitational contact structure. The

pair (−τ̂ ,Ωg), where

Ωg = −dτ̂ : J1E →

2∧
T ∗J1E,

is the contact (gravitational) regular structure on J1E. The dual Jacobi structure

is given by a pair (−γ̂g,Λg), where γ̂g and Λg are naturally given by the metric field

(for details see [7]).
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By Corollary 2.8 infinitesimal symmetries of the gravitational contact phase struc-

ture are Hamilton-Jacobi lifts of conserved functions, i.e. they are of the type X =

df ♯ + f γ̂g, where γ̂g
.f = 0 and, moreover, f = τ̂ (X) = τ̂(X). Here X = T π1

0(X) :

J1E → TE is a generalized vector field in the terminology of [13]. So infinitesimal

symmetries are of the type

(4.1) X = d(τ̂ (X))♯ + τ̂ (X)γ̂g,

where the following conditions are satisfied:

(1) (Projectability.) The Hamilton-Jacobi lift (4.1) projects on X.

(2) (Conservation.) τ̂ (X) is conserved, i.e. γg
.(τ̂ (X)) = 0.

The following results were proved in [3].

Lemma 4.1. A symmetric k-vector field
k

K, k > 1, on E admits the generalized

vector field satisfying the projectability condition. Such generalized vector fields are

given by

X [
k

K] = kτ̂ y . . . y τ̂y︸ ︷︷ ︸
(k−1)−times

k

K − (k − 1)
k

K(τ̂ , . . . , τ̂)d̂ : J1E → TE,

where d̂ = T π1
0(γ̂

g). Then we obtain the induced phase function

τ̂
(
X [

k

K]
)
=

k

K(τ̂ ) =
k

K(τ̂ , . . . , τ̂) =
k

Kλ1...λk τ̂λ1 . . . τ̂λk
.

Lemma 4.2. Let
0

K be a space-time function. Then γ̂g
.

0

K = 0 if and only if
0

K is a constant. The phase function
k

K(τ̂ ), k > 1, is conserved with respect to the

gravitational Reeb vector field, i.e. γ̂g
.

k

K(τ̂ ) = 0, if and only if
k

K is a Killing k-vector

field.

Theorem 4.3. The Hamilton-Jacobi lift of a phase function

(4.2) K =
0

K +
∑

k>1

k

K(τ̂ )

is an infinitesimal symmetry of the gravitational contact phase structure (−τ̂ ,Ω g)

if and only if
0

K is a constant and
k

K, k > 1, are Killing k-vector fields. Moreover,

for k = 1 the corresponding infinitesimal symmetry coincides with the jet flow lift

J1

1

K and is projectable on space-time. For k > 2 the corresponding infinitesimal

symmetry is hidden.
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Remark 4.1. It is very well known that Killing multivector fields generate on T ∗
E

functions constant of motion (functions constant on lifts of geodesic curves), (see,

for instance, [15]). In [4] it was proved that if we consider the mapping −τ̂ : J1E →

T ∗
E, then a conserved phase function of type (4.2) is obtained as the pull-back

K = −τ̂ ∗(K̃) of a function K̃ constant of motion.

4.2. Infinitesimal symmetries of the total almost-cosymplectic-contact

phase structure. Let us assume an electromagnetic (Maxwell) field which is

a closed 2-form F̂ : E → ∧2T ∗
E. Then we can consider the total phase 2-form

Ωj =: Ω g +Ω e = −dτ̂ +
1

2
F̂ ,

and the pair (−τ̂ ,Ωj) turns out to be an almost-cosymplectic-contact structure of

the phase space, i.e. Ωj is closed and τ̂ ∧Ωj ∧ Ωj ∧ Ωj is a volume form.

The dual almost-coPoisson-Jacobi pair is then given by the total Reeb vector field

γ̂j = γ̂ g + γ̂ e and the total phase 2-vector Λj = Λg + Λe, where γ̂ e and Λe are

E-vertical given by g and F̂ , see [7].

In [4] it was proved that all phase infinitesimal symmetries of the total phase

structure are vector fields of the type

X = d(τ̂ (X) + f̆)♯j + τ̂ (X) γ̂j

where X is a generalized vector field and f̆ ∈ C∞(E) such that:

(1) df̆ = X y F̂ .

(2) (Projectability.) The vector field X projects on X .

(3) (Conservation.) γ̂j
.(τ̂ (X) + f̆) = 0.

The projectability condition is the same as in the case of the contact gravitational

structure, which follows from the fact that the fields γ̂e and Λe are E-vertical. So

it is sufficient to describe conditions under which function (4.2), where f̆ =
0

K, is

conserved.

Theorem 4.4 ([4]). A phase function (4.2) is conserved, i.e. γ̂j
.K = 0, if and

only if

g̺λ∂̺
0

K +
1

K̺F̂λ
̺ = 0,(4.3)

∇(λ1
k

Kλ2...λk+1) + (k + 1)
k+1

K ̺(λ1...λk F̂λk+1)
̺ = 0,(4.4)

for k > 1.
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Corollary 4.5. Let us assume a special phase function K =
0

K +
1

K(τ̂ ). Then

conditions (4.3) and (4.4) are reduced to

∂̺
0

K −
1

KσF̂σ̺ = 0, ∇(λ1
1

Kλ2) = 0

and we obtain the result of [9], i.e.
1

K is a Killing vector field and
0

K and
1

K are related

by the formula d
0

K =
1

K y F̂ . Moreover, the corresponding infinitesimal symmetry is

the jet flow lift J1

1

K, which projects on
1

K.

Remark 4.2. Let us assume a phase function K =
k

K(τ̂ ), k > 2. Then condi-

tion (4.4) gives

∇(λ1
k

Kλ2...λk+1) = 0,
k

K̺(λ1...λk−1 F̂λk)
̺ = 0

and we obtain that
k

K is a Killing-Maxwell k-vector field. But the corresponding

lift has to satisfy also condition (1), which is of the form X [K] y F̂ = 0. This

condition implies d̂ y F̂ = 0, which implies F̂ ≡ 0 and the structure is reduced

to the gravitational case. This implies that there are no non-projectable (hidden)

infinitesimal symmetries generated by Killing-Maxwell k-vector fields for k > 2.

So all infinitesimal symmetries of (−τ̂ ,Ωj) are projectable and can be generated by

pairs (X, f̆) of Killing vector fields and spacetime functions such that df̆ = X y F̂ .

Such pairs are sections of the Lie algebroid TE ⊕ R → E with the bracket [[; ]]F̂
(see Section 3 and [9]). The sections of the Lie algebroid described in Section 3 are

obtained as the 1-jet flow lifts of X and the pull-backs of f̆ .
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