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Abstract. In the literature, there are several graphs related to a finite group G. Two
of them are the character degree graph, denoted by ∆(G), and the prime graph, Γ(G). In
this paper we classify all finite groups whose character degree graphs are disconnected and
coincide with their prime graphs. As a corollary, we find all finite groups whose character
degree graphs are square and coincide with their prime graphs.
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1. Introduction

Let G be a finite group and let Irr(G) be the set of all irreducible complex char-

acters of G. The set of all irreducible complex character degrees of G is denoted by

cd(G) so that cd(G) = {χ(1) : χ ∈ Irr(G)}. The character degree graph ofG, written

∆(G), is the graph whose set of vertices ̺(G) is the set of primes that divide degrees

in cd(G) with an edge between distinct primes p and q if and only if pq divides some

complex irreducible character degrees of G.

Let π(m) denote the set of primes that divide the integer m. The prime graph

of G, denoted Γ(G), is the graph with vertex set π(G) := π(|G|). In this graph, two

distinct vertices p, q are connected by an edge if and only if there exists an element

of order pq in G.

In this paper, we are interested in finite groups G whose character degree graph

coincides with its prime graph, namely, π(G) = ̺(G) and G has an element of

order pq if and only if there exists an irreducible character degree of G which can be
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divisible by pq (for all p and q in π(G)). In this case we write ∆(G) = Γ(G). In this

paper, we classify all finite groups whose character degree graphs are disconnected

and coincide with their prime graphs. The main theorems are the following.

Theorem 1.1. Let G be a finite nonsolvable group. Then ∆(G) = Γ(G) and it

is disconnected if and only if G is isomorphic to one of the following groups:

(a) PSL(2, 2n) for an integer n > 2,

(b) PGL(2, q) where 5 6 q is odd.

Theorem 1.2. Let G be a finite solvable group. Then ∆(G) = Γ(G) and it is

disconnected if and only if G belongs to the following family, say (∗):

“G is the semi-direct product of a Frobenius subgroup H := 〈x〉 ⋊ 〈y〉 acting on

an elementary abelian p-group V for some prime p, CH(V ) = 1, 〈x〉 acts irreducibly

on V , |V | = qo(y) where q is a p-power and o(y) is the order of y in G, p | o(y) and

(qo(y) − 1)/(q − 1) | o(x)”

2. Disconnected graphs

In an unpublished paper, Gruenberg and Kegel have given the following classifi-

cation of all finite groups with disconnected prime graph, see [7].

Theorem 2.1 (see [7]). If G is a finite group whose prime graph has more than

one component, then G has one of the following structures:

(a) Frobenius or 2-Frobenius;

(b) simple;

(c) an extension of a π1-group by a simple group;

(d) simple by π1-solvable; or

(e) π1 by simple by π1 where π1 is the connected component of Γ(G) containing 2.

As a corollary, a finite solvable group whose prime graph is disconnected is Frobe-

nius or 2-Frobenius.

Disconnected graphs have been studied extensively and the groups having dis-

connected character degree graph have been classified. The paper [2] contains the

classification of the solvable groups G where ∆(G) is disconnected. Then, Lewis

and White have completed the classification of all finite groups having disconnected

character degree graph by [4].

Theorem 2.2 (see [4]). Let G be a group. Then ∆(G) has three connected

components if and only if G = S × A where S ∼= PSL(2, 2n) for an integer n > 2

and A is an abelian group.
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Theorem 2.3 (see [4]). Let G be a nonsolvable group. Then ∆(G) has two

connected components if and only if there exist normal subgroups N ⊆ K such that

the following conditions hold:

(i) K/N ∼= PSL(2, q), where q > 4 is a power of a prime p.

(ii) If C/N = CG/N (K/N), then C/N ⊆ Z(G/N) and G/K is abelian.

(iii) If q > 5, then p does not divide |G : CK|.

(iv) If N > 1, then either K ∼= SL(2, q) or there is a normal subgroup L of G

such that K/L ∼= SL(2, q), L is elementary abelian of order q2, and K/L acts

transitively on the nonprincipal characters in Irr(L).

(v) If p = 2 or q = 5, then either CK < G or N > 1.

(vi) If p = 2 and N > 1, then every nonprincipal character in Irr(L) extends to its

stabilizer in G.

The next theorem will be used often in the proof of Theorem 1.2.

Theorem 2.4 (see [2]). Let G be a finite solvable group. Then ∆(G) has two

connected components if and only if G belongs to one of the following families:

(i) G has a normal nonabelian Sylow p-subgroup P and an abelian p-complement

K for some prime p, P ′ 6 CP (K) and every nonlinear irreducible character of

P is fully ramified with respect to P/CP (K);

(ii) G is the semi-direct product of a subgroup H acting on a subgroup P where

P is elementary abelian of order 9 and cd(H) = {1, 2, 3}, CH(P ) 6 Z(H) and

H/CH(P ) ∼= SL(2, 3);

(iii) G is the semi-direct product of a subgroup H acting on a subgroup P where P

is elementary abelian of order 9 and cd(H) = {1, 2, 3, 4}, CH(P ) 6 Z(H) and

H/CH(P ) ∼= GL(2, 3);

(iv) G is the semi-direct product of a subgroup H acting on an elementary abelian

p-group V for some prime p, |H : F (H)| > 1, |V | = q|H:F (H)| where q is

a p-power, CH(V ) 6 Z(H), F (H)/CH(V ) is abelian, F (H) acts irreducibly

on V , (|H : F (H)|, |F (H) : CH(V )|) = 1 and (q|H:F (H)| − 1)/(q − 1) divides

|F (H) : CH(V )|;

(v) G has a normal nonabelian 2-subgroup Q and an abelian 2-complement K such

that |G : KQ| = 2 and G/Q is not abelian, Q′ 6 CQ(K) and CK(Q) is central

in G, every nonlinear irreducible character of Q is fully ramified with respect to

Q/CQ(K) which is an elementary abelian 2-group of order 22a for some positive

integer a and is an irreducible K-module, moreover, K/CK(Q) is abelian of

order 2a + 1;

(vi) G is the semi-direct product of an abelian group D acting coprimely on

a group T such that [T,D] is a Frobenius group with nonabelian p-group
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(for a prime p), Frobenius kernel T ′ = [T,D]′ and a Frobenius complement B

with [B,D] 6 B, every character in Irr(T | T ′′) is D-invariant, T ′/T ′′ is

B-irreducible, |T ′ : T ′′| = qm where q is a p-power, m = |D : CD(T ′)| and

(qm − 1)/(q − 1) divides |B|.

3. Subgroups of Aut(PSL(2, q))

Let us consider the special linear group SL(2, q) where q = pf for some prime p.

Let δ and ϕ be automorphisms of SL(2, q) whose actions on the elements of the group

are
[

a b

c d

]δ

=

[

a ν−1b

νc d

]

and

[

a b

c d

]ϕ

=

[

ap bp

cp dp

]

where ν is a fixed generator of F ∗
q , the multiplicative group of the field Fq of q

elements. Since the center of SL(2, q) is invariant under the actions of δ and ϕ,

these maps induce the automorphisms δ and ϕ on PSL(2, q) = SL(2, q)/Z by (gZ)δ=

gδZ and (gZ)ϕ= gϕZ, as usual. We will denote these induced automorphisms on

PSL(2, q) by δ, ϕ as well. In this case, the outer automorphism group of PSL(2, q)

is generated by the diagonal automorphism δ and the field automorphism ϕ and has

order df , where d = (2, q − 1). It is also well known that PSL(2, q)〈δ〉 ∼= PGL(2, q)

and Aut(PSL(2, q)) = PSL(2, q)〈δ, ϕ〉 ∼= PGL(2, q)〈ϕ〉.

If q is even, then δ is an inner automorphism and Aut(PSL(2, q)) = PSL(2, q)〈ϕ〉,

and if q is odd, then δ is an outer automorphism but δ2 is inner. Hence δ is of

order d = (2, q − 1) modulo inner automorphisms. Also ϕ is of order f . More-

over, if q is odd, then δ and ϕ commute modulo inner automorphisms, so that

Aut(PSL(2, q))/PSL(2, q) ∼= 〈δ〉 × 〈ϕ〉.

Lemma 3.1 (see [6]). If PSL(2, q) < G 6 Aut(PSL(2, q)) with q = pf , p an odd

prime, then one of the following casses occurs:

(a) δ ∈ G so that PGL(2, q) 6 G and G = PGL(2, q)〈ϕk〉 for some k | f with

1 6 k 6 f ;

(b) G = PSL(2, q)〈ϕk〉 for some k | f with 1 6 k < f ;

(c) G = PSL(2, q)〈δϕk〉 for some k | f with 1 6 k < f and f/k even.

Theorem 3.2 (see [4]). Let N ∼= PSL(2, q), where q = pn for a prime p and q > 5.

Suppose N < G 6 Aut(N). If p divides |G : N |, then ∆(G) is a connected graph.

If p does not divide |G : N |, then ∆(G) has exactly two connected components, {p}

and π(|G : N |(q2 − 1)).
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4. Main theorems

Lemma 4.1. If G is a Frobenius group, then ∆(G) is complete.

P r o o f. We can say first that F (G), Frobenius kernel of G, has a complete

character degree graph which is a subgraph of ∆(G) and that χG ∈ Irr(G), χG(1) =

χ(1)[G : F (G)] ∈ cd(G) for all χ ∈ Irr(F (G)). Thus ∆(G) must be complete since

̺(G) = ̺(F (G)) ∪ π([G : F (G)]). �

Corollary 4.2. Let G be a finite group. If ∆(G) = Γ(G), then G is not a Frobe-

nius group.

P r o o f. Assume that G is a Frobenius group. Then Γ(G) is a disconnected

graph. So we are done by Lemma 4.1 �

Now we prove Theorem 1.1.

P r o o f of Theorem 1.1. LetG be a finite nonsolvable group and let∆(G) = Γ(G)

be disconnected. By a result of Manz, Williams and Wolf the character degree graph

for any finite group has at most three connected components. Thus, ∆(G) has two

or three connected components since it is disconnected.

Case 1. ∆(G) has three connected components:

By Theorem 2.2, we know that G ∼= S × A where S ∼= PSL(2, 2n) for an integer

n > 2 and A is an abelian group. Since Γ(G) is disconnected, Z(G) = 1 and so

A = 1. Thus, G ∼= PSL(2, 2n) for an integer n > 2 as desired. By a result of Dickson

([1], page 213) which gives all subgroups of PSL(2, q) where q > 4, it follows that

Γ(PSL(2, 2n)) has three connected components, {2}, π(2n − 1) and π(2n + 1) where

n > 2, and each component is a complete graph in this graph. Thus we see that

∆(PSL(2, 2n)) = Γ(PSL(2, 2n)) for n > 2 by Theorem 3.1 of [6].

Case 2. ∆(G) has two connected components:

Then G has normal subgroups N and K that satisfy conditions (i)–(vi) of Theo-

rem 2.3.

(a) If N = 1 then K ∼= PSL(2, q), q > 4 and q is a power of a prime p by (i).

First, suppose p = 2 so that K ∼= PSL(2, 2n). Since ∆(G) has two connected com-

ponents but ∆(K) has three connected components, we see that K < G. Moreover,

K < G 6 Aut(K) since CG(K) 6 Z(G) = 1 by (ii). Assume q > 5, then 2 does not

divide the index |G : K| and 2 is an isolated vertex in ∆(G) by Theorem 3.2. But

this contradicts the fact that G/K is a 2-group by Theorem 2.1 and Corollary 4.2.

Thus q 6 5 and so K ∼= PSL(2, 4) ∼= PSL(2, 5) ∼= A5 where A5 is the alternating

group of degree five and so we find G = Aut(PSL(2, 4)) ∼= PGL(2, 5) ∼= S5 since

|Aut(PSL(2, 4)) : PSL(2, 4)| = 2. Indeed, ∆(G) = Γ(G) for G ∼= PGL(2, 5) and these

graphs have two connected components.
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Now we may suppose that p > 2. Since PSL(2, 4) ∼= PSL(2, 5) ∼= A5, we may

assume that q > 5. Since ∆(PSL(2, q)) has two connected components by Theo-

rem 3.1 of [6] and Γ(PSL(2, q)) has three connected components, ∆(K) 6= Γ(K) and

so PSL(2, q) ∼= K < G 6 Aut(K). Thus G is one of the groups (a), (b), (c) of

Lemma 3.1. If G = PGL(2, q) then we know that cd(G) = {1, q, q − 1, q + 1} and

µ(G) = {p, q − 1, q + 1} where µ(G) is the subset of elements in the set of orders of

elements in G which are maximal under the divisibility relation. Therefore, we see

that ∆(PGL(2, q)) = Γ(PGL(2, q)) and this graph has two connected components.

Now assume G 6= PGL(2, q). If G is one of the groups (a) and (b), then ϕk ∈ G for

some k | f with 1 6 k < f by Lemma 3.1. Since

[

1 0

1 1

]ϕk

=

[

1 0

1 1

]

, ϕk centralizes

an element of order p in G. On the other hand, p does not divide the index |G : K|

and p is an isolated vertex in ∆(G), and so Γ(G) by Theorem 3.2. Therefore, the

order of ϕk is a power of p. But this is a contradiction since 1 6= ϕkK ∈ G/K. Now

let G be as in (c) of Lemma 3.1. Thus, G = K〈δϕk〉 for some proper divisor k of f .

If f 6= 2k, then G has the element 1 6= ϕ2k outside K, and centralizes an element of

order p of K, which is a contradiction. Thus, f = 2k and so |G : K| = 2. In this

case, we find Γ(G) = Γ(K) since every involution of G lies in K. But this is also

a contradiction since Γ(K) has three connected components.

(b) If N > 1 then by (iv), either K ∼= SL(2, q) or there exists a normal subgroup

L of G such that K/L ∼= SL(2, q), L is elementary abelian of order q2, and K/L acts

transitively on the nonprincipal characters in Irr(L).

Suppose that K ∼= SL(2, q). In this case p 6= 2. Otherwise, K ∼= SL(2, q) ∼=

PSL(2, q) ∼= K/N and so N would be trivial. This contradiction shows that p 6= 2.

Thus we may assume that q > 5. Since Z(K) ∼= Z(SL(2, q)) > 1, K is a proper

subgroup of G. K/N ∼= PSL(2, q) and K ∼= SL(2, q) yield that the order of N

is 2. Then we conclude that Γ(G/N) is also disconnected since π(G/N) = π(G)

and Γ(G) is disconnected. Thus, the center of G/N is trivial. By using (ii), we

obtain that PSL(2, q) ∼= K/N < G/N 6 Aut(K/N). Furthermore, ∆(G/N) is

disconnected by Lemma 3.1 of [4] . So, p does not divide |G : K| and the connected

components of ∆(G/N) are {p} and π(|G : K|(q2 − 1)) by Theorem 3.2. Thus, by

Corollary 3.2. of [4], p is an isolated vertex in ∆(G). But SL(2, q) ∼= K, a subgroup

of G, contains an element with order 2p and so p is not an isolated vertex in Γ(G)

(recall that we consider the case where p is not 2). This contradicts the assumption

∆(G) = Γ(G).

Now we may suppose that G has a normal elemantary abelian subgroup L with

order q2 such that K/L ∼= SL(2, q). Let 1 6= υ ∈ Irr(L) and set T = IG(υ) (the

inertia group of υ in G). Since the action of K/L on Irr(L) − {1} is transitive, we

have |K : K ∩ T | = q2 − 1.
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First, assume that p = 2. Then we know that q2 − 1 ∈ cd(K) by (vi). Suppose

K = G, then T is a Sylow 2-subgroup of G and q2 − 1 is an irreducible character

degree of G. It implies that ∆(G) has two complete connected components, {2} and

π(q2−1) since π(G) = {2}∪π(q2−1) and∆(G) (= Γ(G)) is disconnected. Thus there

exists an element g in G such that o(g) = ab where a ∈ π(q−1) and b ∈ π(q+1). This

implies that G/L ∼= PSL(2, q) has an element with order ab. But this contradicts the

fact that Γ(PSL(2, q)) has three connected components, {2}, π(q − 1) and π(q + 1).

Thus K is proper in G. Since π(G/L) = π(G) and Γ(G) is disconnected, we see

that Γ(G/L) is also disconnected and so the center of G/L is trivial. Thus, by (ii),

CG/L(K/L) = 1 and so K/L < G/L 6 Aut(K/L). ∆(G/L) is also disconnected by

Lemma 3.1 of [4]. If q > 5, then 2 does not divide the index |G : K| and ∆(G/L)

has exactly two connected components, {2} and π(|G : K|(q2 − 1)) by Theorem 3.2.

Thus, by Corollary 3.2 of [4], 2 is an isolated vertex in∆(G) and so in Γ(G). Then, by

Theorem 2.1 and Corollary 4.2, we see thatG/K is a 2-group. This forces thatG = K

which is a contradiction. So q = 4. In this case, K/L ∼= SL(2, 4) ∼= PSL(2, 4) ∼= A5.

SinceK/L < G/L 6 Aut(K/L) ∼= S5, we haveG/L ∼= S5. Since π(G/L) = π(G) and

∆(G) is disconnected, we find that ∆(G) = ∆(S5), which is the disconnected graph

with two complete connected components, {2, 3} and {5}. But this is a contradiction

because we have 15 ∈ cd(K) by (vi) and so by the normality of K in G, there exists

an edge between the primes 3 and 5 in ∆(G).

Now we consider in the case where p 6= 2. We may assume thatK < G. Otherwise,

we find the contradiction that Γ(G) is connected since π(G/L) = π(G) and Γ(G/L)

is connected. We also know that |N | = 2|L| and so π(G/N) = π(G). Thus Γ(G/N)

is disconnected and so Z(G/N) = 1. By (ii), CG/N (K/N) = 1 and so K/N < G/N 6

Aut(K/N). By Lemma 3.1 of [4], ∆(G/N) is also disconnected. Therefore, p does

not divide the index |G : K| and ∆(G/N) has exactly two connected components,

{p} and π(|G : K|(q2 − 1)) by Theorem 3.2. Thus, by Corollary 3.2 of [4], p is an

isolated vertex in ∆(G) and so in Γ(G). Finally, we see that p is an isolated vertex

in Γ(G/L). But this is a contradiction since SL(2, q) ∼= K/L < G/L and so G/L has

an element of order 2p. So we are done with the proof of Theorem 1.1. �

Let G be a nonsolvable finite group with ∆(G) = Γ(G). By the proof of The-

orem 1.1, we understand that ∆(G) has two connected components if and only if

G is isomorphic to PGL(2, q) where 5 6 q is odd, and ∆(G) has three connected

components if and only if G is isomorphic to PSL(2, 2n) for an integer n > 2.

Now we deal with the solvable case which is Theorem 1.2.

P r o o f of Theorem 1.2. Let G be a finite solvable group with disconnected

∆(G) = Γ(G). Since ∆(G) is a disconnected graph, we know that G belongs to one

of the families (i)–(vi) in Theorem 2.4. First assume that G satisfies the hypotheses
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of (i). Since 1 < P ′ 6 CP (K) and K is abelian, we find that Γ(G) is complete. But

this contradicts the hypothesis that Γ(G) is disconnected.

Let G satisfy the hypotheses of (ii). We know that ∆(G) has two connected com-

ponents, {2} and {3} by Lemma 3.2 of [2], π(|G|) = {2, 3} since ∆(G) = Γ(G). Thus

we find that π(|H |) = {2, 3} and so Z(H) = 1 since ∆(G) = Γ(G) is disconnected

and cd(H) = {1, 2, 3}. Finally, H ∼= SL(2, 3) since CH(P ) 6 Z(H) = 1. But this is

not possible because there exists an element of order 6 in SL(2, 3).

If G satisfies the hypotheses of (iii) then ∆(G) has two connected components,

{2} and {3} by Lemma 3.3 of [2]. Similarly, we find that H ∼= GL(2, 3), but this is

also a contradiction. So G cannot be of type (iii).

Now suppose that G satisfies the hypotheses of (v). ∆(G) has two connected

components, {2} and π(2a+1) by Lemma 3.5 of [2]. But in this case Γ(G) is complete,

since 1 < Q′ 6 CQ(K). So we find that Γ(G) does not coincide with ∆(G).

Finally we will assume that G satisfies the hypotheses of (vi) and look for a con-

tradiction. We know that any solvable group with a disconnected prime graph is

a Frobenius group or 2-Frobenius group. Thus G is a 2-Frobenius group by Corol-

lary 4.2. Write F and E/F for the Fitting subgroups of G and G/F , respectively.

By Lemma 3.6 of [2], we can see that F = P and E = T = PQ where P is a normal

Sylow p-subgroup of G and Q is a p-complement. Thus E is a Frobenius group with

the kernel P since G is a 2-Frobenius group. It follows that p is an isolated vertex

in Γ(E) and so in Γ(G) since E is a normal Hall subgroup of G. But this is not

possible since ∆(G) = Γ(G) has two connected components, π([E : F ]) ∪ {p} and

π([D : CD(T ′)]) by Lemma 3.6 of [2].

Now, let G be as in (iv). In this case, G is a 2-Frobenius group. Write F and

E/F for the Fitting subgroups of G and G/F respectively. We see that CH(V ) =

Z(G) = 1, F = V and E = V F (H) by Lemma 3.4 of [2]. Groups G/V (∼= H)

and E = V F (H) are Frobenius groups since G is a 2-Frobenius group. Moreover,

G/E(∼= H/F (H)) and E/V (∼= F (H)) are cyclic. Therefore, there exist x, y ∈ H such

that H = 〈x〉⋊ 〈y〉. Finally, we find that G is the semi-direct product of a Frobenius

subgroupH := 〈x〉⋊〈y〉 acting on an elementary abelian p-group V for some prime p,

CH(V ) = 1, 〈x〉 acts irreducibly on V , |V | = qo(y) where q is a p-power, p | o(y) and

(qo(y) − 1)/(q − 1) | o(x) as desired. Conversely, for any group G of this type, ∆(G)

coincides with Γ(G) and these two graphs have two connected components, π(o(x))

and π(o(y)). �

Corollary 4.3. Let K be a finite solvable group where ∆(K) = Γ(K) is square.

Then K = A × B where A and B, normal Hall subgroups of K, belong to the

following family, say (∗∗):
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“G is the semi-direct product of a Frobenius subgroup H := 〈x〉 ⋊ 〈y〉 acting on

an elementary abelian p-group V for some prime p, CH(V ) = 1, 〈x〉 acts irreducibly

on V , o(x) is a power for some prime r, |V | = qo(y) where q and o(y) are a p-power

and (qo(y) − 1)/(q − 1) | o(x)”.

P r o o f. Let K be a finite solvable group where ∆(K) = Γ(K) is square with

vertex set ̺(K) = {p, r, q, s} and edge set {pq, ps, rq, rs}. By [3], we know that

K = A × B where ̺(A) = {p, r} and ̺(B) = {q, s}. A is the normal Hall {p, r}-

subgroup of K and B is the normal Hall {q, s}-subgroup of K since ∆(K) = Γ(K) is

square and K = A×B. It follows that ∆(A) = Γ(A) is the disconnected graph with

connected components {p}, {r}. Similarly ∆(B) = Γ(B) is the disconnected graph

with the connected components {q}, {s}. Thus A and B belong to the family (∗∗)

by Theorem 1.2. �

Corollary 4.4. LetK be a finite solvable group with F = F (K) abelian. Suppose

that∆(K) = Γ(K) and there is no complete vertex in∆(K). ThenK = D1×. . .×Dn

where Di, normal Hall subgroups of K, belong to the family (∗) of Theorem 1.2 for

all i.

P r o o f. By [5], we know that for an integer n, F = M1 × . . . × Mn × Z(K)

withM1, . . . ,Mn minimal normal subgroups of K and, moreover, K = D1× . . .×Dn

whereMi 6 Di and ∆(Di) is disconnected for all i. Since there is no complete vertex

in ∆(K) (= Γ(K)), we see that D1, . . . , Dn are Hall subgroups of K and π(|K|) =

̺(K) = ̺(D1)∪ . . .∪̺(Dn) so that ̺(Di)∩̺(Dj) = ∅ for every 1 6 i 6= j 6 n. Thus

we find that ̺(Di) = π(Di) and so ∆(Di) = Γ(Di) for all i since ∆(K) = Γ(K).

As ∆(Di) = Γ(Di) is disconnected, Di belongs to the family (∗) of Theorem 1.2 for

all i. �

Corollary 4.5. Let G be a finite group and ∆(G) = Γ(G). Suppose that G =

D1× . . .×Dn where Di is the normal Hall subgroup of G and ∆(Di) is disconnected

for all i.

(a) If G is solvable, then Di belongs to the family (∗) of Theorem 1.2 for all i.

(b) If G is nonsolvable, then there exists only one normal Hall subgroup Dj such

that Dj
∼= PSL(2, 2n) (for an integer n > 2) or Dj

∼= PGL(2, q) (5 6 q is odd)

and for all i 6= j, Di belongs to the family (∗) of Theorem 1.2.

P r o o f. It follows from the main theorems. �

We close this paper by asking a question which we are not able to answer. Which

finite groups satisfy the property ∆(G) = Γ(G)?
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