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Abstract. We consider a certain class of unbounded nonhyperbolic Reinhardt domains
which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan’s linearity
theorem for our unbounded nonhyperbolic domains, we give a complete description of the
automorphism groups of twisted Fock-Bargmann-Hartogs domains.
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1. Introduction

Let Ω be a domain in Cn and let Φ be a positive continuous function on Ω. Let

us first observe that the Hartogs domain Ω̂m = {(z, ζ) ∈ Ω×Cm : ‖ζ‖2 < Φ(z)} can

be rewritten as

Ω̂m = {(z, ζ) ∈ Ω× C
m : ζ ∈ Φ(z)1/2Bm}.

Based on this observation, Roos introduced the following domain in [19]:

Ω̂F = {(z, ζ) ∈ Ω× C
m : ζ ∈ Φ(z)

1/2
F},

where F is an arbitrary circular domain in Cm.

In recent years, the Hartogs domain Ω̂m received lots of attention especially when

the base domain Ω is an irreducible bounded symmetric domain F or Cn. More

precisely, the following two domains are investigated from many different aspects:

ΩCH := {(z, ζ) ∈ F × C
m : ‖ζ‖2 < N(z, z)µ},

ΩFBH := {(z, ζ) ∈ C
n × C

m : ‖ζ‖2 < e−µ‖z‖2

},
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where N is the generic norm of F and µ > 0. These domains are called the

Cartan-Hartogs domain (ΩCH) and the Fock-Bargmann-Hartogs domain (ΩFBH),

respectively. A remarkable fact on these domains is that explicit descriptions of the

automorphism group and explicit forms of the Bergman kernels are known. These

two objects are important research objects in several complex variables and usually

hard to compute explicitly. The Bergman kernel of ΩCH is firstly computed by Yin

in [29]. Another expression of the kernel in terms of the polylogarithm function is

given by the second author in [24]. In a paper by Ahn, Byun and Park [1], the au-

tomorphism group of ΩCH is determined completely. The Bergman kernel of ΩFBH

is firstly computed by Springer, see [20], for m = n = 1. This is generalized by the

second author in [25] for general m and n. By using an explicit form of Bergman

kernel, the automorphism group of ΩFBH is determined in [9] by the authors of the

present paper and Ninh. For other works related to these domains, see [2], [10], [11],

[14], [22], [30] and references therein.

As a natural question, one may ask which kinds of properties of the Hartogs

domains remain true for Roos’ domain Ω̂F or more general domains. For the Hartogs

domain Ω̂m, a series representation formula of the Bergman kernel, which is the so-

called Forelli-Rudin construction, is known (see [13]). This formula is generalized for

Roos’ domain Ω̂F when F is an irreducible bounded symmetric space or the complex

ellipsoid

Dp = {z ∈ C
m : |z1|

2p1 + . . .+ |zm|2pm < 1},

where p1, . . . , pm ∈ Z+ (see [4] and [27]). Another direction for a generalization of

the Hartogs domain has been also considered by several authors. Namely, we can

construct an analogue of the Hartogs domain by using the complex ellipsoid Dp as

follows:

Ω̂m,p = {(z, ζ) ∈ Ω× C
m : |ζ1|

2p1 + . . .+ |ζm|2pm < Φ(z)}, p1, . . . , pm ∈ Z+.

The Forelli-Rudin construction is generalized for Ω̂m,p in [27]. If Ω is an irreducible

bounded symmetric domain F and Φ is the generic norm of F , then this domain is

called the Hua domain. For works related to the Hua domain, see [17], [23]. In [28],

the Bergman kernel and the automorphism group of Ω̂m,p are studied when Ω = Cn

and Φ(z) = e−µ‖z‖2

.

Let us consider the domain

Ω̂F,Ψ = {(z, ζ) ∈ Ω× C
k1 × . . .× C

km : (Ψ1(z)
−1/2ζ1, . . . ,Ψm(z)−1/2ζm) ∈ F},

where Ψ1, . . . ,Ψm are positive continuous functions on Ω and ζ = (ζ1, . . . , ζm) ∈

Ck1 × . . . × Ckm , (k1, . . . , km) ∈ Zm
+ . If Ψ1 = . . . = Ψm, then this domain coincides
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with Roos’ domain Ω̂F . This domain Ω̂F,Ψ is called the Hua construction when

F = {(ξ1, . . . , ξm) ∈ C
k1 × . . . × C

km : ‖ξ1‖
2p1 + . . . + ‖ξm‖2pm < 1}, Ω = F

and Ψi = Nµi/(2pi) for 1 6 i 6 m (cf. [31]). Although a complete description

of the automorphism group of the Hua domain is already known (cf. [17], [23]),

its generalization to the Hua construction, is still open. The main result of this

paper gives a complete description of the automorphism group of the twisted Fock-

Bargmann-Hartogs domain

Dµ,p
n,m,k :=

{
(z, ζ1, . . . , ζm) ∈ C

n ×C
k1 × . . .×C

km :
‖ζ1‖

2p1

e−µ1‖z‖2 + . . .+
‖ζm‖2pm

e−µm‖z‖2 < 1
}

which is regarded as an unbounded counterpart of the Hua construction. Moreover,

we also give a complete description of the automorphism group of the domain

D = {(z, ζ) ∈ C
3 : eµ|z|

2

|ζ1|
2 + |ζ2|

2 < 1}.

Recently, this domain was considered by Huo and its Bergman kernel was computed

explicitly (see [5]). In contrast to the Fock-Bargmann-Hartogs domains, our argu-

ment here does not require an explicit form of the Bergman kernel.

The organization of the paper is described as follows: In Section 2, we recall basic

properties of the Bergman kernel and the representative domain. In Section 3, we

study Cartan’s linearity theorem in a Bergman kernel theoretic way. The result in

this section plays a substantial role in Section 4. We provide a description of the

automorphism group of the degenerate case D̃µ
n,m (see Section 4.1.1 for the definition)

in Theorem 4.9; Aut(D) is obtained as a corollary. Then we further give a description

of the automorphism group of Dµ,p
n,m,k in Section 4.

2. Bergman kernel and representative domain

Since the Bergman kernels play a substantial role in our argument, let us first

prepare some basic facts on this kernel function. Throughout this paper, we assume

that D is a complex domain in C
n containing the origin.

2.1. Bergman kernel. Let A2(D) be the space of square integrable holomorphic

functions on D,

A2(D) =

{
f ∈ O(D) :

∫

D

|f(z)|2 dV (z) <∞

}
,

where dV (z) is the standard Lebesgue measure on Cn. The space A2(D) is called

the Bergman space of D. We equip A2(D) with the inner product

〈f, g〉 =

∫

D

f(z)g(z) dV (z).

613



The reproducing kernel of A2(D) is called the Bergman kernel and we denote it

by KD. Let {ek}k∈N be a complete orthonormal basis of A
2(D). Then the Bergman

kernel is given by

(1) KD(z, w) =
∑

k∈N

ek(z)ek(w).

Let ϕ : D → D′ be a biholomorphism. A fundamental fact on the Bergman kernel

is the transformation formula

KD(z, w) = det Jac(ϕ,w)KD′(ϕ(z), ϕ(w)) det Jac(ϕ, z),

where Jac(ϕ, z) is the Jacobian matrix of ϕ = t(ϕ1, . . . , ϕn) at z:

Jac(ϕ, z) :=




∂ϕ1

∂z1
(z) . . .

∂ϕ1

∂zn
(z)

...
. . .

...
∂ϕn

∂z1
(z) . . .

∂ϕn

∂zn
(z)



.

Except some special cases, it is hard to compute the Bergman kernel for a given

domain. Some examples of domains with explicit Bergman kernels can be found

in [8], Chapter 12, and references therein.

2.2. Representative domain. Define an n× n matrix TD(z, w) by

TD(z, w) =
(∂2 logKD(z, w)

∂wα∂zβ

)
α,β=1,...,n

,

for KD(z, w) 6= 0. We denote

Kαβ(z, w) :=
∂2 logKD(z, w)

∂wα∂zβ
.

Remark 2.1. For many purposes such as the study of the Bergman metric, it

is sufficient to consider Kαβ(z, w) only on the diagonal points (i.e. z = w). On the

other hand, there is also a property which requires consideration of Kαβ(z, w) with

off-diagonal points.

In this paper, we use Kαβ(z, w) to prove Cartan’s linearity theorem in a Bergman

kernel theoretic way. Instead of posing the circularity for a domain, we pose the

following condition on TD for our revised Cartan’s theorem:

TD(z, 0) ≡ TD(0, 0) for any z ∈ D.
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Obviously, we need TD at the off-diagonal points to describe this condition. In our

argument, we always consider a domain D such that KD(0, 0) > 0 and KD(z, 0) ≡

KD(0, 0). These conditions give us the well-definedness of TD(z, 0) for any z ∈ D.

We note that KD is not necessarily zero-free in general. For details of the zero set

of the Bergman kernel, see [8], Chapter 12, and references therein.

Let ϕ be a biholomorphism ϕ : D → D′. It is well-known that TD and TD′ satisfy

the following transformation formula (cf. [6], equation (2.2), and [21], Lemma 1.1):

(2) TD(z, w) = t Jac(ϕ,w)TD′(ϕ(z), ϕ(w)) Jac(ϕ, z).

Recall that a domain D ⊂ Cn is called circular with its center at the origin (or

simply, circular) if eiθz ∈ D for any θ ∈ R and z ∈ D. A circular domain D is

called complete if λz ∈ D whenever z ∈ D and λ ∈ D. Using the transformation

formula (2), we obtain the following lemma (for details of the proof, see [6]).

Lemma 2.2. Let D be a bounded complete circular domain. Then we have

TD(z, 0) ≡ TD(0, 0) for any z ∈ D.

Before proceeding further, let us give a definition (see also [15]).

Definition 2.3. A bounded domain D in Cn is called a representative domain

if there exists a point z0 ∈ D such that TD(z, z0) is a constant matrix for all z ∈ D.

The point z0 is called the center of D.

The above lemma tells us that every bounded complete circular domain is a rep-

resentative domain with its center at the origin. We note that the notion of repre-

sentative domain can be considered for any domains (possibly unbounded) whenever

TD(z, z0) is well-defined.

3. Cartan’s theorem

Let us first recall a classical theorem due to Cartan:

Theorem 3.1. Let D be a bounded complete circular domain and f an automor-

phism fixing the origin. Then f is linear.

In our previous paper [9], by an observation from [6], we showed that this theorem

remains true even for unbounded circular cases under certain conditions on KD

and TD. In [9], the notion of the Bergman mapping played the key role in the

proof. After publishing the paper [9], we noticed that there is an alternative proof

by avoiding to use the Bergman mapping. The reader will see that Cartan’s linearity

615



theorem is quickly derived from the transformation formula (2) of TD. The proof of

the next proposition is essentially due to Lu, see [15]. However, we give a proof for

the convenience of the reader.

Proposition 3.2. Let D be a domain (not necessarily bounded) in Cn such that

KD 6≡ 0. We suppose two conditions:

(i) KD(z, 0) 6= 0 for all z ∈ D,

(ii) TD(z, 0) ≡ TD(0, 0) and TD(0, 0) is positive definite.

If f is an automorphism of D such that f(0) = 0 then f is linear.

P r o o f. Let us first observe that TD(z, w) is well-defined if K(z, w) 6= 0. By (i),

we see that TD(z, 0) is well-defined for any z ∈ D. Let f be as above. Applying (2)

and (ii), we obtain

TD(0, 0) = t Jac(f, 0)TD(0, 0) Jac(f, z),

which implies that Jac(f, z) is constant. Thus f(z) = Az+ c with A ∈ GL(n,C) and

c ∈ Cn, whereas c = 0 since f(0) = 0. �

Note that if D is a representative domain with its center at the origin, then we

always have TD(z, 0) ≡ TD(0, 0). Moreover, if it is circular, then we have KD(z, 0) ≡

KD(0, 0). Let us recall that a domain D ⊂ Cn is called Reinhardt if D is invariant

under (z1, . . . , zn) 7→ (eiθ1z1, . . . , e
iθnzn) for θ1, . . . , θn ∈ R. For Reinhardt domains,

the following theorem is known.

Theorem 3.3. Let D ⊂ Cn be a Reinhardt domain (possibly unbounded nonhy-

perbolic). Suppose that Vol(D) < ∞ and zi ∈ A2(D) for any 1 6 i 6 n. Then all

automorphisms f with f(0) = 0 are linear.

This theorem follows from Proposition 3.2 after checking that KD(0, 0) > 0 and

that TD(0, 0) is positive definite as in [28].

Remark 3.4. As we mentioned in Lemma 2.2, all bounded complete circular do-

mains are representative domains with their center at the origin. In [26], it is proved

that there is a certain class of quasi-circular domains in C2 which is representative

with their center at the origin. For instance, due to the main result in [26], one can

see that Cartan’s linearity theorem remains true for the following domain Ω, even

though it is not circular:

Ω = {(z1, z2) ∈ B
2 : |z31 + z22 | < 1}.

For Cartan’s linearity theorem and related results, see also [16], [18] and references

therein.
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4. Twisted Fock-Bargmann-Hartogs domains

4.1. Twisted Fock-Bargmann-Hartogs domains: special cases. Before con-

sidering the general cases, let us first study special ones. We believe that this section

will help the readers to grasp the key ideas of our paper. In this section, we investigate

the automorphism groups of the following cases of twisted Fock-Bargmann-Hartogs

domains:

Dµ
n,m =

{
(z, ζ) ∈ C

n × C
m :

|ζ1|
2

e−µ1‖z‖2 + . . .+
|ζm|2

e−µm‖z‖2 < 1
}
,

where µ = (µ1, . . . , µm) ∈ Rm
+ with µi 6= µj for i 6= j. If m = 2, n = 1 and µ2 → 0,

then this domain degenerates to the domain

D =
{
(z, ζ) ∈ C× C

2 :
|ζ1|

2

e−µ|z|2
+ |ζ2|

2 < 1
}
.

We note that an explicit form of the Bergman kernel of D is obtained by Huo in [5].

If µ1 = µ2 = . . . = µm, then D
µ
n,m is a Hartogs type domain, which is the so-called

Fock-Bargmann-Hartogs domain:

Dn,m = {(z, ζ) ∈ C
n+m : ‖ζ‖2 < e−µ‖z‖2

}.

As is proved in [9], the automorphism group of Dn,m is generated by the mappings

ϕU1 : (z, ζ) 7→ (U1z, ζ),

ϕU2 : (z, ζ) 7→ (z, U2ζ),

ϕv : (z, ζ) 7→ (z + v, e−µ〈z,v〉−µ‖v‖2/2ζ),

where U1 ∈ U(n), U2 ∈ U(m) and v ∈ C
n. The aim of this section is to give a com-

plete description of the automorphism group of Dµ
n,m. We also include a description

of the automorphism group for D as a degenerate case of Dµ
n,m.

4.1.1. Cartan’s linearity theorem for Dµ
n,m. Our domain Dµ

n,m is unbounded

nonhyperbolic and thus we cannot apply the classical Cartan’s theorem (The-

orem 3.1). Therefore we start our study with origin-preserving automorphisms

of Dµ
n,m. Since our domain is a Reinhardt domain, we use Theorem 3.3 as a main

tool.

To apply the theorem to our case, let us estimate the L2-norm of zαζβ :=
n∏

k=1

zαk

k

m∏
l=1

ζβl

l . By |zk| 6 ‖z‖ and |ζl|
2 6 e−µl‖z‖

2

for any 1 6 k 6 n and 1 6 l 6 m,

we first observe the estimate

‖zαζβ‖2L2(Dµ
n,m) 6

∫

Dµ
n,m

‖z‖2(α1+...+αn)e−(β1µ1+...+βmµm)‖z‖2

dV (z, ζ).
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For an arbitrary fixed z ∈ Cn, let us define

Ωm
z =

{
ζ ∈ C

m :
|ζ1|

2

e−µ1‖z‖2 + . . .+
|ζm|2

e−µm‖z‖2 < 1
}
.

Then, by Fubini’s theorem, we have

(3)

∫

Dµ
n,m

G(z) dV (z, ζ) =

∫

z∈Cn

G(z)

(∫

Ωm
z

1 · dV (ζ)

)
dV (z)

=
π
m

m!

∫

z∈Cn

G(z)e−(µ1+...+µm)‖z‖2

dV (z),

where we put G(z) = ‖z‖2(α1+...+αn)e−(β1µ1+...+βmµm)‖z‖2

for simplicity of notation.

By using the polar coordinates, (3) can be computed as follows:

π
m

m!

∫

z∈Cn

G(z)e−(µ1+...+µm)‖z‖2

dV (z)

=
π
m(2n)π2n/2

m! 2n2 Γ(2n2 )

∫ ∞

0

r2(α1+...+αn)e−(β1µ1+...+βmµm)r2r2n−1 dr

=
π
n+m(α1 + . . .+ αn + n− 1)!

m! (n− 1)! {(β1 + 1)µ1 + . . .+ (βm + 1)µm}α1+...+αn+n
.

Thus we have ‖zαζβ‖2L2(Dµ
n,m) < ∞, for any (α1, . . . , αn) ∈ Zn

>0 and (β1, . . . , βm) ∈

Zm
>0. In particular, it implies that our domain satisfies the assumption of Theo-

rem 3.3. In conclusion, we obtain Cartan’s linearity theorem for our domain.

Theorem 4.1. Let f be an automorphism of Dµ
n,m with f(0) = 0. Then f is

linear.

We note that the above argument works for any µ = (µ1, . . . , µm) 6= (0, . . . , 0) ∈

Rm
>0 and thus this theorem is also true for D .

4.1.2. Isotropy group. As we proved in the previous section, all automorphisms

of Dµ
n,m with f(0) = 0 are linear. This implies that the study of the isotropy

subgroup Iso0(D
µ
n,m) := {f ∈ Aut(Dµ

n,m) : f(0) = 0} ⊂ Aut(Dµ
n,m) is reduced to

that of the linear automorphism group. We begin our study with the invariance of

U = {(z, 0) ∈ C
n+m} ⊂ Dµ

n,m. One can prove the next lemma along the same lines

as for the Fock-Bargmann-Hartogs domain case (see [9], Lemma 8).

Lemma 4.2. Let ϕ be an arbitrary automorphism of Dµ
n,m. Then the space U

is invariant under ϕ.
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Let us next consider the case when µs+1 = . . . = µm = 0 for some s > 1.

Before doing so, let us maintain the notation. Put ζ = (ζ1, . . . , ζs) ∈ C
s and ζ̃ =

(ζs+1, . . . , ζm) ∈ Cm−s. Define D̃µ
n,m by

D̃µ
n,m :=

{
(z, ζ, ζ̃) ∈ C

n × C
s × C

m−s :
|ζ1|

2

e−µ1‖z‖2 + . . .+
|ζs|

2

e−µs‖z‖2 + ‖ζ̃‖2 < 1
}
.

Throughout what follows, we denote by Ua and V the sets defined by

Ua := {(z, 0, a) ∈ C
n × C

s × C
m−s : z ∈ C

n, a ∈ C
m−s},

V := {(z, 0, ζ̃) ∈ C
n × C

s × C
m−s : z ∈ C

n, ζ̃ ∈ C
m−s} =

⊔

ζ̃∈Cm−s

Uζ̃ .

Moreover, it immediately follows from the definition of U that U = U0.

Lemma 4.3. Let ϕ be an automorphism of D̃µ
n,m. Then

(i) ϕ(U0) ⊂ Ua for a point a ∈ B
m−s,

(ii) ϕ(V) ⊂ V .

P r o o f. For each ϕ ∈ Aut(D̃µ
n,m), we let ϕ(z, 0) = (ϕ1(z), ϕ2(z)) ∈ Cn × Cm

and ϕ2(z) = (ϕ21(z), . . . , ϕ2m(z)). In the same way as in [9], Lemma 8, one can

see that ϕ21, . . . , ϕ2m are constant functions. However, since µs+1 = . . . = µm = 0,

the argument of [9], Lemma 8, can be applied only to ϕ21, . . . , ϕ2s. Thus we have

ϕ21, . . . , ϕ2s ≡ 0. This completes the proof of (i).

Let us next show (ii). For Z ∈ BN and a fixed point p ∈ BN
∗ , define hp(Z) by

(4) hp(Z) := −
1

‖p‖2

√
1− ‖p‖2(‖p‖2Z − 〈Z, p〉p)− ‖p‖2p+ 〈Z, p〉p

1− 〈Z, p〉
.

Here we set h0 := id. It is well-known that hp is an automorphism of B
N and this

mapping satisfies the relation (cf. [7], Chapter 2)

1− ‖hp(Z)‖
2 =

(1− ‖p‖2)(1 − ‖Z‖2)

|1− 〈Z, p〉|2
.

Using this fact, one can check that the following mapping is an automorphism of D̃µ
n,m

for any a ∈ Bm−s:

ϕa : (z, ζ, ζ̃) 7→
(
z,

(1 − ‖a‖2)1/2

1− 〈ζ̃ , a〉
ζ, ha(ζ̃)

)
.

By definition, one can see that this mapping sends (z, 0, a) to (z, 0, 0) for all a ∈

B
m−s. Then ϕ(z0, 0, ζ̃0) can be rewritten as ϕ◦(ϕζ̃0

)−1(z0, 0, 0) for any fixed element

(z0, 0, ζ̃0). Since ϕ◦(ϕζ̃0
)−1 ∈ Aut(D̃µ

n,m), our desired conclusion now follows from (i).

�
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Before giving a description of the linear automorphisms of Dµ
n,m, we prepare one

more lemma.

Lemma 4.4. Let X and Y be elements of Matn×n(C). Then:

(i) If X ∈ U(n), then Y = X∗Y X if and only if XY = Y X .

(ii) If Y is a diagonal matrix with pairwise distinct entries, then XY = Y X implies

that X is a diagonal matrix.

(iii) If X is a diagonal unitary matrix, then X is diag(eiθ1 . . . eiθn) where are

θ1, . . . , θn ∈ R.

The proof is an exercise in elementary linear algebra and we omit it. We are now

ready to study the linear automorphisms of Dµ
n,m.

Proposition 4.5. Let f be a linear automorphism of Dµ
n,m. Then f is given by

f =

(
U1 0

0 diag(eiθ1 . . . eiθm)

)

for some U1 ∈ U(n) and (θ1, . . . , θm) ∈ Rm.

P r o o f. Let A ∈ Matn×n(C), B ∈ Matn×m(C), C ∈ Matm×n(C) and D ∈

Matm×m(C). Put

f(z, ζ) =

(
A B

C D

)(
z

ζ

)
.

By Lemma 4.2, we see that

(
A B

C D

)(
z

0

)
=

(
Az

Cz

)
∈ U

for any z ∈ Cn. Thus we have C = 0. We next show that A ∈ U(n) and B = 0.

Since our domain is a Reinhardt domain containing the origin, the set S defined by

S := {zk1
1 . . . zkn

n ζ
k′

1
1 . . . ζ

k′

m
m }k∈Zn

>0
,k′∈Zm

>0
∩ A2(Dµ

n,m)

= {zk1
1 . . . zkn

n ζ
k′

1
1 . . . ζ

k′

m
m }k∈Zn

>0
,k′∈Zm

>0

forms a complete orthogonal basis of A2(Dµ
n,m) (see Section 4.1.1). Thus the nor-

malized monomials form a complete orthonormal basis of A2(Dµ
n,m). Therefore, the

Bergman kernel has the following form by (1):

KDµ
n,m

((z, ζ), (z′, ζ′)) =
∑

k,k′

ak,k′xk1
1 . . . xkn

n y
k′

1
1 . . . y

k′

m
m ,
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where we put xi = ziz
′
i, yl = ζlζ

′
l and ak,k′ = ‖zk1

1 . . . zkn
n ζ

k′

1
1 . . . ζ

k′

m
m ‖−2

L2(Dµ
n,m)
. Using

this form, we see that TDµ
n,m

(0, 0) has the form

TDµ
n,m

(0, 0) =

(
λIn 0

0 Q

)
,

where λ > 0 and Q is a diagonal matrix with nonzero positive real entries. A direct

computation shows that all diagonal entries of Q are pairwise distinct. For the

convenience of the reader, we put the details of the computation of Q in Appendix

separately. Then, by (2), we obtain

(5)

(
λIn 0

0 Q

)
=

(
A∗ 0

B∗ D∗

)(
λIn 0

0 Q

)(
A B

0 D

)

=

(
λA∗A λA∗B

λB∗A λB∗B +D∗QD

)
.

Comparing both sides of this equality, we have A ∈ U(n) and B = 0. We next show

that D ∈ U(m). To this end let us observe that {(0, ζ) ∈ Dµ
n,m} = {0} × Bm and

(
A 0

0 D

)(
0

ζ

)
=

(
0

Dζ

)
.

This implies that f induces a linear automorphism g : ζ 7→ Dζ of Bm. Thus we see

that D ∈ U(m). To complete the proof, it is enough to show that D is a diagonal

matrix. By (5), we have Q = D∗QD. Since D ∈ U(m) and Q is a diagonal matrix

with pairwise distinct entries, our desired conclusion follows from Lemma 4.4. �

Before proceeding, we give a remark on TDµ
n,m

(0, 0).

Remark 4.6. In the proof of this proposition, a form of TDµ
n,m

(0, 0) played

a substantial role. Forms of the (1, 1)-block entry and the (2, 2)-block entry can be

determined by direct computation of integrals onDµ
n,m. We note that the form of the

(1, 1)-block entry can also be derived quickly from the transformation formula (2).

An outline of the argument is described as follows:

Step 1. Show that TDµ
n,m

(0, 0) is a diagonal matrix by using the form of KDµ
n,m
in

the above proof.

Step 2. Apply (2) to TDµ
n,m

(0, 0) with the mapping F12 defined by

F12 : (z1, z2, . . . , zn, ζ) 7→ (z2, z1, . . . , zn, ζ),

which is a unitary automorphism of Dµ
n,m.

Step 3. By Step 2, one can see thatK1̄1(0, 0) = K2̄2(0, 0). In a similar way, one can

define a unitary automorphism Fij for i 6= j and obtain K1̄1(0, 0) = . . . = Kn̄n(0, 0).
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The proof of the above proposition does not work if µs+1 = . . . = µm = 0 and

hence we shall consider this case separately.

Lemma 4.7. Let g be a linear automorphism of D̃µ
n,m. Then g is given as

g =



U1 0 0

0 diag(eiθ1 . . . eiθs) 0

0 0 U2


 ,

where U1 ∈ U(n), U2 ∈ U(m− s) and θ1, . . . , θs ∈ R.

P r o o f. Put

g =



X11 X12 X13

X21 X22 X23

X31 X32 X33


 .

As we proved in Lemma 4.3, the subspace defined by U0 := {(z, 0, 0) ∈ Cn+s+(m−s)}

is not invariant under actions of the automorphism group. Instead of the invariance,

we have

ϕ(U0) ⊂ Ua := {(z, 0, a) ∈ C
n+s × B

m−s},

where ϕ is an arbitrary fixed automorphism and a is a fixed point in the complex

unit ball Bm−s. It follows that

g



z

0

0


 =



X11z

X21z

X31z


 ∈ Ua.

Thus we have X31z = a ∈ Bm−s and X21z = 0 for any z ∈ Cn. Putting z = 0, we see

that the fixed element a equals the zero vector in C
m−s. Therefore we immediately

have X31 = 0. It is clear that X21 = 0 if X21z = 0 for all z ∈ Cn. Moreover, we also

obtain X23 = 0 by the invariance of V which is proved in Lemma 4.3.

Let us consider TD̃µ
n,m

(0, 0). By using the idea mentioned in Remark 4.6, one can

deduce that TD̃µ
n,m

(0, 0) is a diagonal matrix and the (1, 1)-block entry and the (3, 3)-

block entry are scalar matrices. Furthermore, we can verify by direct computation

that the (2, 2)-block entry is a diagonal matrix with pairwise distinct entries. Namely,

TD̃µ
n,m

(0, 0) has the form

TD̃µ
n,m

(0, 0) =



λ1In 0 0

0 Q 0

0 0 λ2Im−s


 ,

where λ1, λ2 > 0 and Q is a diagonal matrix with pairwise distinct positive entries.

Then, by using an argument similar to that in the previous proposition, we see that
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X12, X13 and X32 are zero matrices. The rest of the proof also proceeds along the

same lines as that of the previous proposition. Indeed, the transformation formula (2)

and Lemma 4.4 ensure that X11 ∈ U(n), X33 ∈ U(m−s) andX22 = diag(eiθ1 . . . eiθs)

for θ1, . . . , θs ∈ R. �

4.1.3. Automorphism group. In Section 4.1.2, we provided a description of the

linear automorphism group. In this section, we give a complete description of the

holomorphic automorphism group of Dµ
n,m.

Theorem 4.8. The automorphism group of Dµ
n,m is generated by the following

mappings:

ψU : (z, ζ) 7→ (Uz, ζ),

ψθ : (z, ζ) 7→ (z,Rθζ),

ψv : (z, ζ) 7→ (z + v, e−µ1〈z,v〉−µ1‖v‖
2/2ζ1, . . . , e

−µm〈z,v〉−µm‖v‖2/2ζm),

where U ∈ U(n), Rθ = diag(eiθ1 . . . eiθm), θ = (θ1, . . . , θm) ∈ Rm and v ∈ Cn.

P r o o f. One can readily check that ψU , ψθ and ψv are automorphisms of D
µ
n,m.

Let F be an arbitrary automorphism of Dµ
n,m. By the invariance of U (see

Lemma 4.2), we put F (0, 0) = (v0, 0) for some v0 ∈ Cn. Then we see that ψ−v0 ◦ F

preserves the origin. Therefore, we can conclude that ψ−v0 ◦ F = ψθ ◦ ψU . Since

(ψ−v0)
−1 = ψv0 , our mapping F can be written as ψv0 ◦ ψθ ◦ ψU . �

The next theorem gives a description of the automorphism group of D̃µ
n,m.

Theorem 4.9. The automorphism group of D̃µ
n,m is generated by the mappings

ψU,U ′ : (z, ζ, ζ̃) 7→ (Uz, ζ, U ′ζ̃), U ∈ U(n), U ′ ∈ U(m− s),

ψθ : (z, ζ, ζ̃) 7→ (z,R′
θζ, ζ̃), R′

θ = diag(eiθ1 . . . eiθs), θ = (θ1, . . . , θs) ∈ R
s,

ψv,a : (z, ζ, ζ̃) 7→ (z + v, e−µ1〈z,v〉−µ1‖v‖
2/2Fa(ζ̃)ζ1, . . . ,

e−µs〈z,v〉−µs‖v‖
2/2Fa(ζ̃)ζs, ha(ζ̃)),

where v ∈ Cn, a ∈ Bm−s, Fa(ζ̃) = (1− ‖a‖2)1/2/(1− 〈ζ̃, a〉) and ha is the mapping

defined in (4).

The proof of this theorem proceeds along the same lines as that of the previous one

and we omit details of the proof. Note that we use Lemma 4.3 and Lemma 4.7 for the

proof. As a special case of this theorem, we have a description of the automorphism

group of D .
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Corollary 4.10. The automorphism group of

D = {(z, ζ) ∈ C× C
2 : eµ|z|

2

|ζ1|
2 + |ζ2|

2 < 1}

is generated by the mappings

̺θ : (z, ζ1, ζ2) 7→ (eiθ1z, eiθ2ζ1, e
iθ3ζ2), θ = (θ1, θ2, θ3) ∈ R

3,

ψv,a : (z, ζ) 7→
(
z + v, e−µzv−µ|v|2/2 (1− |a|2)1/2

1− aζ2
ζ1,

ζ2 − a

1− aζ2

)
,

where v ∈ C and a ∈ D.

4.2. Twisted Fock-Bargmann-Hartogs domains: general cases. The re-

maining part of this paper is devoted to the study of the domain

Dµ,p
n,m,k :=

{
(z, ζ1, . . . , ζm) ∈ C

n×C
k1 × . . .×C

km :
‖ζ1‖

2p1

e−µ1‖z‖2 + . . .+
‖ζm‖2pm

e−µm‖z‖2 < 1
}
,

where µ1, . . . , µm, p1, . . . , pm are positive real numbers and k1, . . . , km are positive

integers. For simplicity of notation, we denote this domain by T . Without loss of

generality, in what follows we always assume that

(6) pi = pj = 1, only if µi 6= µj .

Indeed, if pi = pj = 1 and µi = µj for some i and j, then we have

‖ζi‖
2pi

e−µi‖z‖2 +
‖ζj‖

2pj

e−µj‖z‖2 =
‖ζ′‖2

e−µi‖z‖2

for z ∈ Cn, ζi ∈ Cki , ζj ∈ Ckj and ζ′ := (ζi, ζj) ∈ Cki+kj . This means that we

can merge two factors Cki and Ckj into Cki+kj in the description of Dµ,p
n,m,k. After

all the possible mergers, we always have (6). Since the arguments for this domain

are almost identical to that of the previous section except some points, we will only

explain the key points of the arguments here.

We first observe that Cartan’s theorem remains true for T . For the proof, we

can use an argument similar to that in Theorem 4.1. Indeed, we have |zk| 6 ‖z‖,

‖ζl‖
2 6 e−µl‖z‖

2/pl and µl/pl > 0 for all 1 6 k 6 n and 1 6 l 6 m. Although we

need to modify the definition of Ωm
z for this case, the final conclusion is the same

(i.e. ‖zαζβ‖2L2(T ) <∞).

Theorem 4.11. Let f be an automorphism of T with f(0) = 0. Then f is linear.
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We next observe that Lemma 4.2 is also true for T :

Lemma 4.12. Let ϕ be an arbitrary automorphism of T . Then the space

{(z, 0) ∈ Cn+k1+...+km} ⊂ T is invariant under ϕ.

In fact, using again ‖ζl‖
2 6 e−µl‖z‖

2/pl and µl/pl > 0, we can conclude that

ϕ2l ≡ 0 ∈ Ckl for each 1 6 l 6 m as in [9], Lemma 8. We next consider how

Proposition 4.5 can be generalized to T . For the convenience of the exposition, our

study in this section will be divided into the following two cases.

Case I : (p1, . . . , pm) = (1, . . . , 1),

Case II : (p1, . . . , pm) 6= (1, . . . , 1).

The first case will be studied in the next subsection and the other in Section 4.2.2.

4.2.1. Case I: (p1, . . . , pm) = (1, . . . , 1). Thanks to (6), we can always assume

that µi 6= µj , i 6= j, in this case. We prepare the following lemma as a generalization

of Proposition 4.5.

Lemma 4.13. Every linear automorphism g : (z, ζ1, . . . , ζm) 7→ (z̃, ζ̃1, . . . , ζ̃m)

of T is given as

z̃ = Uz, ζ̃l = Ulζl,

where U ∈ U(n), Ul ∈ U(kl), 1 6 l 6 m.

P r o o f. Let us use the same notation as in Proposition 4.5. Since the arguments

for proving A ∈ U(n), B = 0, C = 0 are the same as before, we discuss only D. In

this case, TT has the following form (see also Remark 4.6):

TT (0, 0) =

(
λ′In 0

0 Q′

)
,

where λ′ > 0. Here, by using a computation similar to that in Appendix, we see

that Q′ is a block diagonal matrix such that

Q′ =




c1Ik1 0 . . . 0

0 c2Ik2 . . . 0
...

...
. . .

...

0 0 . . . cmIkm


 ,

where c1, . . . , cm are pairwise distinct positive numbers. In this case g induces a linear

automorphism ζ 7→ Dζ of Bk1+...+km and thus D ∈ U(k1 + . . . + km). Moreover,

we can derive Q′ = D∗Q′D in the same way as in Proposition 4.5. Since D ∈

U(k1 + . . . + km) and Q′ = D∗Q′D is such that Q′ is a block diagonal matrix as

above, one can deduce that D is a unitary block diagonal matrix by using the fact

that c1, . . . , cm are pairwise distinct. Therefore we can conclude that D has our

desired form. �
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Using the above arguments, we are now ready to state the following theorem.

Theorem 4.14. The automorphism group of T is generated by the linear map-

ping as in Lemma 4.13 and the mapping

ψv : (z, ζ) 7→ (z + v, e−µ1〈z,v〉−µ1‖v‖
2/2ζ1, . . . , e

−µm〈z,v〉−µm‖v‖2/2ζm),

where v ∈ Cn.

The proof of this theorem is identical to that of Theorem 4.8.

4.2.2. Case II: (p1, . . . , pm) 6= (1, . . . , 1). Without loss of generality, we relabel

the indices so that pi = 1, i 6 t, and pj 6= 1, j > t, for some t = 0, 1, . . . ,m − 1.

With this notation, we investigate the following domain in this section:

T =

{
(z, ζ1, . . . , ζm) ∈ C

n+k1+...+km :

t∑

i=1

‖ζi‖
2

e−µi‖z‖2 +

m∑

j=t+1

‖ζj‖
2pj

e−µj‖z‖2 < 1

}
.

We prepare the following lemma instead of Lemma 4.13.

Lemma 4.15. Let t be as above. Then every linear automorphism

g : (z, ζ1, . . . , ζm) 7→ (z̃, ζ̃1, . . . , ζ̃m)

of T is given as

(7) z̃ = Uz, ζ̃i = Ûiζi, ζ̃j = Ujζσ(j) for i 6 t and j > t.

Here U ∈ U(n), Ûi ∈ U(ki), Uj ∈ U(kj), and σ is a permutation of {t + 1, . . . ,m}

satisfying kj = kσ(j), pj = pσ(j) and µj = µσ(j) for each j > t.

P r o o f. Again, let us use the same notation as in Proposition 4.5. For A ∈ U(n),

B = 0, C = 0, we can use the same argument even for T . In the rest of the proof,

we discuss only D. In Proposition 4.5, we used the fact that D induces a linear

automorphism of {(0, ζ) ∈ Dµ
n,m} = {0}×B

m. In the case of this lemma, D induces

a linear automorphism of

E(k′, kt+1, . . . , km; 1, pt+1, . . . , pm)

:= {(ζ′, ζt+1, . . . , ζm) ∈ C
k′+kt+1+...+km : ‖ζ′‖2 + ‖ζt+1‖

2pt+1 + . . .+ ‖ζm‖2pm < 1},
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where k′ := k1 + . . . + kt. On the other hand, we first note from Kodama in [12],

Lemma, that D can be decomposed into the form

D =

(
D1 0

0 D2

)
,

where D1 ∈ Matk′×k′(C) and D2 ∈ Matk′′×k′′ (C) for k′′ := kt+1 + . . . + km. In

addition, since (z, ζ′) 7→ (Az,D1ζ
′) induces a linear automorphism of

{
(z, ζ1, . . . , ζt) ∈ C

n+k1+...+kt :
‖ζ1‖

2

e−µ1‖z‖2 + . . .+
‖ζt‖

2

e−µt‖z‖2 < 1
}
,

an argument similar to that in Lemma 4.13 after replacing m by t implies that

D1 =




Û1 0 . . . 0

0 Û2 . . . 0
...

...
. . .

...

0 0 . . . Ût


 ,

where Ûi ∈ U(ki) for each i 6 t. If t = 0, then we have D = D2.

Next we note that since ζ′′ 7→ D2ζ
′′ induces a linear automorphism of a generalized

complex ellipsoid

E(kt+1, . . . , km; pt+1, . . . , pm)

:= {ζ′′ = (ζt+1, . . . , ζm) ∈ C
kt+1+...+km : ‖ζt+1‖

2pt+1 + . . .+ ‖ζm‖2pm < 1},

D2 can be described by using the relation ζ̃j = Ujζσ(j), j > t, in (7) (cf. [12],

Lemma, and [23], Theorem 1.B). It clearly follows from the above conditions on σ

that kj = kσ(j) and pj = pσ(j) for each j > t.

We now prove that µj = µσ(j) for j 6= σ(j). Aiming at contradiction, for the case

when µj 6= µσ(j) for some j 6= σ(j), suppose that the associated mapping g of the

form (7) is contained in the automorphism group of T . Without loss of generality,

we may assume that j < σ(j). Then we take a point

(z, ζ0) :=
(
z, 0, . . . , 0, e−µj‖z‖

2/(2pj)
(1
2

)1/(2pj)

aj , 0, . . . , 0,

e−µσ(j)‖z‖
2/(2pσ(j))

(1
2

)1/(2pσ(j))

aσ(j), 0, . . . , 0
)
∈ ∂T ,

where z ∈ Cn, aj ∈ ∂Bkj and aσ(j) ∈ ∂Bkσ(j) for j > t. Since g(∂T ) = ∂T as a set,

we infer that

g(z, ζ0) =
(
Az, 0, . . . , 0, Uje

−µσ(j)‖z‖
2/(2pσ(j))

(1
2

)1/(2pσ(j))

aσ(j), 0, . . . , 0,

Uσ(j)e
−µj‖z‖

2/(2pj)
(1
2

)1/(2pj)

aj , 0, . . . , 0
)
∈ ∂T ,
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which contradicts the fact that

1
2e

−µσ(j)‖z‖
2

e−µj‖z‖
2 +

1
2e

−µj‖z‖
2

e−µσ(j)‖z‖
2 6= 1

for all z ∈ Cn \ {0} if µj 6= µσ(j). This completes the proof of the assertion. �

Once the above arguments are established, we have the following theorem.

Theorem 4.16. The automorphism group of T is generated by the linear map-

ping as in Lemma 4.15 and the mapping

ψv,p : (z, ζ) 7→ (z + v, e−µ1〈z,v〉/p1−µ1‖v‖
2/(2p1)ζ1, . . . , e

−µm〈z,v〉/pm−µm‖v‖2/(2pm)ζm),

where v ∈ Cn.

Since the proof of this theorem is identical to that of Theorem 4.8 except the

definition of ψv,p, we omit it.

Appendix

In this appendix we give the details of the computation of the matrix Q in the

procedure of proving Proposition 4.5.

As in the proof of Proposition 4.5, the Bergman kernel of Dµ
n,m can be written as

KDµ
n,m

((z, ζ), (z′, ζ′)) =
∑

k,k′

ak,k′(z1z
′
1)

k1 . . . (znz
′
n)

kn(ζ1ζ
′
1)

k′

1 . . . (ζmζ
′
m)

k′

m ,

where ak,k′ = ‖zk1
1 . . . zkn

n ζ
k′

1
1 . . . ζ

k′

m
m ‖−2

L2(Dµ
n,m)
. Using the definition of Q, we compute

the values of ( ∂2

∂ζ′γ∂ζν
logKDµ

n,m
((z, ζ), (z′, ζ′))

)
16γ,ν6m

at ((z, ζ), (z′, ζ′)) = (0, 0). By a direct computation, one can deduce that

∂2

∂ζ′γ∂ζν
logKDµ

n,m
((z, ζ), (z′, ζ′))

∣∣∣
((z,ζ),(z′,ζ′))=(0,0)

=
δγνa0,k̂′

ν

a0,0
,

where k̂′ν denotes the multi-index k
′ where the νth component is one and all other

ones vanish. Indeed, the precise value of a
0,k̂′

ν
can be obtained by considering the

change of variables

ζl = ̺le
−µl‖z‖

2/2eiθl with

m∑

i=1

̺2i < 1, ̺l > 0, 0 6 θl 6 2π for l = 1, . . . ,m.
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Then we get

dV (ζ) = e−|µ|‖z‖2
m∏

l=1

̺l d̺1 . . . d̺m dθ1 . . . dθm,

where |µ| :=
m∑
l=1

µl. Putting R :=
{
(̺1, . . . , ̺m) ∈ [0, 1)m :

m∑
l=1

̺2l < 1
}
, one can

deduce that

(a
0,k̂′

ν
)
−1

=

∫

Dµ
n,m

|ζν |
2
dV (z, ζ)

= (2π)m
∫

Cn

∫

R

e−µν‖z‖
2

̺2νe
−|µ|‖z‖2

m∏

l=1

̺l d̺1 . . . d̺m dV (z)

= (2π)
m
∫

Cn

e−(µν+|µ|)‖z‖2

dV (z)

∫

R

̺2ν

m∏

l=1

̺l d̺1 . . . d̺m.

Due to the symmetry of coordinates, the second factor
∫
R
̺2ν

m∏
l=1

̺l d̺1 . . . d̺m is

independent of the choice of ν. Moreover, since

∫

R

x2a1+1
1 . . . x

2am−1+1
m−1 x2am+1

m dx1 . . . dxm−1 dxm

=
Γ(a1 + 1) . . .Γ(am−1 + 1)Γ(am + 1)

2mΓ(a1 + . . .+ am−1 + am +m+ 1)

for all constants al > −1 where 1 6 l 6 m (cf. [3], Lemma 1), we obtain

∫

R

̺2ν

m∏

l=1

̺l d̺1 . . . d̺m =
1

(m+ 1)! 2m
.

On the other hand, we have

∫

Cn

e−(µν+|µ|)‖z‖2

dV (z) =

n∏

k=1

∫

C

e−(µν+|µ|)|zk|
2

dV (zk) =
π
n

(µν + |µ|)n
.

Therefore, we get

(8) (a
0,k̂′

ν
)
−1

=
π
n+m

(m+ 1)! (µν + |µ|)
n .

Now let us consider (a0,0)
−1
that is exactly the Euclidean volume Vol(Dµ

n,m)

of Dµ
n,m. This indeed follows from a special case of equation (3) in Section 4. More
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precisely, if we let α1 = . . . = αn = β1 = . . . = βm = 0 in (3), then the discussion

right after (3) shows that

(9)

∫

Dµ
n,m

G(z) dV (z, ζ) =

∫

Dµ
n,m

1 · dV (z, ζ) = Vol(Dµ
n,m) =

π
n+m

m! |µ|
n .

Thus, combining (8) with (9), we obtain

∂2

∂ζ′γ∂ζν
logKDµ

n,m
((z, ζ), (z′, ζ′))

∣∣∣
((z,ζ),(z′,ζ′))=(0,0)

=
δγνa0,k̂′

ν

a0,0
=
δγν(m+ 1)(µν + |µ|)

n

|µ|
n .

Hence this relation ensures that Q is a diagonal matrix with pairwise distinct positive

diagonal entries.
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