AUTOMORPHISMS OF METACYCLIC GROUPS

Haimiao Chen, Beijing, Yueshan Xiong, Wuhan, Zhongjian Zhu, Wenzhou

Received December 31, 2016. Published online December 7, 2017.

Abstract

A metacyclic group H can be presented as $\left\langle\alpha, \beta: \alpha^{n}=1, \beta^{m}=\alpha^{t}\right.$, $\left.\beta \alpha \beta^{-1}=\alpha^{r}\right\rangle$ for some n, m, t, r. Each endomorphism σ of H is determined by $\sigma(\alpha)=\alpha^{x_{1}} \beta^{y_{1}}, \sigma(\beta)=\alpha^{x_{2}} \beta^{y_{2}}$ for some integers $x_{1}, x_{2}, y_{1}, y_{2}$. We give sufficient and necessary conditions on $x_{1}, x_{2}, y_{1}, y_{2}$ for σ to be an automorphism.

Keywords: automorphism; metacyclic group; linear congruence equation
MSC 2010: 20D45

1. Introduction

A finite group G is metacyclic if it contains a cyclic normal subgroup N such that G / N is also cyclic. In some sense, metacyclic groups can be regarded as the simplest ones other than abelian groups.

As a natural object, the automorphism group of a metacyclic group has been widely studied. In 1970, Davitt in [5] showed that if G is a metacyclic p-group with $p \neq 2$, then the order of G divides that of $\operatorname{Aut}(G)$. In 2006, Bidwell and Curran in [1] found the order and the structure of $\operatorname{Aut}(G)$ when G is a split metacyclic p-group with $p \neq 2$, and in 2007, Curran in [3] obtained similar results for split metacyclic 2-groups. In 2008, Curran in [4] determined $\operatorname{Aut}(G)$ when G is a nonsplit metacyclic p-group with $p \neq 2$. In 2009, Golasiński and Gonçalves in [6] determined $\operatorname{Aut}(G)$ for any split metacyclic group G. The case of nonsplit metacyclic 2 -groups remains unsolved.

In this paper we aim at writing down all of the automorphisms for a general metacyclic group. One of our main motivations stems from the study of regular Cayley maps on metacyclic groups (see [2]), which requires an explicit formula for a general automorphism.

It is well-known (see Section 3.7 of [8]) that each metacyclic group can be presented as

$$
\begin{equation*}
\left\langle\alpha, \beta: \alpha^{n}=1, \beta^{m}=\alpha^{t}, \beta \alpha \beta^{-1}=\alpha^{r}\right\rangle \tag{1.1}
\end{equation*}
$$

for some positive integers n, m, r, t satisfying

$$
\begin{equation*}
r^{m}-1 \equiv t(r-1) \equiv 0(\bmod n) \tag{1.2}
\end{equation*}
$$

Denote this group by $H=H(n, m ; t, r)$. There is an extension

$$
1 \rightarrow \mathbb{Z} / n \mathbb{Z} \rightarrow H \rightarrow \mathbb{Z} / m \mathbb{Z} \rightarrow 1
$$

where $\mathbb{Z} / n \mathbb{Z} \cong\langle\alpha\rangle \triangleleft H$ and $\mathbb{Z} / m \mathbb{Z} \cong H /\langle\alpha\rangle$. It may happen that two groups given by different values of n, m, t, r are isomorphic. A complete classification (up to isomorphism) for finite metacyclic groups was obtained by Hempel in [7] in 2000.

In the presentation (1.1), we may assume $t \mid n$ which we do from now on. To see this, choose u, v such that $u n+v t=(n, t)$, then $(v, n /(n, t))=1$. Let w be the product of all prime factors of m that do not divide v and let $v^{\prime}=v+w n /(n, t)$, then $\left(v^{\prime}, m\right)=1$. Replacing β by $\check{\beta}=\beta^{v^{\prime}}$, we get another presentation: $H=$ $\left\langle\alpha, \check{\beta}: \alpha^{n}=1, \check{\beta}^{m}=\alpha^{(n, t)}, \check{\beta} \alpha \check{\beta}^{-1}=\alpha^{r^{v^{\prime}}}\right\rangle$.

Obviously each element can be written as $\alpha^{u} \beta^{v}$; note that $\alpha^{u} \beta^{v}=1$ if and only if $m \mid v$ and $n \mid u+t v / m$. Each endomorphism σ of H is determined by $\sigma(\alpha)=$ $\alpha^{x_{1}} \beta^{y_{1}}, \sigma(\beta)=\alpha^{x_{2}} \beta^{y_{2}}$ for some integers $x_{1}, x_{2}, y_{1}, y_{2}$. The main result of this paper gives sufficient and necessary conditions on $x_{1}, x_{2}, y_{1}, y_{2}$ for σ to be an automorphism. They consist of two parts, ensuring σ to be invertible and welldefined, respectively. Skillfully using elementary number theoretic techniques, we manage to reduce the second part to linear congruence equations. It turns out that the situation concerning the prime 2 is quite subtle, and this reflects the difficulty in determining the automorphism groups of nonsplit metacyclic 2-groups.

Notation and convention.

\triangleright For an integer $N>0$, denote $\mathbb{Z} / N \mathbb{Z}$ by \mathbb{Z}_{N} and regard it as a quotient ring of \mathbb{Z}. For $u \in \mathbb{Z}$, denote its image under the quotient $\mathbb{Z} \rightarrow \mathbb{Z}_{N}$ also by u.
\triangleright Given integers u, s with $u>0$, set $[u]_{s}=1+s+\ldots+s^{u-1}$, so that $(s-1)[u]_{s}=$ $s^{u}-1$; for a prime number p, let $\operatorname{deg}_{p}(u)$ denote the largest integer s with $p^{s} \mid u$.
\triangleright Denote α^{u} by $\exp _{\alpha}(u)$ when the expression for u is too long.
\triangleright To avoid subtleties, we assume $x_{1}, x_{2}, y_{1}, y_{2}$ to be positive, and usually write an element of H as $\alpha^{u} \beta^{v}$ with $u, v>0$.

2. Determining all automorphisms

2.1. Preparation.

Lemma 2.1. If $s>1$ with $\operatorname{deg}_{p}(s-1)=l \geqslant 1$ and $x>0$ with $\operatorname{deg}_{p}(x)=u \geqslant 0$, then
(I) $[x]_{s} \equiv\left\{\begin{array}{ll}x, & p \neq 2 \text { or } u=0 \\ \left(1+2^{l-1}\right) x, & p=2 \text { and } u>0\end{array}\left(\bmod p^{l+u}\right) ;\right.$
(II) $s^{x}-1 \equiv\left\{\begin{array}{ll}(s-1) x, & p \neq 2 \text { or } u=0 \\ \left(s-1+2^{2 l-1}\right) x, & p=2 \text { and } u>0\end{array}\left(\bmod p^{2 l+u}\right)\right.$.

Proof. We only prove (I), then (II) follows from the identity $(s-1)[x]_{s}=s^{x}-1$.
If $u=0$, then $s \equiv 1\left(\bmod p^{l+u}\right)$, so $[x]_{s} \equiv x\left(\bmod p^{l+u}\right)$.
Let us assume $u>0$. Write $s=1+p^{l} h$ with $p \nmid h$. Note that

$$
\begin{aligned}
\operatorname{deg}_{p}\left(\binom{p^{u}}{j}\right) & =\operatorname{deg}_{p}\left(\frac{\left(p^{u}\right)!}{j!\left(p^{u}-j\right)!}\right)=\sum_{i=0}^{j-1} \operatorname{deg}_{p}\left(p^{u}-i\right)-\sum_{i=1}^{j} \operatorname{deg}_{p}(i) \\
& =u-\operatorname{deg}_{p}(j)+\sum_{i=1}^{j-1}\left(\operatorname{deg}_{p}\left(p^{u}-i\right)-\operatorname{deg}_{p}(i)\right) \\
& =u-\operatorname{deg}_{p}(j) .
\end{aligned}
$$

If $p \neq 2$, then

$$
\left[p^{u}\right]_{s}=\sum_{i=0}^{p^{u}-1}\left(1+p^{l} h\right)^{i}=\sum_{i=0}^{p^{u}-1} \sum_{j=0}^{i}\binom{i}{j}\left(p^{l} h\right)^{j}=\sum_{j=1}^{p^{u}}\binom{p^{u}}{j}\left(p^{l} h\right)^{j-1} \equiv p^{u}\left(\bmod p^{l+u}\right),
$$

using that for all $j \geqslant 2$,

$$
\operatorname{deg}_{p}\left(\binom{p^{u}}{j}\right)=u-\operatorname{deg}_{p}(j) \geqslant u-(j-2) l=(l+u)-(j-1) l .
$$

Hence $s^{p^{u}}=(s-1)\left[p^{u}\right]_{s}+1 \equiv 1\left(\bmod p^{l+u}\right)$. Writing $x=p^{u} x^{\prime}$ with $p \nmid x^{\prime}$, we have

$$
[x]_{s}=\left[p^{u}\right]_{s} \sum_{j=0}^{x^{\prime}-1}\left(s^{p^{u}}\right)^{j} \equiv x^{\prime}\left[p^{u}\right]_{s} \equiv x\left(\bmod p^{l+u}\right)
$$

If $p=2$, then using that for all $j \geqslant 3$,

$$
\operatorname{deg}_{2}\left(\binom{2^{u}}{j}\right)=u-\operatorname{deg}_{2}(j) \geqslant u-(j-2) l=(l+u)-(j-1) l
$$

we obtain

$$
\left[2^{u}\right]_{s}=\sum_{j=1}^{2^{u}}\binom{2^{u}}{j}\left(2^{l} h\right)^{j-1} \equiv 2^{u}+\binom{2^{u}}{2} 2^{l} h \equiv 2^{u}\left(1+2^{l-1}\right)\left(\bmod 2^{l+u}\right)
$$

Hence $s^{2^{u}}=(s-1)\left[2^{u}\right]_{s}+1 \equiv 1\left(\bmod 2^{l+u}\right)$. Writing $x=2^{u} x^{\prime}$ with $2 \nmid x^{\prime}$, we have

$$
[x]_{s}=\left[2^{u}\right]_{s} \sum_{j=0}^{x^{\prime}-1}\left(s^{2^{u}}\right)^{j} \equiv x^{\prime}\left[2^{u}\right]_{s} \equiv\left(1+2^{l-1}\right) x\left(\bmod 2^{l+u}\right) .
$$

2.2. The method. It follows from (1.1) that for $k, u, v, u^{\prime}, v^{\prime}>0$,

$$
\begin{align*}
\beta^{v} \alpha^{u} & =\alpha^{u r^{v}} \beta^{v}, \tag{2.1}\\
\left(\alpha^{u} \beta^{v}\right)\left(\alpha^{u^{\prime}} \beta^{v^{\prime}}\right) & =\alpha^{u+u^{\prime} r^{v}} \beta^{v+v^{\prime}}, \tag{2.2}\\
\left(\alpha^{u} \beta^{v}\right)^{k} & =\alpha^{u[k]_{r} v} \beta^{v k}, \tag{2.3}\\
{\left[\alpha^{u} \beta^{v}, \alpha^{u^{\prime}} \beta^{v^{\prime}}\right] } & =\exp _{\alpha}\left(u^{\prime}\left(r^{v}-1\right)-u\left(r^{v^{\prime}}-1\right)\right), \tag{2.4}
\end{align*}
$$

where the notation $[\theta, \eta]=\theta \eta \theta^{-1} \eta^{-1}$ for the commutator is adopted.
In view of (2.4), the commutator subgroup $[H, H]$ is generated by α^{r-1}. The abelianization $H^{\mathrm{ab}}:=H /[H, H]$ has a presentation

$$
\begin{equation*}
\langle\bar{\alpha}, \bar{\beta}: q \bar{\alpha}=0, m \bar{\beta}=t \bar{\alpha}\rangle \quad \text { with } q=(r-1, n), \tag{2.5}
\end{equation*}
$$

where additive notation is used and $\bar{\alpha}+\bar{\beta}=\bar{\beta}+\bar{\alpha}$ is implicitly assumed.
Lemma 2.2. There exists a homomorphism $\sigma: H \rightarrow H$ with $\sigma(\alpha)=\alpha^{x_{1}} \beta^{y_{1}}$, $\sigma(\beta)=\alpha^{x_{2}} \beta^{y_{2}}$ if and only if

$$
\begin{align*}
(r-1, t) y_{1} & \equiv 0(\bmod m), \tag{2.6}\\
x_{2}[m]_{r y_{2}}+t y_{2}-x_{1}[t]_{r^{y_{1}}}-\frac{t y_{1}}{m} t & \equiv 0(\bmod n), \tag{2.7}\\
x_{2}\left(r^{y_{1}}-1\right)+x_{1}\left([r]_{r^{y_{1}}}-r^{y_{2}}\right)+\frac{(r-1) y_{1}}{m} t & \equiv 0(\bmod n) . \tag{2.8}
\end{align*}
$$

Proof. Sufficient and necessary conditions for σ to be well-defined are

$$
\begin{aligned}
\alpha^{x_{1}[n]_{r} y_{1}} \beta^{y_{1} n} & =\sigma(\alpha)^{n}=1, \\
\alpha^{x_{2}[m]_{r} y_{2}} \beta^{y_{2} m}=\sigma(\beta)^{m} & =\sigma(\alpha)^{t}=\alpha^{x_{1}[t]_{y_{1}}} \beta^{y_{1} t}, \\
\alpha^{x_{2}} \beta^{y_{2}} \alpha^{x_{1}} \beta^{y_{1}} \beta^{-y_{2}} \alpha^{-x_{2}}=\sigma(\beta) \sigma(\alpha) \sigma(\beta)^{-1} & =\sigma(\alpha)^{r}=\alpha^{x_{1}[r]_{r} y_{1}} \beta^{y_{1} r}
\end{aligned}
$$

equivalently,
(2.10) $\quad t y_{1} \equiv 0(\bmod m), \quad x_{2}[m]_{r y_{2}}+y_{2} t \equiv x_{1}[t]_{r^{y_{1}}}+\frac{t y_{1}}{m} t(\bmod n)$,
(2.11) $(r-1) y_{1} \equiv 0(\bmod m), x_{2}\left(1-r^{y_{1}}\right)+x_{1} r^{y_{2}} \equiv x_{1}[r]_{r^{y_{1}}}+\frac{(r-1) y_{1}}{m} t(\bmod n)$.

Due to $t \mid n$, the first parts of (2.9), (2.10), (2.11) are equivalent to the single condition (2.6). Then the second part of (2.9) can be omitted: for each prime divisor p of n, if $p \mid r^{y_{1}}-1$, then by Lemma 2.1 (I), $\operatorname{deg}_{p}\left([n]_{r^{y_{1}}}\right) \geqslant \operatorname{deg}_{p}(n)$; if $p \nmid r^{y_{1}}-1$, then since $r^{n y_{1}}-1$ is a multiple of $r^{m}-1$, we also have $\operatorname{deg}_{p}\left([n]_{r^{y_{1}}}\right)=\operatorname{deg}_{p}\left(r^{n y_{1}}-1\right) \geqslant$ $\operatorname{deg}_{p}\left(r^{m}-1\right) \geqslant \operatorname{deg}_{p}(n)$.

Let Λ denote the set of prime divisors of $n m$, and for each $p \in \Lambda$, denote

$$
\text { (2.12) } \quad a_{p}=\operatorname{deg}_{p}(n), \quad b_{p}=\operatorname{deg}_{p}(m), \quad c_{p}=\operatorname{deg}_{p}(t), \quad d_{p}=\operatorname{deg}_{p}(q)
$$

Subdivide Λ as $\Lambda=\Lambda_{1} \sqcup \Lambda_{2} \sqcup \Lambda^{\prime}$, with
(2.13) $\Lambda_{1}=\left\{p: d_{p}>0\right\}, \quad \Lambda_{2}=\left\{p: a_{p}>0, d_{p}=0\right\}, \quad \Lambda^{\prime}=\left\{p: b_{p}>0, a_{p}=0\right\}$.

Denote

$$
\begin{equation*}
e=\operatorname{deg}_{2}(r+1) \tag{2.14}
\end{equation*}
$$

It follows from $t \mid n$ and $t(r-1) \equiv 0(\bmod n)$ that

$$
\begin{cases}a_{p}-d_{p} \leqslant c_{p} \leqslant a_{p}, & p \in \Lambda_{1}, \tag{2.15}\\ c_{p}=a_{p}, & p \in \Lambda_{2}\end{cases}
$$

and it follows from $r^{m}-1 \equiv 0(\bmod n)$ and Lemma 2.1 (II) that

$$
\begin{equation*}
d_{p}+b_{p} \geqslant a_{p} \quad \text { for all } p \in \Lambda_{1} \text { with }\left(p, d_{p}\right) \neq(2,1) \text { or }\left(p, d_{p}, b_{p}\right)=(2,1,0) \tag{2.16}
\end{equation*}
$$

finally, when $d_{2}=1$ and $b_{2}>0$, Lemma 2.1 (II) applied to $r^{m}-1=\left(r^{2}\right)^{m / 2}-1$ implies

$$
\begin{equation*}
e+b_{2} \geqslant a_{2} \tag{2.17}
\end{equation*}
$$

The condition (2.6) is equivalent to

$$
\begin{equation*}
\min \left\{d_{p}, c_{p}\right\}+\operatorname{deg}_{p}\left(y_{1}\right) \geqslant b_{p} \quad \text { for all } p \in \Lambda . \tag{2.18}
\end{equation*}
$$

Suppose that $x_{1}, x_{2}, y_{1}, y_{2}$ satisfy the conditions (2.6), (2.7) and (2.8) and let σ be the endomorphism of H given in Lemma 2.2. Since H is finite, σ is invertible if and only if it is injective, which is equivalent to the condition that both the induced homomorphism $\bar{\sigma}: H^{\mathrm{ab}} \rightarrow H^{\mathrm{ab}}$ and the restriction $\sigma_{0}:=\left.\sigma\right|_{[H, H]}$ are injective.

In the remainder of this subsection, let

$$
\begin{equation*}
w=\frac{t y_{1}}{m} \tag{2.19}
\end{equation*}
$$

Lemma 2.3. The homomorphism $\bar{\sigma}$ is injective if and only if

$$
\begin{cases}p \nmid y_{2}, & p \in \Lambda^{\prime}, \tag{2.20}\\ p \nmid x_{1}+w, & p \in \Lambda_{1} \text { with } b_{p} c_{p}=0 \\ p \nmid x_{1} y_{2}-x_{2} y_{1}, & p \in \Lambda_{1} \text { with } b_{p}, c_{p}>0\end{cases}
$$

Proof. For each $p \in \Lambda^{\prime} \sqcup \Lambda_{1}$, let

$$
H_{p}^{\mathrm{ab}}=\left\langle\bar{\alpha}_{p}, \bar{\beta}_{p}\right\rangle, \quad \text { with } \bar{\alpha}_{p}=\frac{t q}{p^{c_{p}+d_{p}}} \bar{\alpha}, \bar{\beta}_{p}=\frac{m q}{p^{b_{p}+d_{p}}} \bar{\beta}
$$

it is the Sylow p-subgroup of $H^{\text {ab }}$. Then $\bar{\sigma}$ is injective if and only if $\bar{\sigma}_{p}:=\left.\bar{\sigma}\right|_{H_{p}^{\text {ab }}}$ is injective for all p. Take an integer z_{p} with $\left(t / p^{c_{p}}\right) z_{p} \equiv 1\left(\bmod p^{d_{p}}\right)$. We have

$$
\begin{align*}
& \bar{\sigma}_{p}\left(\bar{\alpha}_{p}\right)=\frac{t q}{p^{c_{p}+d_{p}}}\left(x_{1} \bar{\alpha}+y_{1} \bar{\beta}\right)=x_{1} \bar{\alpha}_{p}+\frac{p^{b_{p}} t y_{1}}{p^{c_{p}} m} \bar{\beta}_{p} \tag{2.21}\\
& \bar{\sigma}_{p}\left(\bar{\beta}_{p}\right)=\frac{m q}{p^{b_{p}+d_{p}}}\left(x_{2} \bar{\alpha}+y_{2} \bar{\beta}\right)=\frac{m}{p^{b_{p}}} z_{p} x_{2} \bar{\alpha}_{p}+y_{2} \bar{\beta}_{p} . \tag{2.22}
\end{align*}
$$

Let $\check{H}_{p}=H_{p}^{\text {ab }} / p H_{p}^{\text {ab }}$, let $\check{\alpha}_{p}, \check{\beta}_{p}$ denote the images of $\bar{\alpha}_{p}, \bar{\beta}_{p}$ under the quotient homomorphism $H_{p}^{\text {ab }} \rightarrow \check{H}_{p}$, and let $\check{\sigma}_{p}$ denote the endomorphism of \check{H}_{p} induced from $\bar{\sigma}_{p}$. Then $\bar{\sigma}_{p}$ is injective if and only if $\check{\sigma}_{p}$ is injective. It follows from (2.21), (2.22) that

$$
\begin{align*}
& \check{\sigma}_{p}\left(\check{\alpha}_{p}\right)=x_{1} \check{\alpha}_{p}+\frac{p^{b_{p}} t y_{1}}{p^{c_{p}} m} \check{\beta}_{p} \tag{2.23}\\
& \check{\sigma}_{p}\left(\check{\beta}_{p}\right)=\frac{m}{p^{b_{p}}} z_{p} x_{2} \check{\alpha}_{p}+y_{2} \check{\beta}_{p} . \tag{2.24}
\end{align*}
$$

\triangleright If $b_{p}>d_{p}=0$, then $\check{\alpha}_{p}=0, \check{H}_{p}=\left\langle\check{\beta}_{p}\right\rangle \cong \mathbb{Z}_{p}$, and by $(2.24), \check{\sigma}_{p}$ is injective if and only if $p \nmid y_{2}$.
\triangleright If $d_{p}>b_{p}=0$, then $\check{\beta}_{p}=p^{c_{p}} \check{\alpha}_{p}, \check{H}_{p}=\left\langle\check{\alpha}_{p}\right\rangle \cong \mathbb{Z}_{p}$, and by (2.23), $\check{\sigma}_{p}$ is injective if and only if $p \nmid x_{1}+w$.
\triangleright If $d_{p}>c_{p}=0$, then $\check{\alpha}_{p}=p^{b_{p}} \check{\beta}_{p}, \check{H}_{p}=\left\langle\check{\beta}_{p}\right\rangle$, and by (2.24), $\check{\sigma}_{p}$ is injective if and only if $p \nmid m z_{p} x_{2}+y_{2}$, which, by (2.7), is equivalent to $p \nmid x_{1}+w$.
\triangleright If $b_{p}, c_{p}, d_{p}>0$, then $\check{H}_{p}=\left\langle\check{\alpha}_{p}, \breve{\beta}_{p}\right\rangle \cong \mathbb{Z}_{p}^{2}$, and by (2.23), (2.24), $\bar{\sigma}_{p}$ is invertible if and only if

$$
0 \not \equiv x_{1} y_{2}-\frac{p^{b_{p}} t y_{1}}{p^{c_{p}} m} \frac{m}{p^{b_{p}}} z_{p} x_{2} \equiv x_{1} y_{2}-x_{2} y_{1}(\bmod p)
$$

Lemma 2.4. Suppose $p \nmid x_{1} y_{2}-x_{2} y_{1}$ for all $p \in \Lambda_{1}$ with $d_{p}<a_{p}$. Then the homomorphism σ_{0} is injective if and only if

$$
\begin{equation*}
r^{y_{1}} \equiv 1\left(\bmod p^{a_{p}}\right) \quad \text { and } \quad p \nmid x_{1}+w \quad \text { for all } p \in \Lambda_{2} . \tag{2.25}
\end{equation*}
$$

Proof. Note that $\sigma_{0}\left(\alpha^{r-1}\right)=\alpha^{u}$, with

$$
\begin{equation*}
u=x_{1}[r-1]_{r y_{1}}+(r-1) w . \tag{2.26}
\end{equation*}
$$

For each $p \in \Lambda_{1}$ with $d_{p}<a_{p}$, by (2.8) we have

$$
\begin{aligned}
u & \equiv\left(1-r^{y_{1}}\right) x_{1}[r-1]_{r^{y_{1}}}+x_{1}\left(r^{y_{2}}-1\right)-x_{2}\left(r^{y_{1}}-1\right)\left(\bmod p^{a_{p}}\right) \\
& \equiv(r-1)\left(x_{1} y_{2}-x_{2} y_{1}\right)\left(\bmod p^{d_{p}+1}\right),
\end{aligned}
$$

the second line following from $r^{y_{j}}-1 \equiv(r-1) y_{j}\left(\bmod p^{2 d_{p}}\right), j=1,2$. Hence

$$
\begin{equation*}
\operatorname{deg}_{p}(u)=d_{p} . \tag{2.27}
\end{equation*}
$$

Thus σ_{0} is injective if and only if $p \nmid u$ for all $p \in \Lambda_{2}$. For $p \in \Lambda_{2}$, by (2.15), (2.18),

$$
\operatorname{deg}_{p}(w)=c_{p}+\operatorname{deg}_{p}\left(y_{1}\right)-b_{p} \geqslant c_{p}=a_{p} .
$$

Hence, if $p \nmid u$ then $p \nmid x_{1}[r-1]_{r^{y_{1}}}$ and this implies that $r^{y_{1}} \equiv 1\left(\bmod p^{a_{p}}\right)$ (by the argument given). On the other hand, if $r^{y_{1}} \equiv 1(\bmod p)$ then $[r-1]_{r^{y_{1}}} \equiv$ $r-1 \not \equiv 0\left(\bmod p^{a_{p}}\right)$ and hence $p \mid u$ if and only if $p \mid x_{1}$. Therefore, σ_{0} is injective if and only if $p \nmid u$ if and only if $r^{y_{1}} \equiv 1\left(\bmod p^{a_{p}}\right)$ and $p \nmid x_{1}$; the condition $p \nmid x_{1}$ is equivalent to $p \nmid x_{1}+w$.

Remark 2.5. In order to obtain neat conditions, we prefer $p \nmid x_{1}+w$ to $p \nmid x_{1}$.
Summarizing, sufficient and necessary conditions for σ to be an automorphism are (2.6), (2.7), (2.8), (2.20) and (2.25). Let (2.7) $)_{p}$ denote the condition (2.7) with $\bmod n$ replaced by $\bmod p^{a_{p}}$. Then (2.7) is equivalent to $(2.7)_{p}$ for all $p \in \Lambda_{1} \sqcup \Lambda_{2}$ simultaneously. The same holds when $(2.7)_{p}$ is repleiced by $(2.8)_{p}$.

Remark 2.6. If $p \in \Lambda_{2}$, then $p \neq 2$: otherwise $2 \mid n$ but $2 \nmid r-1$, contradicting $n \mid r^{m}-1$. Due to (2.15), (2.25), the conditions $(2.7)_{p},(2.8)_{p}$ are equivalent to $r^{y_{2}-1} \equiv 1\left(\bmod p^{a_{p}}\right)$.

If $p \in \Lambda_{1}$ with $d_{p}=a_{p}$, then $r \equiv 1\left(\bmod p^{a_{p}}\right)$, hence $(2.8)_{p}$ is trivial, and $(2.7)_{p}$ becomes $t\left(x_{1}+w-y_{2}\right) \equiv m x_{2}\left(\bmod p^{a_{p}}\right)$.

Suppose $p \in \Lambda_{1}$ with $d_{p}<a_{p}$. Note that by (2.16), $b_{p}>0$. We will simplify $(2.7)_{p}$ and $(2.8)_{p}$, with (2.6) and (2.20) assumed.

By Lemma 2.1 (I), $[r-1]_{r^{y_{1}}} \equiv r-1\left(\bmod p^{2 d_{p}}\right)$ when $p \neq 2$ or $p=2$, $\operatorname{deg}_{2}\left(r^{y_{1}}-1\right)>1$. Hence by (2.27),

$$
\begin{equation*}
p \nmid x_{1}+w \quad \text { if } p \neq 2 \text { or } p=2, d_{2}+\operatorname{deg}_{2}\left(y_{1}\right)>1 . \tag{2.28}
\end{equation*}
$$

By (2.15), (2.16), (2.18),

$$
\begin{equation*}
\operatorname{deg}_{p}\left(y_{1}\right) \geqslant b_{p}-d_{p} \geqslant a_{p}-2 d_{p} \quad \text { if }\left(p, d_{p}\right) \neq(2,1) \tag{2.29}
\end{equation*}
$$

(2.30) $\operatorname{deg}_{p}(w)=\operatorname{deg}_{p}\left(y_{1}\right)+c_{p}-b_{p} \geqslant c_{p}-d_{p} \geqslant a_{p}-2 d_{p} \quad$ if $\left(p, d_{p}\right) \neq(2,1)$.

We will use (2.28), (2.29), (2.30) repeatedly.

Lemma 2.7. If $2 \neq p \in \Lambda_{1}$, then the conditions $(2.7)_{p}$ and (2.8) $)_{p}$ hold if and only if

$$
\begin{align*}
m x_{2} & \equiv t\left(x_{1}+w-y_{2}\right)\left(\bmod p^{a_{p}}\right) \tag{2.31}\\
y_{2} & \equiv 1+w\left(\bmod p^{a_{p}-d_{p}}\right) \tag{2.32}
\end{align*}
$$

Proof. Abbreviate $a_{p}, b_{p}, c_{p}, d_{p}, \operatorname{deg}_{p}(x)$ to $a, b, c, d, \operatorname{deg}(x)$, respectively. Applying Lemma 2.1, with (2.15), (2.16), (2.29) recalled, we obtain

$$
\begin{aligned}
& r^{y_{1}} \equiv 1+(r-1) y_{1}, \quad[t]_{r^{y_{1}}} \equiv t, \quad[m]_{r^{y_{2}}} \equiv m\left(\bmod p^{a}\right) \\
& {[r]_{r^{y_{1}}}=\left(r^{y_{1}}\right)^{r-1}+[r-1]_{r^{y_{1}}} \equiv 1+(r-1)=r\left(\bmod p^{a}\right)}
\end{aligned}
$$

Hence $(2.7)_{p}$ can be simplified as (2.31) and $(2.8)_{p}$ can be rewritten as

$$
\begin{equation*}
(r-1) y_{1} x_{2}+(r-1) w \equiv\left(r^{y_{2}}-r\right) x_{1}\left(\bmod p^{a}\right) . \tag{2.33}
\end{equation*}
$$

By (2.29) and $(2.30), \operatorname{deg}\left((r-1) y_{1} x_{2}+(r-1) w\right) \geqslant a-d$, hence

$$
\begin{equation*}
\operatorname{deg}\left(y_{2}-1\right)+\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(\left(r^{y_{2}}-r\right) x_{1}\right)-d \geqslant a-2 d \tag{2.34}
\end{equation*}
$$

By Lemma 2.1 (II), $r^{y_{2}-1}-1 \equiv(r-1)\left(y_{2}-1\right)\left(\bmod p^{a-\operatorname{deg}\left(x_{1}\right)}\right)$, and then

$$
\left(r^{y_{2}}-r\right) x_{1}=(r-1)^{2}\left(y_{2}-1\right) x_{1}+(r-1)\left(y_{2}-1\right) x_{1} \equiv(r-1)\left(y_{2}-1\right) x_{1}\left(\bmod p^{a}\right) .
$$

Thus (2.33) can be converted into $\left(y_{2}-1\right) x_{1} \equiv y_{1} x_{2}+w\left(\bmod p^{a-d}\right)$. Since by (2.31),

$$
\begin{align*}
y_{1} x_{2} & \equiv \frac{t y_{1}}{m}\left(x_{1}+w-y_{2}\right)=w\left(x_{1}+w-y_{2}\right)\left(\bmod p^{a+\operatorname{deg}\left(y_{1}\right)-b}\right) \tag{2.35}\\
& \equiv w\left(x_{1}+w-y_{2}\right)\left(\bmod p^{a-d}\right)
\end{align*}
$$

we are led to $\left(y_{2}-1\right) x_{1} \equiv w\left(x_{1}+w-y_{2}+1\right)\left(\bmod p^{a-d}\right)$, i.e.,

$$
\begin{equation*}
\left(y_{2}-1-w\right)\left(x_{1}+w\right) \equiv 0\left(\bmod p^{a-d}\right) ; \tag{2.36}
\end{equation*}
$$

due to (2.28), this is equivalent to (2.32).
Set

$$
f\left(y_{1}\right)= \begin{cases}2^{a_{2}-d_{2}-1} & \text { if } c_{2} \neq b_{2}, \min \left\{b_{2}, c_{2}\right\}=a_{2}-d_{2} \text { and } \operatorname{deg}_{2}\left(y_{1}\right)=b_{2}-d_{2} \tag{2.37}\\ 0 & \text { otherwise }\end{cases}
$$

Lemma 2.8. If $2 \in \Lambda_{1}$, then the conditions $(2.7)_{2}$ and $(2.8)_{2}$ hold if and only if (i) if $b_{2}=c_{2}=d_{2}=1$ (so that $a_{2}=2$), then no additional condition is required;
(ii) if $d_{2}=1$ and $\max \left\{b_{2}, c_{2}\right\}>1$, then $2 \mid y_{1}, \operatorname{deg}_{2}\left(x_{2}\right) \geqslant a_{2}-b_{2}-e+1$ and

$$
\begin{equation*}
w \equiv 2^{e-1}\left(y_{1}-y_{2}+1\right)\left(\bmod 2^{a_{2}-1}\right) \tag{2.38}
\end{equation*}
$$

(iii) if $d_{2}>1$, then

$$
\begin{align*}
m x_{2} & \equiv t\left(x_{1}+w-y_{2}\right)\left(\bmod 2^{a_{2}}\right) \tag{2.39}\\
y_{2} & \equiv\left(1+w+f\left(y_{1}\right)\right)\left(\bmod 2^{a_{2}-d_{2}}\right) \tag{2.40}
\end{align*}
$$

Proof. Abbreviate $a_{2}, b_{2}, c_{2}, d_{2}, \operatorname{deg}_{2}(x)$ to a, b, c, d, $\operatorname{deg}(x)$, respectively.
(i) For any $x, u>0$, we have $r^{x} \equiv 1+2 x(\bmod 4)$, and

$$
[u]_{r^{x}}=\sum_{i=0}^{u-1} r^{i x} \equiv \sum_{i=0}^{u-1}(1+2 i x) \equiv u+u(u-1) x(\bmod 4) .
$$

In particular, $[m]_{r y_{2}} \equiv 2+2 y_{2},[t]_{r y_{1}} \equiv 2+2 y_{1},[r]_{r^{y_{1}}} \equiv 3+2 y_{1}(\bmod 4)$. The conditions $(2.7)_{2},(2.8)_{2}$ can be converted into, respectively,

$$
\begin{align*}
\left(x_{2}+1\right)\left(y_{2}+1\right)-\left(x_{1}+1\right)\left(y_{1}+1\right) & \equiv 0(\bmod 2), \tag{2.41}\\
x_{2} y_{1}+x_{1}\left(1+y_{1}-y_{2}\right)+y_{1} & \equiv 0(\bmod 2) . \tag{2.42}
\end{align*}
$$

Due to $(2.20), x_{2} y_{1} \equiv x_{1} y_{2}+1(\bmod 2)$, hence (2.42) is equivalent to $\left(x_{1}+1\right) \times$ $\left(y_{1}+1\right) \equiv 0(\bmod 2)$, which is true since by (2.20), at least one of x_{1}, y_{1} is odd. Then similarly, (2.41) also holds.
(ii) We first show $2 \mid y_{1}$. Assume on the contrary that $2 \nmid y_{1}$. By (2.18), $b=1$, so that $c>1$. By $(2.7)_{2}, x_{2}[m]_{r y_{2}} \equiv 0(\bmod 4)$, which forces $2 \nmid y_{2}$: if $2 \mid y_{2}$, then $r^{y_{2}} \equiv 1(\bmod 4)$ so that $4 \nmid[m]_{r^{y_{2}}}$, and we would get $2 \mid x_{2}$, contradicting (2.20). Then $r^{y_{j}} \equiv-1(\bmod 4), j=1,2$, and $[r]_{r y_{1}} \equiv 1(\bmod 4)$, so $(2.8)_{2}$ implies $2\left(x_{1}-x_{2}\right) \equiv 0(\bmod 4)$. But this contradicts (2.20).

Thus $2 \mid y_{1}$. By (2.20), $2 \nmid x_{1} y_{2}$; by (2.28), $2 \mid w$. Hence

$$
\begin{equation*}
t\left(x_{1}+w-y_{2}\right) \equiv 0\left(\bmod 2^{a}\right) \tag{2.43}
\end{equation*}
$$

$\mathrm{By}(2.17),(2.18), 1+\operatorname{deg}\left(y_{1}\right)+e \geqslant b+e \geqslant a$, hence

$$
\begin{equation*}
\operatorname{deg}\left(r^{y_{1}}-1\right)=\operatorname{deg}\left(\left(r^{2}\right)^{y_{1} / 2}-1\right)=e+\operatorname{deg}\left(y_{1}\right) \geqslant a-1 . \tag{2.44}
\end{equation*}
$$

When $c>1$, applying Lemma 2.1 we obtain

$$
\begin{aligned}
{[t]_{r^{y_{1}}} } & \equiv\left(1+2^{e+\operatorname{deg}\left(y_{1}\right)-1}\right) t\left(\bmod 2^{e+\operatorname{deg}\left(y_{1}\right)+c}\right) \equiv t\left(\bmod 2^{a}\right) \\
{[r]_{r^{y_{1}}} } & =\left(r^{y_{1}}\right)^{r-1}+[r-1]_{r^{y_{1}}} \equiv 1+\left(1+2^{e+\operatorname{deg}\left(y_{1}\right)-1}\right)(r-1)\left(\bmod 2^{e+\operatorname{deg}\left(y_{1}\right)+1}\right) \\
& \equiv r+2^{e} y_{1}\left(\bmod 2^{a}\right)
\end{aligned}
$$

when $c=1$ so that $a=2$, these congruence relations obviously hold.
Due to (2.43), the condition $(2.7)_{2}$ becomes $x_{2}[m]_{r^{y_{2}}} \equiv 0\left(\bmod 2^{a}\right)$. Since $\operatorname{deg}\left(r^{y_{2}}+1\right)=\operatorname{deg}(r+1)=e$ and $[m]_{r^{y_{2}}}=\left(r^{y_{2}}+1\right)[m / 2]_{r^{2 y_{2}}}$, we have $\operatorname{deg}\left([m]_{r^{y_{2}}}\right)=$ $e+b-1$. Hence

$$
\operatorname{deg}\left(x_{2}\right) \geqslant a-b-e+1
$$

This together with (2.18) implies

$$
\operatorname{deg}\left(\left(r^{y_{1}}-1\right) x_{2}\right)=\operatorname{deg}\left(y_{1}\right)+e+\operatorname{deg}\left(x_{2}\right) \geqslant b-1+e+\operatorname{deg}\left(x_{2}\right) \geqslant a
$$

Then $(2.8)_{2}$ becomes

$$
\begin{equation*}
x_{1}\left(r^{y_{2}}-r-2^{e} y_{1}\right) \equiv(r-1) w\left(\bmod 2^{a}\right) . \tag{2.45}
\end{equation*}
$$

Since $\operatorname{deg}\left(r^{y_{2}-1}-1\right)=\operatorname{deg}\left(\left(r^{2}\right)^{\left(y_{2}-1\right) / 2}-1\right)=e+\operatorname{deg}\left(y_{2}-1\right)$, we have $r^{y_{2}-1}-1=$ $2^{e}\left(y_{2}-1\right) z$ for some odd z. Using $2^{e+1} y_{1} \equiv 2(r-1) w \equiv 0\left(\bmod 2^{a}\right)$, we can convert (2.45) into (2.38).
(iii) Applying Lemma 2.1 (with (2.29) recalled), we obtain

$$
\begin{aligned}
r^{y_{1}} & \equiv\left\{\begin{array}{ll}
1+(r-1) y_{1}, & 2 \nmid y_{1} \\
1+\left(r-1+2^{2 d-1}\right) y_{1}, & 2 \mid y_{1}
\end{array}\left(\bmod 2^{a}\right),\right. \\
{[r]_{r^{y_{1}}} } & \equiv\left(r+2^{2 d-1} y_{1}\right)\left(\bmod 2^{a}\right), \\
{[t]_{r^{y_{1}}} } & \equiv\left(1+2^{d-1} y_{1}\right) t\left(\bmod 2^{a}\right), \\
{[m]_{r^{y_{2}}} } & \equiv\left(1+2^{d-1} y_{2}\right) m\left(\bmod 2^{a}\right) .
\end{aligned}
$$

We deal with the cases $2 \mid y_{1}$ and $2 \nmid y_{1}$ separately.
(iii 1) If $2 \mid y_{1}$, then by (2.20), $2 \nmid x_{1} y_{2}$, and by (2.28), $2 \mid w$. The condition $(2.7)_{2}$ becomes

$$
\begin{equation*}
\left(1+2^{d-1} y_{2}\right) m x_{2} \equiv t\left(x_{1}+w-y_{2}\right)\left(\bmod 2^{a}\right) \tag{2.46}
\end{equation*}
$$

which can be converted into (2.39) via multiplying by $1-2^{d-1} y_{2}$. Moreover, (2.46) implies $b+\operatorname{deg}\left(x_{2}\right) \geqslant \min \{c+1, a\}$, hence

$$
\begin{aligned}
2 d-1+\operatorname{deg}\left(x_{2}\right)+\operatorname{deg}\left(y_{1}\right) & \geqslant 2 d-1+(\min \{c+1, a\}-b)+(b-d) \\
& =d-1+\min \{c+1, a\} \geqslant a .
\end{aligned}
$$

As a result, $x_{2}\left(r^{y_{1}}-1\right) \equiv(r-1) x_{2} y_{1}\left(\bmod 2^{a}\right)$. Using this and $2^{2 d-1}\left(x_{1}-1\right) y_{1} \equiv 0$ $\left(\bmod 2^{a}\right)$, we may convert $(2.8)_{2}$ into

$$
\begin{equation*}
(r-1) x_{2} y_{1}+2^{2 d-1} y_{1}+\left(r-r^{y_{2}}\right) x_{1}+(r-1) w \equiv 0\left(\bmod 2^{a}\right) \tag{2.47}
\end{equation*}
$$

By an argument similar to that used for deducing (2.34) in the proof of Lemma 2.7, we obtain $\operatorname{deg}\left(y_{2}-1\right) \geqslant a-2 d$, and then by Lemma 2.1 (II),

$$
r^{y_{2}-1}-1 \equiv\left(1+2^{d-1}\right)(r-1)\left(y_{2}-1\right)\left(\bmod 2^{a}\right)
$$

Using $(r-1)\left(r^{y_{2}-1}-1\right) \equiv 0\left(\bmod 2^{a}\right)$, we can convert (2.47) further into

$$
\begin{equation*}
\left(y_{2}-1\right) x_{1} \equiv y_{1} x_{2}+w+2^{d-1}\left(y_{1}-y_{2}+1\right)\left(\bmod 2^{a-d}\right) \tag{2.48}
\end{equation*}
$$

Similarly to (2.35), it follows from (2.39) that $y_{1} x_{2} \equiv w\left(x_{1}+w-y_{2}\right)\left(\bmod 2^{a-d}\right)$, and then (2.48) becomes

$$
\begin{equation*}
\left(y_{2}-1-w\right)\left(x_{1}+w+2^{d-1}\right) \equiv 2^{d-1}\left(y_{1}-w\right)\left(\bmod 2^{a-d}\right) \tag{2.49}
\end{equation*}
$$

From (2.29) and (2.30) we see that $\operatorname{deg}\left(y_{1}-w\right) \geqslant a-2 d$, and the equality holds if and only if one of the following cases occurs:
$\triangleright \operatorname{deg}(w)>\operatorname{deg}\left(y_{1}\right)=a-2 d$, which is equivalent to $\operatorname{deg}\left(y_{1}\right)=b-d$ and $c>b=a-d$; $\triangleright \operatorname{deg}\left(y_{1}\right)>\operatorname{deg}(w)=a-2 d$, which is equivalent to $\operatorname{deg}\left(y_{1}\right)=b-d$ and $b>c=a-d$.

Thus (2.49) becomes

$$
\left(y_{2}-1-w\right)\left(x_{1}+w+2^{d-1}\right) \equiv f\left(y_{1}\right) \equiv f\left(y_{1}\right)\left(x_{1}+w+2^{d-1}\right)\left(\bmod 2^{a-d}\right)
$$

which is equivalent to (2.40).
(iii 2) If $2 \nmid y_{1}$, then $d, c \geqslant b$, and $2 d \geqslant a$. By Lemma 2.1 (II), $r^{y_{2}} \equiv 1+(r-1) y_{2}$ $\left(\bmod 2^{a}\right)$, hence $(2.7)_{2},(2.8)_{2}$ become, respectively,

$$
\begin{align*}
\left(1+2^{d-1} y_{2}\right) m x_{2}+t y_{2} & \equiv\left(1+2^{d-1}\right) t x_{1}+t w\left(\bmod 2^{a}\right), \tag{2.50}\\
\left(y_{2}-1\right) x_{1} & \equiv y_{1} x_{2}+w+2^{d-1} x_{1}\left(\bmod 2^{a-d}\right) \tag{2.51}
\end{align*}
$$

If $c=b$, then by (2.28), $2 \mid x_{1}$, and by (2.20), $2 \nmid x_{2}$. By (2.50), $2 \mid y_{2}$, and then (2.50) becomes (2.39). We can reduce (2.51) to $y_{2}-1 \equiv w\left(\bmod 2^{a-d}\right)$ similarly to the proof of Lemma 2.7.

Now assume $c>b$ so that $2 \mid w$. By (2.28), $2 \nmid x_{1}$. Since $c+d-1 \geqslant b+d \geqslant a$, we can reduce (2.50) to (2.39) via multiplying by $1-2^{d-1} y_{2}$. If $2 d>a$, then still similarly to the proof of Lemma 2.7, we can reduce (2.51) to $y_{2}-1 \equiv w\left(\bmod 2^{a-d}\right)$; if $2 d=a$, then $b=a-d=d$, then similarly to (iii 1), we can reduce (2.51) to $y_{2}-1 \equiv w+2^{a-d-1}\left(\bmod 2^{a-d}\right)$.

Thus in any case, $(2.7)_{2},(2.8)_{2}$ are equivalent to (2.39), (2.40).

2.3. Main result.

Let m_{0} be the smallest positive integer k such that $r^{k} \equiv 1\left(\bmod p^{a_{p}}\right)$ for all $p \in \Lambda_{2}$. Combining Lemma 2.3, Lemma 2.4, Remark 2.6, Lemma 2.7 and Lemma 2.8, we establish

Theorem 2.9. Each automorphism of $H(n, m ; t, r)$ is given by

$$
\alpha^{u} \beta^{v} \mapsto \exp _{\alpha}\left(x_{1}[u]_{r^{y_{1}}}+r^{y_{1} u} x_{2}[v]_{r^{y_{2}}}\right) \beta^{y_{1} u+y_{2} v}, \quad u, v>0,
$$

for a unique quadruple ($x_{1}, x_{2}, y_{1}, y_{2}$) with $0<x_{1}, x_{2} \leqslant n, 0<y_{1}, y_{2} \leqslant m$ and such that
(i) for all $p \in \Lambda$,

$$
\begin{cases}p \nmid y_{2}, & p \in \Lambda^{\prime}, \\ p \nmid x_{1}+t y_{1} / m, & p \in \Lambda_{2} \text { or } p \in \Lambda_{1} \text { with } b_{p} c_{p}=0, \\ p \nmid x_{1} y_{2}-x_{2} y_{1}, & p \in \Lambda_{1} \text { with } b_{p}, c_{p}>0\end{cases}
$$

(ii) $(r-1, t) y_{1} \equiv 0(\bmod m)$ and $y_{1} \equiv y_{2}-1 \equiv 0\left(\bmod m_{0}\right)$;
(iii) for all $p \in \Lambda_{1}$ with $p \neq 2$ or $p=2, a_{2}=d_{2}$,

$$
\begin{aligned}
m x_{2} & \equiv t\left(x_{1}+t y_{1} / m-y_{2}\right)\left(\bmod p^{a_{p}}\right), \\
y_{2} & \equiv 1+t y_{1} / m\left(\bmod p^{a_{p}-d_{p}}\right) ;
\end{aligned}
$$

(iv) if $\max \left\{b_{2}, c_{2}\right\}>d_{2}=1$ and $a_{2}>1$, then $2 \mid y_{1}, \operatorname{deg}_{2}\left(x_{2}\right) \geqslant a_{2}-b_{2}-e+1$ and

$$
t y_{1} / m \equiv 2^{e-1}\left(y_{1}-y_{2}+1\right)\left(\bmod 2^{a_{2}-1}\right)
$$

(v) if $d_{2}>1$, then

$$
\begin{aligned}
m x_{2} & \equiv t\left(x_{1}+t y_{1} / m-y_{2}\right)\left(\bmod 2^{a_{2}}\right), \\
y_{2} & \equiv 1+t y_{1} / m+f\left(y_{1}\right)\left(\bmod 2^{a_{2}-d_{2}}\right) .
\end{aligned}
$$

References

[1] J. N. S. Bidwell, M. J. Curran: The automorphism group of a split metacyclic p-group. Arch. Math. 87 (2006), 488-497.
[2] H.-M. Chen: Reduction and regular t-balanced Cayley maps on split metacyclic 2-groups. Available at ArXiv:1702.08351 [math.CO] (2017), 14 pages.
[3] M. J. Curran: The automorphism group of a split metacyclic 2-group. Arch. Math. 89 (2007), 10-23.
[4] M. J. Curran: The automorphism group of a nonsplit metacyclic p-group. Arch. Math. 90 (2008), 483-489.
[5] R. M. Davitt: The automorphism group of a finite metacyclic p-group. Proc. Am. Math. Soc. 25 (1970), 876-879.
[6] M. Golasiński, D.L.Gonçalves: On automorphisms of split metacyclic groups. Manuscripta Math. 128 (2009), 251-273.
[7] C. E. Hempel: Metacyclic groups. Commun. Algebra 28 (2000), 3865-3897.
zbl MR doi
[8] H. J. Zassenhaus: The Theory of Groups. Chelsea Publishing Company, New York, 1958. zbl MR
Authors' addresses: Haimiao Chen, Beijing Technology and Business University, Fucheng Road 11/33, Beijing 10048, Haidian, China, e-mail: chenhm@pku.edu.cn; Yueshan Xiong, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, Hogshan, Hubei, China, e-mail: xiongyueshan@gmail.com; Zhongjian Zhu, Wenzhou University, 276 Xueyuan Middle Rd, Lucheng, Wenzhou 325035, Zhejiang, China, e-mail: zhuzhongjianzzj@126.com.

