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Abstract. A metacyclic group H can be presented as (a,8: o = 1, ™ = af,

ﬁaﬁ71 = «") for some n, m, t, r. Each endomorphism o of H is determined by
o(a) = o™ pY, o(B) = a®2pY2? for some integers z1, T2, y1, y2. We give sufficient
and necessary conditions on z1, x2, y1, y2 for o to be an automorphism.
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1. INTRODUCTION

A finite group G is metacyclic if it contains a cyclic normal subgroup N such that
G/N is also cyclic. In some sense, metacyclic groups can be regarded as the simplest
ones other than abelian groups.

As a natural object, the automorphism group of a metacyclic group has been
widely studied. In 1970, Davitt in [5] showed that if G is a metacyclic p-group with
p # 2, then the order of G divides that of Aut(G). In 2006, Bidwell and Curran in [1]
found the order and the structure of Aut(G) when G is a split metacyclic p-group
with p # 2, and in 2007, Curran in [3] obtained similar results for split metacyclic
2-groups. In 2008, Curran in [4] determined Aut(G) when G is a nonsplit metacyclic
p-group with p # 2. In 2009, Golasiriski and Gongalves in [6] determined Aut(G)
for any split metacyclic group G. The case of nonsplit metacyclic 2-groups remains
unsolved.

In this paper we aim at writing down all of the automorphisms for a general
metacyclic group. One of our main motivations stems from the study of regular
Cayley maps on metacyclic groups (see [2]), which requires an explicit formula for
a general automorphism.
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It is well-known (see Section 3.7 of [8]) that each metacyclic group can be pre-
sented as

(1.1) (, B: a" =1, " =al, faft=a")
for some positive integers n, m, r, t satisfying
(1.2) ™ —1=t(r—1)=0 (mod n).
Denote this group by H = H(n, m;t,r). There is an extension
1—=7Z/nZ - H—7Z/mZ —1,

where Z/nZ = (o) < H and Z/mZ = H/{«). It may happen that two groups
given by different values of n,m,t,r are isomorphic. A complete classification (up
to isomorphism) for finite metacyclic groups was obtained by Hempel in [7] in 2000.

In the presentation (1.1), we may assume ¢ | n which we do from now on. To see
this, choose w,v such that un + vt = (n,t), then (v,n/(n,t)) = 1. Let w be the
product of all prime factors of m that do not divide v and let v' = v + wn/(n,t),
then (v/,m) = 1. Replacing 8 by f = B, we get another presentation: H =
(, : a* =1, f™ = o™, faf~! = awl).

Obviously each element can be written as a*8"; note that a“5% = 1 if and only
if m | vandn|u+tv/m. Each endomorphism o of H is determined by o(a) =
a®r1p¥, o(B) = a*2pBY2 for some integers x1, X2, Y1, Y2 The main result of this
paper gives sufficient and necessary conditions on x1, x2, y1, y2 for o to be an
automorphism. They consist of two parts, ensuring ¢ to be invertible and well-
defined, respectively. Skillfully using elementary number theoretic techniques, we
manage to reduce the second part to linear congruence equations. It turns out that
the situation concerning the prime 2 is quite subtle, and this reflects the difficulty in
determining the automorphism groups of nonsplit metacyclic 2-groups.

Notation and convention.

> For an integer N > 0, denote Z/NZ by Zx and regard it as a quotient ring of 7.
For u € 7, denote its image under the quotient Z — Zy also by u.

> Given integers u, s with u > 0, set [u], =1+ s+ ...+ s“"1, so that (s — 1)[u], =
s* —1; for a prime number p, let deg,(u) denote the largest integer s with p® | u.

> Denote o* by exp,, (u) when the expression for u is too long.

> To avoid subtleties, we assume x1, T2, y1, y2 to be positive, and usually write an
element of H as a"BY with u,v > 0.
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2. DETERMINING ALL AUTOMORPHISMS

2.1. Preparation.

Lemma 2.1. If s > 1 with deg,(s — 1) =1

=[>1and x >0 with degp(x) =u =0,

then

x, p#2 or u=0
@) [z]s = i (mod p"*);

(1+27Yz, p=2 and u>0

(s — 1)z, p#2 or u=0

I s*—1= mod p?tH).
D {(s—1+2211)x, p=2 and u>0 ( P

Proof. We only prove (I), then (II) follows from the identity (s —1)[z]; = s* — 1.
If u=0, then s = 1 (mod p!™*), so [z]s = = (mod p'T).
Let us assume u > 0. Write s = 1 + p'h with p { h. Note that

w Jj—1 J
degp<(pj )) = degp( ') deg,,(p" — 1) Zdegp(i)
i=1

=0
Jj—1
=u —deg,(j) + Z deg,(p" — i) — deg, (i)
i=1
= u— deg, (j).
If p # 2, then
b1 T u

p"]s = ; (1+p'n)’ ;O ( ) 7= i (pju) (p'h)’~" = p* (mod p'**),

=0 j Jj=1

using that for all 7 > 2

deg,,((f’;)) —u—deg, () >u—(j— 2= (I +u) - (j - DL

Hence s?" = (s — 1)[p"]s + 1 = 1 (mod p!**). Writing = = p“a’ with p{ ', we have

[z]s = [p"]s z_: (s?") = 2'[p“]s = x (mod p'*).

Jj=0

If p = 2, then using that for all j > 3,

degz((f))_u—degx) W= (=2 =(+u)— (- DL,
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we obtain

2 u
Z ( ) (2'h)I 1 =2v + (22 )2% =2%(1+2"71) (mod 2"%).

Hence 52" = (s — 1)[2¥]s + 1 = 1 (mod 2!*%). Writing = = 2“2’ with 2 { 2/, we have

' —1

2], = 240, D0 () = @'[2") = (1 +2' ") (mod 2",
j=0

2.2. The method. It follows from (1.1) that for &k, u,v,u’,v" > 0,

(2.1) Blat = a5,

(2.2) (a"B")(a"' B) = artur gty

(2 3) (Ozuﬁv)k _ au[k]rv /ka,

(24) 08", " 8] = exp, (u' (1" — 1) — u(r” — 1)),

where the notation [0, 7] = Onf~n~! for the commutator is adopted.
In view of (2.4), the commutator subgroup [H, H] is generated by a"~!. The
abelianization H*® := H/[H, H| has a presentation

(2.5) (@,B: q@=0, mp =ta) withq=(r—1,n),
where additive notation is used and @ + = 3 + @ is implicitly assumed.

Lemma 2.2. There exists a homomorphism o: H — H with o(a) = o® 91,
o(B) = a®2Y2 if and only if

(2.6) (r—1,t)y1 =0 (mod m),
(2.7) To[m]pv + tys — T1[t]rv — tﬂt =0 (mod n),
(2.8) 2o (¥ — 1) + 21 ([rlem — %) + %t =0 (mod n).

Proof. Sufficient and necessary conditions for o to be well-defined are

a®nlv LUt =o(a)” =1,
o2 lml v BYm = g(B)™ = a(a)t — ot BsYt,

o ™ B Va2 = o(B)o(a)o(8) ! = o(a) = a1l g,
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equivalently,

(2.9) ny; =0 (mod m), x1[n]re + %t =0 (mod n),
t
(2.10) ty1 =0 (mod m), To[m]rv2 +yot = x1 [t + %t (mod n),
-1
(2.11) (r—1)y1 =0 (mod m), x2(1—7Y)+z11rY? = 21[r]pn + %t (mod n).

Due to t | n, the first parts of (2.9), (2.10), (2.11) are equivalent to the single
condition (2.6). Then the second part of (2.9) can be omitted: for each prime divisor
pofn,ifp|r¥* —1, then by Lemma 2.1 (I), deg,([n],v:) > deg,(n); if p{ r¥* —1, then
since 71 — 1 is a multiple of v — 1, we also have deg,([n],+) = deg,(r"¥* — 1) >
deg,(r™ — 1) > deg,(n). O

Let A denote the set of prime divisors of nm, and for each p € A, denote
(2.12) ap = deg,(n), by = deg,(m), cp = deg, (1), dp = deg,,(q)-
Subdivide A as A = Ay LU A> LA/, with
(2.13) Ay ={p: d, >0}, Ay ={p: a,>0,d,=0}, A ={p:b,>0, a,=0}
Denote
(2.14) e =degy(r +1).

It follows from ¢ | n and t(r — 1) =0 (mod n) that

a, —d, <c, <a, pE A,
(2.15) {p p S Cp S p

cp = ap, p € Ao,
and it follows from r™ — 1 =0 (mod n) and Lemma 2.1 (II) that
(2.16) dp,+b,>a, forallpe Ay with (p,d,) # (2,1) or (p,dp,by) = (2,1,0);

finally, when do = 1 and by > 0, Lemma 2.1 (II) applied to r™ — 1 = (r2)™/2 — 1
implies

(2.17) e+by > an.
The condition (2.6) is equivalent to
(2.18) min{d,, c,} + deg,(y1) = b, forallpe A.
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Suppose that x1, x2, y1, y2 satisfy the conditions (2.6), (2.7) and (2.8) and let o
be the endomorphism of H given in Lemma 2.2. Since H is finite, o is invertible if
and only if it is injective, which is equivalent to the condition that both the induced
homomorphism &: H2> — H?P and the restriction o¢ := olim,m) are injective.

In the remainder of this subsection, let

¢
(2.19) w= "2

Lemma 2.3. The homomorphism & is injective if and only if

p 1y, peN,
(2.20) pta + w, p € Ay with byep, =0,
ptaiys —x2y1, p €Ay withby,cp > 0.

Proof. For each p € A’ LI Ay, let

g _ = mq
pcp+dpo" P photds “ora, D

H2® = (@), B,), witha, =

it is the Sylow p-subgroup of H*". Then 7 is injective if and only if 7, := 7| Hab is
injective for all p. Take an integer z, with (t/p°)z, =1 (mod p?»). We have

o tq I _ . phrtyn
(2.21) ap(Tp) = W(xla +y18) = z1@ + perm 6;0’
_ mq m
(2.22) 5,(8,) = ety (zo@ + y28) = o —— 2pT20p + Y2 3,,-

Let Hp = H;jb/pH;jb, let ¢, Bp denote the images of @, Bp under the quotient
homomorphism H:> — H,, and let &, denote the endomorphism of H, induced

from 7,. Then G, is injective if and only if &, is injective. It follows from (2.21),
(2.22) that

2.23 7 () = —_—

(2.23) Fp(dy) = 216, + s Bp,
o m_ 5

(224) O—p(ﬂp) = Eng'EQOép + yQBp.

> If b, > d, = 0, then &, = 0, H, = (Bp> = 7,, and by (2.24), &, is injective if and
only if p 1 ya.

> If d, > b, = 0, then 3, = p°ray,, H, = (d,) = 7, and by (2.23), &, is injective if
and only if pf 21 +w.
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> If d, > ¢, =0, then &, = pbPBp, H, = <Bp>, and by (2.24), &, is injective if and
only if p { mz,x2 + yo, which, by (2.7), is equivalent to p { z1 + w.

> If by, ¢y, dp > 0, then H, = (&, 5,) = 72, and by (2.23), (2.24), 7, is invertible if
and only if

prtyr m

Do phe P2 = T1¥2 — T2 (mod p).

Oiél‘lyg—
O

Lemma 2.4. Suppose p { x1y2 — xoy1 for all p € Ay with d, < a,. Then the
homomorphism oy is injective if and only if

(2.25) Yt =1 (mod p*?) and ptz+w forallpe€ As.

Proof. Note that og(a""!) = ¥, with
(2.26) u=a1[r — 1)pu + (r — Dw.
For each p € Ay with d, < a,, by (2.8) we have

u=(1—r¥)z[r — 1pw + 21 (r¥2 — 1) — 22 (r¥* — 1) (mod p»)

= (r — 1)(z1y2 — z2y1) (mod Pd”H),

the second line following from 7% — 1 = (r — 1)y; (mod p??), j = 1,2. Hence
(2.27) deg,(u) = d.
Thus oy is injective if and only if p { u for all p € As. For p € Ag, by (2.15), (2.18),
deg,(w) = ¢, +deg,(y1) — by > ¢p = ap.

Hence, if p t u then p t 1[r — 1]+ and this implies that r¥* = 1 (mod p®) (by
the argument given). On the other hand, if ¥¥* = 1 (mod p) then [r — 1],s1 =
r—1% 0 (mod p®) and hence p | w if and only if p | ;. Therefore, o¢ is injective
if and only if p { uw if and only if 7¥* = 1 (mod p®) and p { z1; the condition p { z1
is equivalent to p{ z1 + w. O

Remark 2.5. In order to obtain neat conditions, we prefer p{ x; + w to pt 1.

Summarizing, sufficient and necessary conditions for o to be an automorphism
are (2.6), (2.7), (2.8), (2.20) and (2.25). Let (2.7), denote the condition (2.7) with
mod n replaced by mod p®. Then (2.7) is equivalent to (2.7), for all p € A; U Ay
simultaneously. The same holds when (2.7), is repleiced by (2.8),.
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Remark 2.6. If p € Ay, then p # 2: otherwise 2 | n but 2 {7 — 1, contradicting
n | r™ — 1. Due to (2.15), (2.25), the conditions (2.7),, (2.8), are equivalent to
r¥2=1 =1 (mod p®»).

If p € Ay with d, = ap, then 7 = 1 (mod p®), hence (2.8), is trivial, and (2.7),
becomes t(x1 + w — y2) = maa (mod por).

Suppose p € Ay with d, < a,. Note that by (2.16), b, > 0. We will simplify (2.7),
and (2.8),, with (2.6) and (2.20) assumed.

By Lemma 2.1 (I), [r — 1,us = r — 1 (mod p?*) when p # 2 or p = 2
deg,(r¥* — 1) > 1. Hence by (2.27),

)

(2.28) plx+w ifp£2o0rp=2, do+degy(y1) > 1.

By (2.15), (2.16), (2.18),

(2.29) deg,(y1) = by —dp >
(2.30) deg,(w) = deg,(y1) + ¢p — by = ¢p —dp > ap — 2dp  if (p, dp) # (2,1).

We will use (2.28), (2.29), (2.30) repeatedly.

Lemma 2.7. If 2 # p € Ay, then the conditions (2.7), and (2.8), hold if and
only if

(2.31) mxg = t(z1 +w —y2) (mod pr),
(2.32) y2 =1+ w (mod p“f’*dp).

Proof. Abbreviate a,, by, ¢, dp, deg,(x) to a, b, ¢, d, deg(x), respectively.
Applying Lemma 2.1, with (2.15), (2.16), (2.29) recalled, we obtain

" =14+ (r—Dyi, [t =t, [m]pe =m (mod p?),
[Flpn = (r¥)" L+ [r = 1], =1+ (r —1) =7 (mod p®).

Hence (2.7), can be simplified as (2.31) and (2.8),, can be rewritten as
(2.33) (r—Dyiza+ (r — Dw = (Y2 — r)z; (mod p*).
By (2.29) and (2.30), deg((r — 1)y122 + (r — 1)w) > a — d, hence

(2.34) deg(yz — 1) + deg(z1) = deg((r¥? —r)z1) —d > a — 2d.
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By Lemma 2.1 (II), r¥2~! — 1 = (r — 1)(y2 — 1) (mod p®~9°€(#1)) and then
(r¥2 — )z = (r —1)2(y2 — Dy + (r — ) (ya — Dy = (r — 1)(y2 — 1)y (mod p®).

Thus (2.33) can be converted into (y2 — 1)1 = y122 + w (mod p?~?). Since by
(2.31),

ty

(2.35) Y1T2 H(xl +w—y2) =w(x; + w — y2) (mod p“+deg(y1)_b)

w(z1 + w — y2) (mod p“_d)

)

we are led to (y2 — 1)z1 = w(z1 +w —y2 + 1) (mod p*~9), i.e.,

(2.36) (y2 — 1 —w)(z1 +w) =0 (mod p*~%);
due to (2.28), this is equivalent to (2.32). O
Set
(2.37)
Qaz—d2—1 jf Co 7é ba, min{bg, CQ} = a9 — do and degg(yl) = by — da,
fly) = :
0 otherwise.

Lemma 2.8. If 2 € Ay, then the conditions (2.7)2 and (2.8)2 hold if and only if
(i) if by = ca = da =1 (so that as = 2), then no additional condition is required;
(ii) if dy = 1 and max{bs,co} > 1, then 2 | y1, degy(x2) > az — b2 —e+ 1 and

(2.38) w=2"Yy; —ys +1) (mod 27271);
(iii) if do > 1, then
(2.39) maxe = t(z1 +w — y2) (mod 29?),

(2.40) Y2 = (1 +w+ f(y1)) (mod 2%27%).

Proof. Abbreviate ag, ba, ca, da, degy(x) to a, b, ¢, d, deg(x), respectively.
(i) For any x,u > 0, we have r* =1 4 2z (mod 4), and

u—1 u—1
[u]pe = Z rie = Z(l + 2iz) =u+ u(u — 1)z (mod 4).
i=0 i=0
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In particular, [m]mv. = 2 + 2y2, [t]psn = 2+ 241, [r]rn = 3 + 2y1 (mod 4). The
conditions (2.7)2, (2.8)2 can be converted into, respectively,

(2.41) (x2+D(y2+1) — (21 +1)(y1 + 1) =0 (mod 2),
(2.42) xoy1 +21(1 +y1 —y2) + 31 =0 (mod 2).

Due to (2.20), z2y; = z1y2 + 1 (mod 2), hence (2.42) is equivalent to (z1 + 1) x
(y1 +1) = 0 (mod 2), which is true since by (2.20), at least one of z71, y; is odd.
Then similarly, (2.41) also holds.

(ii) We first show 2 | y;. Assume on the contrary that 2 { y;. By (2.18), b = 1,
so that ¢ > 1. By (2.7)2, z2[m]mv= = 0 (mod 4), which forces 2 { yo: if 2 | yo,
then r¥2 = 1 (mod 4) so that 4 t [m],, and we would get 2 | x2, contradict-
ing (2.20). Then 7% = —1 (mod 4), 7 = 1,2, and [r];s»» = 1 (mod 4), so (2.8)2
implies 2(z1 — z2) =0 (mod 4). But this contradicts (2.20).

Thus 2 | y1. By (2.20), 2 t z1y2; by (2.28), 2 | w. Hence

(2.43) t(r1 +w —y2) =0 (mod 2%).

By (2.17), (2.18), 1 4+ deg(y1) + e = b+ e > a, hence

(2.44) deg(r¥* —1) = deg((r?)"/? —1) = e + deg(y1) > a — 1.
When ¢ > 1, applying Lemma 2.1 we obtain

[t]yon = (14 2¢F9e8W) =1yt (mod 2¢FTdeeW)+e) = ¢ (mod 2¢),
[Flrn = (P¥) " 4 [ — Upon = 1+ (14 29798@D=1) (- — 1) (mod 2¢Tdeslv) )
=r+2%; (mod 2%);

when ¢ = 1 so that a = 2, these congruence relations obviously hold.

Due to (2.43), the condition (2.7); becomes x3[m]n= = 0 (mod 2%). Since
deg(r¥>+1) = deg(r+1) = e and [m]v> = (r¥2+1)[m/2),24., we have deg([m],v2) =
e+ b—1. Hence

deg(zz) 2a—b—e+ 1.

This together with (2.18) implies

deg((r¥* — 1)a2) = deg(y1) + e + deg(z2) = b— 1+ e+ deg(x2) > a.
Then (2.8)2 becomes
(2.45) x1(r¥? —r —2%;) = (r — Dw (mod 2%).
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Since deg(r2 ! — 1) = deg((r*)¥»~1/2 — 1) = e + deg(yz — 1), we have r¥2~" — 1 =
2¢(yg — 1)z for some odd z. Using 2°T1y; = 2(r — 1)w = 0 (mod 2%), we can convert
(2.45) into (2.38).

(iii) Applying Lemma 2.1 (with (2.29) recalled), we obtain

1+ (r — D, 2
rylz{ ( W fo (mod 2%),

L4 (r=142%"1)y, 2|y
[l = (r + 2277 1y;) (mod 29),
[t]ror = (14297 2y1)t (mod 2%),
[m]pse = (14 2% yo)m (mod 27).

We deal with the cases 2 | y1 and 2 { y; separately.
(iii 1) If 2 | y1, then by (2.20), 2t z1y2, and by (2.28), 2 | w. The condition (2.7)3
becomes

(2.46) (1 + 29y ymag =tz +w — y2) (mod 2%),

which can be converted into (2.39) via multiplying by 1 — 2%~ 1y,. Moreover, (2.46)
implies b 4 deg(z2) > min{c+ 1, a}, hence

2d — 1 + deg(x2) + deg(y1) > 2d — 1 + (min{c+1,a} — b) + (b — d)
=d—1+min{c+1,a} > a.

As aresult, zo(r¥* — 1) = (r — 1)z2y; (mod 2¢). Using this and 22471 (z; — 1)y; =0
(mod 2%), we may convert (2.8)2 into

(2.47) (r — Dagyy + 224y + (r —r¥2)z1 + (r — 1)w = 0 (mod 2%).

By an argument similar to that used for deducing (2.34) in the proof of Lemma 2.7,
we obtain deg(ys — 1) > a — 2d, and then by Lemma 2.1 (II),

27l 1= (1429 (r — 1)(y2 — 1) (mod 2%).
Using (r — 1)(r¥271 — 1) = 0 (mod 2¢), we can convert (2.47) further into
(2.48) (y2 — Dy = y122 + w4277 (y1 —yo +1) (mod 297%).

Similarly to (2.35), it follows from (2.39) that y179 = w(z; +w — y2) (mod 249),
and then (2.48) becomes

(2.49) (2 — 1 —w)(z1 + w4297 =297 (y; —w) (mod 2979).
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From (2.29) and (2.30) we see that deg(y; —w) > a — 2d, and the equality holds if

and only if one of the following cases occurs:

> deg(w) > deg(y1) = a—2d, which is equivalent to deg(y;) = b—d and ¢ > b = a—d;

> deg(y1) > deg(w) = a—2d, which is equivalent to deg(y;) = b—d and b > ¢ = a—d.
Thus (2.49) becomes

(yo — 1 —w)(z1 + w4271 = f(y1) = f(y1)(x1 +w+297") (mod 2°77),

which is equivalent to (2.40).
(iii 2) If 2 t y1, then d,c > b, and 2d > a. By Lemma 2.1 (IT), 7¥2 = 1 4 (r — 1)ys
(mod 2%), hence (2.7)2, (2.8)2 become, respectively,

(2.50) (1 + 297 Yy )may + tyy = (14 297ty + tw (mod 2%),
(2.51) (y2 — D1 = y120 + w4 29712 (mod 2979).

If ¢ = b, then by (2.28), 2 | 21, and by (2.20), 2 { z2. By (2.50), 2 | y2, and then
(2.50) becomes (2.39). We can reduce (2.51) to yo — 1 = w (mod 2%~ %) similarly to
the proof of Lemma 2.7.

Now assume ¢ > b so that 2 | w. By (2.28), 2{ z;. Since c+d—12>b+d > a,
we can reduce (2.50) to (2.39) via multiplying by 1 — 29 1ys. If 2d > a, then still
similarly to the proof of Lemma 2.7, we can reduce (2.51) to yo —1 = w (mod 24~9);
if 2d = a, then b = a — d = d, then similarly to (iii 1), we can reduce (2.51) to
Yo — 1 =w+ 297971 (mod 2¢79).

Thus in any case, (2.7)2, (2.8)2 are equivalent to (2.39), (2.40). O

2.3. Main result.

Let mg be the smallest positive integer k such that 7* = 1 (mod p%) for all p € As.
Combining Lemma 2.3, Lemma 2.4, Remark 2.6, Lemma 2.7 and Lemma 2.8, we
establish

Theorem 2.9. Each automorphism of H(n,m;t,r) is given by
¥ BY s exp, (x1[u]pm + 1V ag[v] w2 ) YUYV v > 0,

for a unique quadruple (x1,x2,y1,y2) with 0 < z1,22 < n, 0 < y1,y2 < m and such
that
(i) for all p € A,

p 1y, peN,
pfxi+tyi/m, pe€ Ay orpe Ay with by, =0,
pi@iys — x2y1, p € Ay with by, ¢, > 0;
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(ii)) (r—1,t)y1 =0 (mod m) and y1 = y2 — 1 =0 (mod my);
(iil) for allp € Ay withp # 2 or p =2, ag = do,

maxg = t(x1 + tyr/m — y2) (mod p?),
yo = 1+ ty;/m (mod p%~);

(iv) if max{ba,c2} > ds =1 and ag > 1, then 2 | y1, degy(z2) > az — b2 —e+1 and
ty1/m =2°"(y; —y2 + 1) (mod 2°271);
(v) if dg > 1, then

maxo = t(x1 + tyr/m — y2) (mod 292),
y2 = 1+ty1/m+ f(y1) (mod 2°27%).
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