AUTOMORPHISMS OF METACYCLIC GROUPS

HAIMIAO CHEN, Beijing, YUESHAN XIONG, Wuhan, ZHONGJIAN ZHU, Wenzhou

Received December 31, 2016. Published online December 7, 2017.

Abstract. A metacyclic group H can be presented as $\langle \alpha, \beta \colon \alpha^n = 1, \beta^m = \alpha^t, \beta \alpha \beta^{-1} = \alpha^r \rangle$ for some n, m, t, r. Each endomorphism σ of H is determined by $\sigma(\alpha) = \alpha^{x_1} \beta^{y_1}, \ \sigma(\beta) = \alpha^{x_2} \beta^{y_2}$ for some integers x_1, x_2, y_1, y_2 . We give sufficient and necessary conditions on x_1, x_2, y_1, y_2 for σ to be an automorphism.

 $\textit{Keywords}\colon \text{automorphism}; \ \text{metacyclic group}; \ \text{linear congruence equation}$

MSC 2010: 20D45

1. Introduction

A finite group G is metacyclic if it contains a cyclic normal subgroup N such that G/N is also cyclic. In some sense, metacyclic groups can be regarded as the simplest ones other than abelian groups.

As a natural object, the automorphism group of a metacyclic group has been widely studied. In 1970, Davitt in [5] showed that if G is a metacyclic p-group with $p \neq 2$, then the order of G divides that of $\operatorname{Aut}(G)$. In 2006, Bidwell and Curran in [1] found the order and the structure of $\operatorname{Aut}(G)$ when G is a split metacyclic p-group with $p \neq 2$, and in 2007, Curran in [3] obtained similar results for split metacyclic 2-groups. In 2008, Curran in [4] determined $\operatorname{Aut}(G)$ when G is a nonsplit metacyclic p-group with $p \neq 2$. In 2009, Golasiński and Gonçalves in [6] determined $\operatorname{Aut}(G)$ for any split metacyclic group G. The case of nonsplit metacyclic 2-groups remains unsolved.

In this paper we aim at writing down all of the automorphisms for a general metacyclic group. One of our main motivations stems from the study of regular Cayley maps on metacyclic groups (see [2]), which requires an explicit formula for a general automorphism.

DOI: 10.21136/CMJ.2017.0656-16 803

It is well-known (see Section 3.7 of [8]) that each metacyclic group can be presented as

(1.1)
$$\langle \alpha, \beta \colon \alpha^n = 1, \ \beta^m = \alpha^t, \ \beta \alpha \beta^{-1} = \alpha^r \rangle$$

for some positive integers n, m, r, t satisfying

$$(1.2) r^m - 1 \equiv t(r-1) \equiv 0 \pmod{n}.$$

Denote this group by H = H(n, m; t, r). There is an extension

$$1 \to \mathbb{Z}/n\mathbb{Z} \to H \to \mathbb{Z}/m\mathbb{Z} \to 1,$$

where $\mathbb{Z}/n\mathbb{Z} \cong \langle \alpha \rangle \lhd H$ and $\mathbb{Z}/m\mathbb{Z} \cong H/\langle \alpha \rangle$. It may happen that two groups given by different values of n, m, t, r are isomorphic. A complete classification (up to isomorphism) for finite metacyclic groups was obtained by Hempel in [7] in 2000.

In the presentation (1.1), we may assume $t \mid n$ which we do from now on. To see this, choose u,v such that un+vt=(n,t), then (v,n/(n,t))=1. Let w be the product of all prime factors of m that do not divide v and let v'=v+wn/(n,t), then (v',m)=1. Replacing β by $\check{\beta}=\beta^{v'}$, we get another presentation: $H=\langle \alpha,\check{\beta}: \alpha^n=1,\ \check{\beta}^m=\alpha^{(n,t)},\ \check{\beta}\alpha\check{\beta}^{-1}=\alpha^{r^{v'}}\rangle$.

Obviously each element can be written as $\alpha^u \beta^v$; note that $\alpha^u \beta^v = 1$ if and only if $m \mid v$ and $n \mid u + tv/m$. Each endomorphism σ of H is determined by $\sigma(\alpha) = \alpha^{x_1} \beta^{y_1}$, $\sigma(\beta) = \alpha^{x_2} \beta^{y_2}$ for some integers x_1 , x_2 , y_1 , y_2 . The main result of this paper gives sufficient and necessary conditions on x_1 , x_2 , y_1 , y_2 for σ to be an automorphism. They consist of two parts, ensuring σ to be invertible and well-defined, respectively. Skillfully using elementary number theoretic techniques, we manage to reduce the second part to linear congruence equations. It turns out that the situation concerning the prime 2 is quite subtle, and this reflects the difficulty in determining the automorphism groups of nonsplit metacyclic 2-groups.

Notation and convention.

- ightharpoonup For an integer N > 0, denote $\mathbb{Z}/N\mathbb{Z}$ by \mathbb{Z}_N and regard it as a quotient ring of \mathbb{Z} . For $u \in \mathbb{Z}$, denote its image under the quotient $\mathbb{Z} \twoheadrightarrow \mathbb{Z}_N$ also by u.
- \triangleright Given integers u, s with u > 0, set $[u]_s = 1 + s + \ldots + s^{u-1}$, so that $(s-1)[u]_s = s^u 1$; for a prime number p, let $\deg_p(u)$ denote the largest integer s with $p^s \mid u$.
- \triangleright Denote α^u by $\exp_{\alpha}(u)$ when the expression for u is too long.
- \triangleright To avoid subtleties, we assume x_1, x_2, y_1, y_2 to be positive, and usually write an element of H as $\alpha^u \beta^v$ with u, v > 0.

2. Determining all automorphisms

2.1. Preparation.

Lemma 2.1. If s > 1 with $\deg_p(s-1) = l \geqslant 1$ and x > 0 with $\deg_p(x) = u \geqslant 0$, then

then
(I)
$$[x]_s \equiv \begin{cases} x, & p \neq 2 \text{ or } u = 0\\ (1 + 2^{l-1})x, & p = 2 \text{ and } u > 0 \end{cases}$$
 (mod p^{l+u});

(II)
$$s^x - 1 \equiv \begin{cases} (s-1)x, & p \neq 2 \text{ or } u = 0\\ (s-1+2^{2l-1})x, & p = 2 \text{ and } u > 0 \end{cases}$$
 (mod p^{2l+u}).

Proof. We only prove (I), then (II) follows from the identity $(s-1)[x]_s = s^x - 1$. If u = 0, then $s \equiv 1 \pmod{p^{l+u}}$, so $[x]_s \equiv x \pmod{p^{l+u}}$.

Let us assume u > 0. Write $s = 1 + p^l h$ with $p \nmid h$. Note that

$$\deg_p\left(\binom{p^u}{j}\right) = \deg_p\left(\frac{(p^u)!}{j!(p^u - j)!}\right) = \sum_{i=0}^{j-1} \deg_p(p^u - i) - \sum_{i=1}^{j} \deg_p(i)$$

$$= u - \deg_p(j) + \sum_{i=1}^{j-1} (\deg_p(p^u - i) - \deg_p(i))$$

$$= u - \deg_p(j).$$

If $p \neq 2$, then

$$[p^u]_s = \sum_{i=0}^{p^u-1} (1+p^l h)^i = \sum_{i=0}^{p^u-1} \sum_{i=0}^i \binom{i}{j} (p^l h)^j = \sum_{i=1}^{p^u} \binom{p^u}{j} (p^l h)^{j-1} \equiv p^u \pmod{p^{l+u}},$$

using that for all $j \ge 2$,

$$\deg_p\left(\binom{p^u}{j}\right) = u - \deg_p(j) \geqslant u - (j-2)l = (l+u) - (j-1)l.$$

Hence $s^{p^u} = (s-1)[p^u]_s + 1 \equiv 1 \pmod{p^{l+u}}$. Writing $x = p^u x'$ with $p \nmid x'$, we have

$$[x]_s = [p^u]_s \sum_{j=0}^{x'-1} (s^{p^u})^j \equiv x'[p^u]_s \equiv x \pmod{p^{l+u}}.$$

If p = 2, then using that for all $j \ge 3$,

$$\deg_2\left(\binom{2^u}{j}\right) = u - \deg_2(j) \ge u - (j-2)l = (l+u) - (j-1)l,$$

we obtain

$$[2^{u}]_{s} = \sum_{j=1}^{2^{u}} {2^{u} \choose j} (2^{l}h)^{j-1} \equiv 2^{u} + {2^{u} \choose 2} 2^{l}h \equiv 2^{u} (1 + 2^{l-1}) \pmod{2^{l+u}}.$$

Hence $s^{2^u} = (s-1)[2^u]_s + 1 \equiv 1 \pmod{2^{l+u}}$. Writing $x = 2^u x'$ with $2 \nmid x'$, we have

$$[x]_s = [2^u]_s \sum_{i=0}^{x'-1} (s^{2^u})^j \equiv x'[2^u]_s \equiv (1+2^{l-1})x \pmod{2^{l+u}}.$$

2.2. The method. It follows from (1.1) that for k, u, v, u', v' > 0,

$$\beta^{v} \alpha^{u} = \alpha^{ur^{v}} \beta^{v}.$$

(2.2)
$$(\alpha^u \beta^v)(\alpha^{u'} \beta^{v'}) = \alpha^{u+u'r^v} \beta^{v+v'},$$

$$(2.3) \qquad (\alpha^u \beta^v)^k = \alpha^{u[k]_{r^v}} \beta^{vk},$$

(2.4)
$$[\alpha^{u}\beta^{v}, \alpha^{u'}\beta^{v'}] = \exp_{\alpha}(u'(r^{v}-1) - u(r^{v'}-1)),$$

where the notation $[\theta, \eta] = \theta \eta \theta^{-1} \eta^{-1}$ for the commutator is adopted.

In view of (2.4), the commutator subgroup [H, H] is generated by α^{r-1} . The abelianization $H^{ab} := H/[H, H]$ has a presentation

(2.5)
$$\langle \overline{\alpha}, \overline{\beta} \colon q\overline{\alpha} = 0, \ m\overline{\beta} = t\overline{\alpha} \rangle \text{ with } q = (r - 1, n),$$

where additive notation is used and $\overline{\alpha} + \overline{\beta} = \overline{\beta} + \overline{\alpha}$ is implicitly assumed.

Lemma 2.2. There exists a homomorphism $\sigma: H \to H$ with $\sigma(\alpha) = \alpha^{x_1} \beta^{y_1}$, $\sigma(\beta) = \alpha^{x_2} \beta^{y_2}$ if and only if

$$(2.6) (r-1,t)y_1 \equiv 0 \pmod{m},$$

(2.7)
$$x_2[m]_{r^{y_2}} + ty_2 - x_1[t]_{r^{y_1}} - \frac{ty_1}{m}t \equiv 0 \pmod{n},$$

(2.8)
$$x_2(r^{y_1} - 1) + x_1([r]_{r^{y_1}} - r^{y_2}) + \frac{(r-1)y_1}{m}t \equiv 0 \pmod{n}.$$

Proof. Sufficient and necessary conditions for σ to be well-defined are

$$\alpha^{x_1[n]_{r^{y_1}}} \beta^{y_1 n} = \sigma(\alpha)^n = 1,$$

$$\alpha^{x_2[m]_{r^{y_2}}} \beta^{y_2 m} = \sigma(\beta)^m = \sigma(\alpha)^t = \alpha^{x_1[t]_{r^{y_1}}} \beta^{y_1 t},$$

$$\alpha^{x_2} \beta^{y_2} \alpha^{x_1} \beta^{y_1} \beta^{-y_2} \alpha^{-x_2} = \sigma(\beta) \sigma(\alpha) \sigma(\beta)^{-1} = \sigma(\alpha)^r = \alpha^{x_1[r]_{r^{y_1}}} \beta^{y_1 r};$$

equivalently,

(2.9)
$$ny_1 \equiv 0 \pmod{m}, \qquad x_1[n]_{r^{y_1}} + \frac{ny_1}{m}t \equiv 0 \pmod{n},$$

(2.10)
$$ty_1 \equiv 0 \pmod{m}, \qquad x_2[m]_{r^{y_2}} + y_2 t \equiv x_1[t]_{r^{y_1}} + \frac{ty_1}{m} t \pmod{n},$$

$$(2.11) (r-1)y_1 \equiv 0 \pmod{m}, \ x_2(1-r^{y_1}) + x_1r^{y_2} \equiv x_1[r]_{r^{y_1}} + \frac{(r-1)y_1}{m}t \pmod{n}.$$

Due to $t \mid n$, the first parts of (2.9), (2.10), (2.11) are equivalent to the single condition (2.6). Then the second part of (2.9) can be omitted: for each prime divisor p of n, if $p \mid r^{y_1} - 1$, then by Lemma 2.1 (I), $\deg_p([n]_{r^{y_1}}) \geqslant \deg_p(n)$; if $p \nmid r^{y_1} - 1$, then since $r^{ny_1} - 1$ is a multiple of $r^m - 1$, we also have $\deg_p([n]_{r^{y_1}}) = \deg_p(r^{ny_1} - 1) \geqslant \deg_p(r^m - 1) \geqslant \deg_p(n)$.

Let Λ denote the set of prime divisors of nm, and for each $p \in \Lambda$, denote

(2.12)
$$a_p = \deg_p(n), \quad b_p = \deg_p(m), \quad c_p = \deg_p(t), \quad d_p = \deg_p(q).$$

Subdivide Λ as $\Lambda = \Lambda_1 \sqcup \Lambda_2 \sqcup \Lambda'$, with

$$(2.13) \ \Lambda_1 = \{p: d_p > 0\}, \quad \Lambda_2 = \{p: a_p > 0, d_p = 0\}, \quad \Lambda' = \{p: b_p > 0, a_p = 0\}.$$

Denote

(2.14)
$$e = \deg_2(r+1).$$

It follows from $t \mid n$ and $t(r-1) \equiv 0 \pmod{n}$ that

(2.15)
$$\begin{cases} a_p - d_p \leqslant c_p \leqslant a_p, & p \in \Lambda_1, \\ c_p = a_p, & p \in \Lambda_2, \end{cases}$$

and it follows from $r^m - 1 \equiv 0 \pmod{n}$ and Lemma 2.1 (II) that

(2.16)
$$d_p + b_p \geqslant a_p$$
 for all $p \in \Lambda_1$ with $(p, d_p) \neq (2, 1)$ or $(p, d_p, b_p) = (2, 1, 0)$;

finally, when $d_2 = 1$ and $b_2 > 0$, Lemma 2.1 (II) applied to $r^m - 1 = (r^2)^{m/2} - 1$ implies

$$(2.17) e + b_2 \geqslant a_2.$$

The condition (2.6) is equivalent to

(2.18)
$$\min\{d_p, c_p\} + \deg_p(y_1) \geqslant b_p \text{ for all } p \in \Lambda.$$

Suppose that x_1 , x_2 , y_1 , y_2 satisfy the conditions (2.6), (2.7) and (2.8) and let σ be the endomorphism of H given in Lemma 2.2. Since H is finite, σ is invertible if and only if it is injective, which is equivalent to the condition that both the induced homomorphism $\overline{\sigma} \colon H^{\mathrm{ab}} \to H^{\mathrm{ab}}$ and the restriction $\sigma_0 := \sigma|_{[H,H]}$ are injective.

In the remainder of this subsection, let

$$(2.19) w = \frac{ty_1}{m}.$$

Lemma 2.3. The homomorphism $\overline{\sigma}$ is injective if and only if

(2.20)
$$\begin{cases} p \nmid y_2, & p \in \Lambda', \\ p \nmid x_1 + w, & p \in \Lambda_1 \text{ with } b_p c_p = 0, \\ p \nmid x_1 y_2 - x_2 y_1, & p \in \Lambda_1 \text{ with } b_p, c_p > 0. \end{cases}$$

Proof. For each $p \in \Lambda' \sqcup \Lambda_1$, let

$$H_p^{\rm ab} = \langle \overline{\alpha}_p, \overline{\beta}_p \rangle, \quad \text{with } \overline{\alpha}_p = \frac{tq}{p^{c_p + d_p}} \overline{\alpha}, \ \overline{\beta}_p = \frac{mq}{p^{b_p + d_p}} \overline{\beta};$$

it is the Sylow p-subgroup of H^{ab} . Then $\overline{\sigma}$ is injective if and only if $\overline{\sigma}_p := \overline{\sigma}|_{H^{\mathrm{ab}}_p}$ is injective for all p. Take an integer z_p with $(t/p^{c_p})z_p \equiv 1 \pmod{p^{d_p}}$. We have

(2.21)
$$\overline{\sigma}_p(\overline{\alpha}_p) = \frac{tq}{p^{c_p + d_p}} (x_1 \overline{\alpha} + y_1 \overline{\beta}) = x_1 \overline{\alpha}_p + \frac{p^{b_p} t y_1}{p^{c_p} m} \overline{\beta}_p,$$

(2.22)
$$\overline{\sigma}_p(\overline{\beta}_p) = \frac{mq}{p^{b_p + d_p}} (x_2 \overline{\alpha} + y_2 \overline{\beta}) = \frac{m}{p^{b_p}} z_p x_2 \overline{\alpha}_p + y_2 \overline{\beta}_p.$$

Let $\check{H}_p = H_p^{\rm ab}/pH_p^{\rm ab}$, let $\check{\alpha}_p$, $\check{\beta}_p$ denote the images of $\overline{\alpha}_p$, $\overline{\beta}_p$ under the quotient homomorphism $H_p^{\rm ab} \to \check{H}_p$, and let $\check{\sigma}_p$ denote the endomorphism of \check{H}_p induced from $\overline{\sigma}_p$. Then $\overline{\sigma}_p$ is injective if and only if $\check{\sigma}_p$ is injective. It follows from (2.21), (2.22) that

(2.23)
$$\check{\sigma}_p(\check{\alpha}_p) = x_1 \check{\alpha}_p + \frac{p^{b_p} t y_1}{p^{c_p} m} \check{\beta}_p,$$

(2.24)
$$\check{\sigma}_p(\check{\beta}_p) = \frac{m}{p^{b_p}} z_p x_2 \check{\alpha}_p + y_2 \check{\beta}_p.$$

- \triangleright If $b_p > d_p = 0$, then $\check{\alpha}_p = 0$, $\check{H}_p = \langle \check{\beta}_p \rangle \cong \mathbb{Z}_p$, and by (2.24), $\check{\sigma}_p$ is injective if and only if $p \nmid y_2$.
- ightharpoonup If $d_p > b_p = 0$, then $\check{\beta}_p = p^{c_p}\check{\alpha}_p$, $\check{H}_p = \langle \check{\alpha}_p \rangle \cong \mathbb{Z}_p$, and by (2.23), $\check{\sigma}_p$ is injective if and only if $p \nmid x_1 + w$.

- \triangleright If $d_p > c_p = 0$, then $\check{\alpha}_p = p^{b_p} \check{\beta}_p$, $\check{H}_p = \langle \check{\beta}_p \rangle$, and by (2.24), $\check{\sigma}_p$ is injective if and only if $p \nmid mz_px_2 + y_2$, which, by (2.7), is equivalent to $p \nmid x_1 + w$.
- ightharpoonup If $b_p, c_p, d_p > 0$, then $\check{H}_p = \langle \check{\alpha}_p, \check{\beta}_p \rangle \cong \mathbb{Z}_p^2$, and by (2.23), (2.24), $\overline{\sigma}_p$ is invertible if and only if

$$0 \not\equiv x_1 y_2 - \frac{p^{b_p} t y_1}{p^{c_p} m} \frac{m}{p^{b_p}} z_p x_2 \equiv x_1 y_2 - x_2 y_1 \pmod{p}.$$

Lemma 2.4. Suppose $p \nmid x_1y_2 - x_2y_1$ for all $p \in \Lambda_1$ with $d_p < a_p$. Then the homomorphism σ_0 is injective if and only if

(2.25)
$$r^{y_1} \equiv 1 \pmod{p^{a_p}}$$
 and $p \nmid x_1 + w$ for all $p \in \Lambda_2$.

Proof. Note that $\sigma_0(\alpha^{r-1}) = \alpha^u$, with

$$(2.26) u = x_1[r-1]_{r^{y_1}} + (r-1)w.$$

For each $p \in \Lambda_1$ with $d_p < a_p$, by (2.8) we have

$$u \equiv (1 - r^{y_1})x_1[r - 1]_{r^{y_1}} + x_1(r^{y_2} - 1) - x_2(r^{y_1} - 1) \pmod{p^{a_p}}$$

$$\equiv (r - 1)(x_1y_2 - x_2y_1) \pmod{p^{d_p + 1}},$$

the second line following from $r^{y_j} - 1 \equiv (r-1)y_j \pmod{p^{2d_p}}, j = 1, 2$. Hence

Thus σ_0 is injective if and only if $p \nmid u$ for all $p \in \Lambda_2$. For $p \in \Lambda_2$, by (2.15), (2.18),

$$\deg_p(w) = c_p + \deg_p(y_1) - b_p \geqslant c_p = a_p.$$

Hence, if $p \nmid u$ then $p \nmid x_1[r-1]_{r^{y_1}}$ and this implies that $r^{y_1} \equiv 1 \pmod{p^{a_p}}$ (by the argument given). On the other hand, if $r^{y_1} \equiv 1 \pmod{p}$ then $[r-1]_{r^{y_1}} \equiv r-1 \not\equiv 0 \pmod{p^{a_p}}$ and hence $p \mid u$ if and only if $p \mid x_1$. Therefore, σ_0 is injective if and only if $p \nmid u$ if and only if $r^{y_1} \equiv 1 \pmod{p^{a_p}}$ and $p \nmid x_1$; the condition $p \nmid x_1$ is equivalent to $p \nmid x_1 + w$.

Remark 2.5. In order to obtain neat conditions, we prefer $p \nmid x_1 + w$ to $p \nmid x_1$.

Summarizing, sufficient and necessary conditions for σ to be an automorphism are (2.6), (2.7), (2.8), (2.20) and (2.25). Let (2.7)_p denote the condition (2.7) with mod n replaced by mod p^{a_p} . Then (2.7) is equivalent to (2.7)_p for all $p \in \Lambda_1 \sqcup \Lambda_2$ simultaneously. The same holds when (2.7)_p is repleited by (2.8)_p.

Remark 2.6. If $p \in \Lambda_2$, then $p \neq 2$: otherwise $2 \mid n$ but $2 \nmid r - 1$, contradicting $n \mid r^m - 1$. Due to (2.15), (2.25), the conditions $(2.7)_p$, $(2.8)_p$ are equivalent to $r^{y_2-1} \equiv 1 \pmod{p^{a_p}}$.

If $p \in \Lambda_1$ with $d_p = a_p$, then $r \equiv 1 \pmod{p^{a_p}}$, hence $(2.8)_p$ is trivial, and $(2.7)_p$ becomes $t(x_1 + w - y_2) \equiv mx_2 \pmod{p^{a_p}}$.

Suppose $p \in \Lambda_1$ with $d_p < a_p$. Note that by (2.16), $b_p > 0$. We will simplify (2.7)_p and (2.8)_p, with (2.6) and (2.20) assumed.

By Lemma 2.1 (I), $[r-1]_{r^{y_1}} \equiv r-1 \pmod{p^{2d_p}}$ when $p \neq 2$ or p=2, $\deg_2(r^{y_1}-1)>1$. Hence by (2.27),

(2.28)
$$p \nmid x_1 + w$$
 if $p \neq 2$ or $p = 2$, $d_2 + \deg_2(y_1) > 1$.

By (2.15), (2.16), (2.18),

(2.29)
$$\deg_p(y_1) \geqslant b_p - d_p \geqslant a_p - 2d_p \quad \text{if } (p, d_p) \neq (2, 1),$$

$$(2.30) \deg_p(w) = \deg_p(y_1) + c_p - b_p \geqslant c_p - d_p \geqslant a_p - 2d_p \quad \text{if } (p, d_p) \neq (2, 1).$$

We will use (2.28), (2.29), (2.30) repeatedly.

Lemma 2.7. If $2 \neq p \in \Lambda_1$, then the conditions $(2.7)_p$ and $(2.8)_p$ hold if and only if

$$(2.31) mx_2 \equiv t(x_1 + w - y_2) \text{ (mod } p^{a_p}),$$

(2.32)
$$y_2 \equiv 1 + w \pmod{p^{a_p - d_p}}.$$

Proof. Abbreviate a_p , b_p , c_p , d_p , $\deg_p(x)$ to a, b, c, d, $\deg(x)$, respectively. Applying Lemma 2.1, with (2.15), (2.16), (2.29) recalled, we obtain

$$r^{y_1} \equiv 1 + (r-1)y_1$$
, $[t]_{r^{y_1}} \equiv t$, $[m]_{r^{y_2}} \equiv m \pmod{p^a}$, $[r]_{r^{y_1}} = (r^{y_1})^{r-1} + [r-1]_{r^{y_1}} \equiv 1 + (r-1) = r \pmod{p^a}$.

Hence $(2.7)_p$ can be simplified as (2.31) and $(2.8)_p$ can be rewritten as

$$(2.33) (r-1)y_1x_2 + (r-1)w \equiv (r^{y_2} - r)x_1 \pmod{p^a}.$$

By (2.29) and (2.30), $deg((r-1)y_1x_2 + (r-1)w) \ge a - d$, hence

(2.34)
$$\deg(y_2 - 1) + \deg(x_1) = \deg((r^{y_2} - r)x_1) - d \geqslant a - 2d.$$

By Lemma 2.1 (II), $r^{y_2-1}-1 \equiv (r-1)(y_2-1) \pmod{p^{a-\deg(x_1)}}$, and then

$$(r^{y_2} - r)x_1 = (r - 1)^2(y_2 - 1)x_1 + (r - 1)(y_2 - 1)x_1 \equiv (r - 1)(y_2 - 1)x_1 \pmod{p^a}.$$

Thus (2.33) can be converted into $(y_2 - 1)x_1 \equiv y_1x_2 + w \pmod{p^{a-d}}$. Since by (2.31),

$$(2.35) y_1 x_2 \equiv \frac{ty_1}{m} (x_1 + w - y_2) = w(x_1 + w - y_2) \pmod{p^{a + \deg(y_1) - b}}$$
$$\equiv w(x_1 + w - y_2) \pmod{p^{a - d}},$$

we are led to $(y_2 - 1)x_1 \equiv w(x_1 + w - y_2 + 1) \pmod{p^{a-d}}$, i.e.,

$$(2.36) (y_2 - 1 - w)(x_1 + w) \equiv 0 \pmod{p^{a-d}};$$

due to (2.28), this is equivalent to (2.32).

Set

(2.37)
$$f(y_1) = \begin{cases} 2^{a_2 - d_2 - 1} & \text{if } c_2 \neq b_2, \ \min\{b_2, c_2\} = a_2 - d_2 \text{ and } \deg_2(y_1) = b_2 - d_2, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 2.8. If $2 \in \Lambda_1$, then the conditions $(2.7)_2$ and $(2.8)_2$ hold if and only if

- (i) if $b_2 = c_2 = d_2 = 1$ (so that $a_2 = 2$), then no additional condition is required;
- (ii) if $d_2 = 1$ and $\max\{b_2, c_2\} > 1$, then $2 \mid y_1, \deg_2(x_2) \geqslant a_2 b_2 e + 1$ and

(2.38)
$$w \equiv 2^{e-1}(y_1 - y_2 + 1) \pmod{2^{a_2 - 1}};$$

(iii) if $d_2 > 1$, then

$$(2.39) mx_2 \equiv t(x_1 + w - y_2) \pmod{2^{a_2}},$$

(2.40)
$$y_2 \equiv (1 + w + f(y_1)) \pmod{2^{a_2 - d_2}}.$$

Proof. Abbreviate a_2 , b_2 , c_2 , d_2 , $\deg_2(x)$ to a, b, c, d, $\deg(x)$, respectively.

(i) For any x, u > 0, we have $r^x \equiv 1 + 2x \pmod{4}$, and

$$[u]_{r^x} = \sum_{i=0}^{u-1} r^{ix} \equiv \sum_{i=0}^{u-1} (1+2ix) \equiv u + u(u-1)x \pmod{4}.$$

In particular, $[m]_{r^{y_2}} \equiv 2 + 2y_2$, $[t]_{r^{y_1}} \equiv 2 + 2y_1$, $[r]_{r^{y_1}} \equiv 3 + 2y_1 \pmod{4}$. The conditions (2.7)₂, (2.8)₂ can be converted into, respectively,

$$(2.41) (x_2+1)(y_2+1) - (x_1+1)(y_1+1) \equiv 0 \pmod{2},$$

$$(2.42) x_2y_1 + x_1(1+y_1-y_2) + y_1 \equiv 0 \pmod{2}.$$

Due to (2.20), $x_2y_1 \equiv x_1y_2 + 1 \pmod{2}$, hence (2.42) is equivalent to $(x_1 + 1) \times (y_1 + 1) \equiv 0 \pmod{2}$, which is true since by (2.20), at least one of x_1 , y_1 is odd. Then similarly, (2.41) also holds.

(ii) We first show $2 \mid y_1$. Assume on the contrary that $2 \nmid y_1$. By (2.18), b = 1, so that c > 1. By $(2.7)_2$, $x_2[m]_{r^{y_2}} \equiv 0 \pmod{4}$, which forces $2 \nmid y_2$: if $2 \mid y_2$, then $r^{y_2} \equiv 1 \pmod{4}$ so that $4 \nmid [m]_{r^{y_2}}$, and we would get $2 \mid x_2$, contradicting (2.20). Then $r^{y_j} \equiv -1 \pmod{4}$, j = 1, 2, and $[r]_{r^{y_1}} \equiv 1 \pmod{4}$, so $(2.8)_2$ implies $2(x_1 - x_2) \equiv 0 \pmod{4}$. But this contradicts (2.20).

Thus $2 \mid y_1$. By (2.20), $2 \nmid x_1y_2$; by (2.28), $2 \mid w$. Hence

$$(2.43) t(x_1 + w - y_2) \equiv 0 \pmod{2^a}.$$

By (2.17), (2.18), $1 + \deg(y_1) + e \ge b + e \ge a$, hence

$$(2.44) \deg(r^{y_1} - 1) = \deg((r^2)^{y_1/2} - 1) = e + \deg(y_1) \geqslant a - 1.$$

When c > 1, applying Lemma 2.1 we obtain

$$[t]_{r^{y_1}} \equiv (1 + 2^{e + \deg(y_1) - 1})t \pmod{2^{e + \deg(y_1) + c}} \equiv t \pmod{2^a},$$

$$[r]_{r^{y_1}} = (r^{y_1})^{r - 1} + [r - 1]_{r^{y_1}} \equiv 1 + (1 + 2^{e + \deg(y_1) - 1})(r - 1) \pmod{2^{e + \deg(y_1) + 1}}$$

$$\equiv r + 2^e y_1 \pmod{2^a};$$

when c=1 so that a=2, these congruence relations obviously hold.

Due to (2.43), the condition (2.7)₂ becomes $x_2[m]_{r^{y_2}} \equiv 0 \pmod{2^a}$. Since $\deg(r^{y_2}+1) = \deg(r+1) = e$ and $[m]_{r^{y_2}} = (r^{y_2}+1)[m/2]_{r^{2y_2}}$, we have $\deg([m]_{r^{y_2}}) = e+b-1$. Hence

$$\deg(x_2) \geqslant a - b - e + 1.$$

This together with (2.18) implies

$$\deg((r^{y_1} - 1)x_2) = \deg(y_1) + e + \deg(x_2) \geqslant b - 1 + e + \deg(x_2) \geqslant a.$$

Then $(2.8)_2$ becomes

$$(2.45) x_1(r^{y_2} - r - 2^e y_1) \equiv (r - 1)w \pmod{2^a}.$$

Since $\deg(r^{y_2-1}-1)=\deg((r^2)^{(y_2-1)/2}-1)=e+\deg(y_2-1)$, we have $r^{y_2-1}-1=2^e(y_2-1)z$ for some odd z. Using $2^{e+1}y_1\equiv 2(r-1)w\equiv 0\pmod{2^a}$, we can convert (2.45) into (2.38).

(iii) Applying Lemma 2.1 (with (2.29) recalled), we obtain

$$r^{y_1} \equiv \begin{cases} 1 + (r - 1)y_1, & 2 \nmid y_1 \\ 1 + (r - 1 + 2^{2d - 1})y_1, & 2 \mid y_1 \end{cases} \pmod{2^a},$$
$$[r]_{r^{y_1}} \equiv (r + 2^{2d - 1}y_1) \pmod{2^a},$$
$$[t]_{r^{y_1}} \equiv (1 + 2^{d - 1}y_1)t \pmod{2^a},$$
$$[m]_{r^{y_2}} \equiv (1 + 2^{d - 1}y_2)m \pmod{2^a}.$$

We deal with the cases $2 \mid y_1$ and $2 \nmid y_1$ separately.

(iii 1) If $2 \mid y_1$, then by (2.20), $2 \nmid x_1y_2$, and by (2.28), $2 \mid w$. The condition (2.7)₂ becomes

$$(2.46) (1+2^{d-1}y_2)mx_2 \equiv t(x_1+w-y_2) \pmod{2^a},$$

which can be converted into (2.39) via multiplying by $1 - 2^{d-1}y_2$. Moreover, (2.46) implies $b + \deg(x_2) \ge \min\{c+1, a\}$, hence

$$2d - 1 + \deg(x_2) + \deg(y_1) \ge 2d - 1 + (\min\{c + 1, a\} - b) + (b - d)$$
$$= d - 1 + \min\{c + 1, a\} \ge a.$$

As a result, $x_2(r^{y_1} - 1) \equiv (r - 1)x_2y_1 \pmod{2^a}$. Using this and $2^{2d-1}(x_1 - 1)y_1 \equiv 0 \pmod{2^a}$, we may convert $(2.8)_2$ into

$$(2.47) (r-1)x_2y_1 + 2^{2d-1}y_1 + (r-r^{y_2})x_1 + (r-1)w \equiv 0 \pmod{2^a}.$$

By an argument similar to that used for deducing (2.34) in the proof of Lemma 2.7, we obtain $deg(y_2 - 1) \ge a - 2d$, and then by Lemma 2.1 (II),

$$r^{y_2-1}-1 \equiv (1+2^{d-1})(r-1)(y_2-1) \pmod{2^a}$$
.

Using $(r-1)(r^{y_2-1}-1)\equiv 0\pmod{2^a}$, we can convert (2.47) further into

$$(2.48) (y_2 - 1)x_1 \equiv y_1x_2 + w + 2^{d-1}(y_1 - y_2 + 1) \pmod{2^{a-d}}.$$

Similarly to (2.35), it follows from (2.39) that $y_1x_2 \equiv w(x_1 + w - y_2) \pmod{2^{a-d}}$, and then (2.48) becomes

$$(2.49) (y_2 - 1 - w)(x_1 + w + 2^{d-1}) \equiv 2^{d-1}(y_1 - w) \pmod{2^{a-d}}.$$

From (2.29) and (2.30) we see that $deg(y_1 - w) \ge a - 2d$, and the equality holds if and only if one of the following cases occurs:

 $ightharpoonup \deg(w) > \deg(y_1) = a - 2d$, which is equivalent to $\deg(y_1) = b - d$ and c > b = a - d; $ightharpoonup \deg(y_1) > \deg(w) = a - 2d$, which is equivalent to $\deg(y_1) = b - d$ and b > c = a - d. Thus (2.49) becomes

$$(y_2 - 1 - w)(x_1 + w + 2^{d-1}) \equiv f(y_1) \equiv f(y_1)(x_1 + w + 2^{d-1}) \pmod{2^{a-d}},$$

which is equivalent to (2.40).

(iii 2) If $2 \nmid y_1$, then $d, c \geqslant b$, and $2d \geqslant a$. By Lemma 2.1 (II), $r^{y_2} \equiv 1 + (r-1)y_2$ (mod 2^a), hence $(2.7)_2$, $(2.8)_2$ become, respectively,

$$(2.50) (1+2^{d-1}y_2)mx_2 + ty_2 \equiv (1+2^{d-1})tx_1 + tw \pmod{2^a},$$

$$(2.51) (y_2 - 1)x_1 \equiv y_1 x_2 + w + 2^{d-1} x_1 \pmod{2^{a-d}}.$$

If c = b, then by (2.28), $2 \mid x_1$, and by (2.20), $2 \nmid x_2$. By (2.50), $2 \mid y_2$, and then (2.50) becomes (2.39). We can reduce (2.51) to $y_2 - 1 \equiv w \pmod{2^{a-d}}$ similarly to the proof of Lemma 2.7.

Now assume c > b so that $2 \mid w$. By (2.28), $2 \nmid x_1$. Since $c + d - 1 \geqslant b + d \geqslant a$, we can reduce (2.50) to (2.39) via multiplying by $1 - 2^{d-1}y_2$. If 2d > a, then still similarly to the proof of Lemma 2.7, we can reduce (2.51) to $y_2 - 1 \equiv w \pmod{2^{a-d}}$; if 2d = a, then b = a - d = d, then similarly to (iii 1), we can reduce (2.51) to $y_2 - 1 \equiv w + 2^{a-d-1} \pmod{2^{a-d}}$.

Thus in any case,
$$(2.7)_2$$
, $(2.8)_2$ are equivalent to (2.39) , (2.40) .

2.3. Main result.

Let m_0 be the smallest positive integer k such that $r^k \equiv 1 \pmod{p^{a_p}}$ for all $p \in \Lambda_2$. Combining Lemma 2.3, Lemma 2.4, Remark 2.6, Lemma 2.7 and Lemma 2.8, we establish

Theorem 2.9. Each automorphism of H(n, m; t, r) is given by

$$\alpha^u\beta^v\mapsto \exp_{\alpha}(x_1[u]_{r^{y_1}}+r^{y_1u}x_2[v]_{r^{y_2}})\beta^{y_1u+y_2v},\quad u,v>0,$$

for a unique quadruple (x_1, x_2, y_1, y_2) with $0 < x_1, x_2 \le n$, $0 < y_1, y_2 \le m$ and such that

(i) for all $p \in \Lambda$,

$$\begin{cases} p \nmid y_2, & p \in \Lambda', \\ p \nmid x_1 + ty_1/m, & p \in \Lambda_2 \text{ or } p \in \Lambda_1 \text{ with } b_p c_p = 0, \\ p \nmid x_1 y_2 - x_2 y_1, & p \in \Lambda_1 \text{ with } b_p, c_p > 0; \end{cases}$$

- (ii) $(r-1,t)y_1 \equiv 0 \pmod{m}$ and $y_1 \equiv y_2 1 \equiv 0 \pmod{m_0}$;
- (iii) for all $p \in \Lambda_1$ with $p \neq 2$ or p = 2, $a_2 = d_2$,

$$mx_2 \equiv t(x_1 + ty_1/m - y_2) \pmod{p^{a_p}},$$

 $y_2 \equiv 1 + ty_1/m \pmod{p^{a_p - d_p}};$

(iv) if $\max\{b_2, c_2\} > d_2 = 1$ and $a_2 > 1$, then $2 \mid y_1, \deg_2(x_2) \geqslant a_2 - b_2 - e + 1$ and

$$ty_1/m \equiv 2^{e-1}(y_1 - y_2 + 1) \pmod{2^{a_2 - 1}};$$

(v) if $d_2 > 1$, then

$$mx_2 \equiv t(x_1 + ty_1/m - y_2) \pmod{2^{a_2}},$$

 $y_2 \equiv 1 + ty_1/m + f(y_1) \pmod{2^{a_2 - d_2}}.$

References

- [1] J. N. S. Bidwell, M. J. Curran: The automorphism group of a split metacyclic p-group. Arch. Math. 87 (2006), 488–497.
- [2] H.-M. Chen: Reduction and regular t-balanced Cayley maps on split metacyclic 2-groups. Available at ArXiv:1702.08351 [math.CO] (2017), 14 pages.
- [3] M. J. Curran: The automorphism group of a split metacyclic 2-group. Arch. Math. 89 (2007), 10–23.
- [4] M. J. Curran: The automorphism group of a nonsplit metacyclic p-group. Arch. Math. 90 (2008), 483–489.
- [5] R. M. Davitt: The automorphism group of a finite metacyclic p-group. Proc. Am. Math. Soc. 25 (1970), 876–879.
- [6] M. Golasiński, D. L. Gonçalves: On automorphisms of split metacyclic groups. Manuscripta Math. 128 (2009), 251–273.
- [7] C. E. Hempel: Metacyclic groups. Commun. Algebra 28 (2000), 3865–3897.
- [8] H. J. Zassenhaus: The Theory of Groups. Chelsea Publishing Company, New York, 1958. zbl MR

Authors' addresses: Haimiao Chen, Beijing Technology and Business University, Fucheng Road 11/33, Beijing 10048, Haidian, China, e-mail: chenhm@pku.edu.cn; Yue-shan Xiong, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, Hogshan, Hubei, China, e-mail: xiongyueshan@gmail.com; Zhongjian Zhu, Wenzhou University, 276 Xueyuan Middle Rd, Lucheng, Wenzhou 325035, Zhejiang, China, e-mail: zhuzhongjianzzj@126.com.

zbl MR doi

zbl MR doi