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Abstract. For X,Y ∈ Mn,m it is said that X is gut-majorized by Y , and we write
X ≺gut Y , if there exists an n-by-n upper triangular g-row stochastic matrix R such
that X = RY . Define the relation ∼gut as follows. X ∼gut Y if X is gut-majorized
by Y and Y is gut-majorized by X. The (strong) linear preservers of ≺gut on R

n and
strong linear preservers of this relation on Mn,m have been characterized before. This
paper characterizes all (strong) linear preservers and strong linear preservers of ∼gut on R

n

and Mn,m.
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1. Introduction

Let Mn,m be the algebra of all n-by-m real matrices, and R
n be the set of all

n-by-1 real column vectors. An n-by-n real matrix (not necessarily nonnegative)

A is g-row stochastic (generalized row stochastic) if all its row sums are one. Let

X,Y ∈ Mn,m. Matrix X is said to be gut-majorized by Y and it is denoted by

X ≺gut Y if there exists an n-by-n upper triangular g-row stochastic matrix R such

that X = RY . We also say that X ∼gut Y if and only if X ≺gut Y ≺gut X , and call

this two-sided gut-majorization.

A linear function T : Mn,m → Mn,m preserves an order relation ≺ in Mn,m if

TX ≺ TY whenever X ≺ Y . Also, T is said to strongly preserve if for all X,

Y ∈ Mn,m

X ≺ Y ⇔ TX ≺ TY.
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The (strong) linear preservers and strong preservers of≺gut on R
n andMn,m are fully

characterized in [1]. For more information about linear preservers of majorization

we refer the reader to [2]–[10].

Some of our notation and symbols are as follows:

Rgut
n : the collection of all n-by-n upper triangular g-row stochastic matrices;

E: the n-by-n matrix with all of the entries of the last column equal to one and the

other entries equal to zero;

e: the column real vectors with all of the entries equal to one;

{e1, . . . , en}: the standard basis of R
n;

[x1 | . . . | xm]: the n-by-m matrix with columns x1, . . . , xm ∈ R
n;

A(n1, . . . , nl | m1, . . . ,mk): the submatrix of A obtained from A by deleting rows

n1, . . . , nl and columns m1, . . . ,mk;

A(n1, . . . , nl): the abbreviation of A(n1, . . . , nl | n1, . . . , nl);

Nk: the set {1, . . . , k} ⊂ N;

At: the transpose of a given matrix A;

[T ]: the matrix representation of a linear function T : R
n → R

n with respect to the

standard basis;

ri: the sum of entries on the ith row of [T ].

This paper is organized as follows. In Section 2, we first introduce the relation∼gut

on R
n and we express an equivalent condition for this majorization. Finally, we

obtain some results characterizing the structure of (strong) linear preservers of this

relation on Rn. One of the main results of this paper is to find the structure of linear

functions T : R
n → R

n preserving (strongly preserving) ∼gut. The last section of

this paper studies some facts of this concept that are necessary for studying the

strong linear preservers of ∼gut on Mn,m. Also, the strong linear preservers of ∼gut

onMn,m are obtained.

2. Two-sided gut-majorization on R
n

First, we review some sticking point of ∼gut on R
n, and then we establish some

properties to prove the main theorems. Also, we characterize all linear functions

T : R
n → R

n preserving (strongly preserving) ∼gut.

Definition 2.1. Let x, y ∈ R
n. Then x is said to be two-sided gut-majorized

by y (in symbol x ∼gut y) if x ≺gut y ≺gut x.

The following proposition gives an equivalent condition for this relation on R
n.

We state the result without proof.
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Proposition 2.1. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n. Then x ∼gut y if

and only if

min{i : xi = xi+1 = . . . = xn} = min{i : yi = yi+1 = . . . = yn},

and xn = yn.

The following lemmas are useful for finding the structure of (strong) linear pre-

servers of two-sided gut-majorization on R
n.

Lemma 2.1. Let T : R
n → R

n be a linear preserver of ∼gut. Assume S : R
n−k →

R
n−k is a linear function such that [S] = [T ](1, . . . , k). Then S preserves ∼gut

on R
n−k.

P r o o f. Let x′ = (xk+1, . . . , xn)
t, y′ = (yk+1, . . . , yn)

t ∈ R
n−k and let x′ ∼gut y

′.

Define x := (0, . . . , 0, xk+1, . . . , xn)
t, y := (0, . . . , 0, yk+1, . . . , yn)

t ∈ R
n. Then, by

Propositon 2.1, x ∼gut y and hence Tx ∼gut Ty. It implies that Sx′ ∼gut Sy′.

Therefore S preserves ∼gut on R
n−k. �

Lemma 2.2. Let T : R
n → R

n be a linear preserver of ∼gut, and let [T ] = [aij ].

Then an1 = an2 = . . . = ann−1 = 0.

P r o o f. We proceed by induction. The result is clear for n = 1. For n = 2

we should prove a21 = 0. Set x = 2e1 + e2 and y = e2. As x ∼gut y, it fol-

lows that Tx ∼gut Ty. Thus, 2a21 + a22 = a22, and hence a21 = 0. Suppose

that n > 2 and that the assertion has been established for all linear preservers

of ∼gut on R
n−1. Let S : R

n−1 → R
n−1 be a linear function with [S] = [T ](1).

Lemma 2.1 states that S preserves ∼gut on R
n−1. The induction hypothesis en-

sures that an2 = . . . = ann−1 = 0. So it is enough to show that an1 = 0. Consider

x = e1 + en and y = en. Observe that x ∼gut y, and then Tx ∼gut Ty. It implies

that an1 = 0 as well. �

Lemma 2.3. Let T : R
n → R

n be a linear function such that akt 6= 0 for some

k, t ∈ Nn−1, where [T ] = [aij ]. Suppose that ak+1t = . . . = ant = 0 and there exists

some j (t + 1 6 j 6 n − 1) such that ak+1j = . . . = anj = 0. Then T does not

preserve ∼gut.

P r o o f. Set x = −(akj/akt)et+ej and y = ytet+ej where yt ∈ R\{−akj/akt}. It

is easy to see that x ∼gut y but Tx 6∼gut Ty. Therefore T does not preserve ∼gut. �

Lemma 2.4. Let T : R
n → R

n be a linear preserver of ∼gut. Then [T ] is an

upper triangular matrix.
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P r o o f. Let [T ] = [aij ]. Use induction on n. For n = 1, the result is clear. If

n = 2, we should only prove that a21 = 0. Then Lemma 2.2 ensures the result. For

n > 2 assume that the matrix representation of every linear preserver of ∼gut on

R
n−1 is an upper triangular matrix. Let S : R

n−1 → R
n−1 be the linear function

with [S] = [T ](1). Lemma 2.1 ensures that the linear function S preserves ∼gut

on R
n−1. The induction hypothesis ensures that [S] is an (n − 1)-by-(n− 1) upper

triangular matrix. Also, Lemma 2.2 states that an1 = 0. So it is enough to show

that a21 = a31 = . . . = an−11 = 0. Assume, if possible, that ak1 6= 0, where

k = max{2 6 i 6 n − 1: ai1 6= 0}. By Lemma 2.3, we see that T does not

preserve ∼gut, which would be a contradiction. Thus a21 = a31 = . . . = an−11 = 0,

and then the induction argument is completed. Therefore [T ] is an upper triangular

matrix. �

The following theorem characterizes the structure of all linear functions T :

R
n → R

n, preserving ∼gut.

Theorem 2.1. Let T : R
n → R

n be a linear function. Then T preserves ∼gut if

and only if one of the following assertions holds.

(i) Te1 = . . . = Ten−1 = 0. In other words,

[T ] =











0 . . . 0 a1n
0 . . . 0 a2n
...
...
...

...

0 . . . 0 ann











.

(ii) There exist t ∈ Nn−1 and 1 6 i1 < . . . < im 6 n − 1 such that ai1t, ai2t+1, . . . ,

aimn−1 6= 0,

[T ] =



























0 ∗

ai1t ∗
. . .

ai2t+1

. . .

0 aimn−1

0 ∗



























,

and

(1) ri1 = . . . = rn or

(2) for some k ∈ (im, n) ∪
im−1
⋃

j=1

(ij , ij+1), rk 6= rk+1 = . . . = rn.
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P r o o f. First, we prove the sufficiency of the conditions. If (i) holds, let x =

(x1, . . . , xn)
t, y = (y1, . . . , yn)

t ∈ R
n such that x ∼gut y. Proposition 2.1 ensures

that xn = yn. So Tx = Ty, and then Tx ∼gut Ty. Assume that (ii) holds. The

proof is by induction on n. If n = 2, by the hypothesis we see [T ] =
( a11 a12

0 a22

)

,

a11 6= 0, and r1 = r2. Let x = (x1, x2)
t, y = (y1, y2)

t ∈ R
2 such that x ∼gut y.

So Tx = (a11x1 + a12y2, a22y2)
t and Ty = (a11y1 + a12y2, a22y2)

t. Observe that

(Tx)1 = (Tx)2 if and only if x1 = y2, and also (Ty)1 = (Ty)2 if and only if y1 = y2,

because r1 = r2 and a11 6= 0. Now, as x ∼gut y, we deduce that (Tx)1 = (Tx)2 is

equivalent to (Ty)1 = (Ty)2. Thus, Tx ∼gut Ty. Suppose that n > 3 and the result

has been proved for all linear functions on R
n−1 with the described conditions in

the hypothesis. Let x = (x1, . . . , xn)
t, y = (y1, . . . , yn)

t ∈ R
n such that x ∼gut y.

We have to show that Tx ∼gut Ty. For this purpose, let S : R
n−1 → R

n−1 be

a linear function with [S] = [T ](1). Set x′ = (x2, . . . , xn)
t and y′ = (y2, . . . , yn)

t.

Then x′ ∼gut y′ and hence, by applying the induction hypothesis for S, Sx′ ∼gut

Sy′. That is, ((Tx)2, . . . , (Tx)n)
t ∼gut ((Ty)2, . . . , (Ty)n)

t. If there exists some i

(2 6 i 6 n − 1) such that (Tx)i 6= (Tx)i+1, then the proof is complete. Otherwise,

(Tx)2 = . . . = (Tx)n = (Ty)2 = . . . = (Ty)n.

If (1) holds, (Tx)im = (Tx)n implies that xn−1 = yn, because aimn−1 6= 0 and

rim = rn. Since x ∼gut y, we see that yn−1 = yn. By continuing this process, we

can conclude that xt = . . . = xn = yt = . . . = yn. Hence (Tx)1 = (Ty)1, and then

Tx ∼gut Ty.

Suppose (2) holds, case (1). If there is some k ∈ (im, n) such that rk 6=

rk+1 = . . . = rn, as (Tx)k = (Tx)n, we have aknyn = annyn. The rela-

tion akn 6= ann ensures that yn = 0, and then (Ty)n = 0. It means that

(Tx)2 = . . . = (Tx)n = (Ty)2 = . . . = (Ty)n = 0. On the other hand, since

(Tx)im = 0 and aimn−1 6= 0, we deduce that xn−1 and also yn−1 are zero. It is a sim-

ple matter to see that xt = . . . = xn = yt = . . . = yn = 0. So (Tx)1 = (Ty)1 = 0,

which completes the proof.

Case (2). If there exists some k ∈ (ij , ij+1) for some j ∈ Nim−1
such that rk 6=

rk+1 = . . . = rn, as rk+1 = . . . = rn and aij+1l, . . . , aimn−1 6= 0, we observe that

xl = . . . = xn = yl = . . . = yn. Now, (Tx)k = (Tx)n and rk 6= rn imply that yn = 0.

So xl = . . . = xn = yl = . . . = yn = 0. If i1 = 1, by continuing this procedure,

we find that xt+1 = . . . = xn = yt+1 = . . . = yn = 0. So (Tx)2 = . . . = (Tx)n =

(Ty)2 = . . . = (Ty)n = 0, (Tx)1 = a1txt, and (Ty)1 = a1tyt. Clearly, (Tx)1 6= 0

is equivalent to (Ty)1 6= 0, and then Tx ∼gut Ty. If i1 > 1, we can prove that

xt = . . . = xn = yt = . . . = yn = 0, and thus (Tx)1 = (Ty)1 = 0, which is the desired

conclusion.

For the converse, assume that T preserves∼gut and (i) does not hold. We show that

(ii) holds. We use induction on n. First, consider the case n = 2. Lemma 2.4 ensures
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that T is upper triangular. So a11 6= 0. We want to prove r1 = r2. If r1 6= r2, choose

x = ((a22 − a12)/a11, 1)
t and y = (y1, 1)

t, in which y1 ∈ R \ {1, (a22 − a12)/a11}.

Clearly x ∼gut y and hence Tx ∼gut Ty. It means that (a22, a22)
t ∼gut (a11y1 +

a12, a22)
t, a contradiction. Thus, r1 = r2. Now, suppose that n > 3 and the

statement holds for linear preservers of ∼gut on R
n−1. Let S : R

n−1 → R
n−1 be the

linear function with [S] = [T ](1). Lemma 2.1 ensures that S preserves ∼gut on R
n−1.

Apply the induction hypothesis for S. So the proof will be divided into two steps.

Step 1. S satisfies (i). By Lemma 2.3, the first nonzero column of T should be its

(n− 1)st column. Because if the first nonzero column of T is less than its (n− 1)st

column, since (n− 1)st column of S is zero, T does not preserve ∼gut. If there exists

some i (2 6 i 6 n − 1) such that ain 6= ann, then T satisfies (2). Otherwise we

have to just show that r1 = . . . = rn. Assume, if possible, that r1 6= r2 = . . . =

rn. Consider x = (ann − a1n)/(a1n−1)en−1 + en and y = yn−1en−1 + en, where

yn−1 ∈ R \ {1, (ann − a1n)/(a1n−1)}. Thus, x ∼gut y, and so Tx ∼gut Ty, which is

a contradiction. Therefore r1 = rn. We see that (1) holds.

Step 2. S satisfies (ii). If columns 1, . . . , t− 1 of T are zero, then there is nothing

to prove. If not, Lemma 2.3 ensures that the first nonzero column of T should be its

(t− 1)st column, that is,

[T ] =





















a1t−1 ∗
. . .

ai2t
. . .

0 aimn−1

0 ∗





















.

If (2) holds for [S], then there is nothing to prove. Suppose that (1) holds for [S].

Then ri2 = . . . = rn. If card{r2, . . . , ri2} > 2, observe that T satisfies (2), and

then the proof is complete. If r2 = . . . = ri2 , it is enough to prove r1 = rn.

Without loss of generality, we can assume that a1t−1 = 1. If r1 6= rn, by setting

x = xt−1et−1 +
n
∑

i=t

ei and y = yt−1et−1 +
n
∑

i=t

ei, where xt−1 = ann −
n
∑

j=t

a1j and

yt−1 ∈ R \
{

1, ann −
n
∑

j=t

a1j

}

, it follows that x ∼gut y, and so Tx ∼gut Ty, which

would be a contradiction. Therefore, r1 = rn, and the desired conclusion holds. �

Now, we focus on finding strong linear preservers of ∼gut on R
n. We need the

following lemma to prove the next theorem.

Lemma 2.5. Let T : Mn,m → Mn,m be a linear function that strongly pre-

serves ∼gut. Then T is invertible.
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P r o o f. Suppose that TX = 0, where X ∈ Mn,m. Notice that since T is linear,

we have T 0 = 0 = TX . Then it is obvious that TX ∼gut T 0. Therefore X ∼gut 0,

because T strongly preserves ∼gut. Then X = 0, and hence T is invertible. �

We are now ready to prove one of the main theorems of this section. The following

theorem characterizes all linear functions T : R
n → R

n which strongly preserve ∼gut.

Theorem 2.2. Let T : R
n → R

n be a linear function. Then T strongly pre-

serves ∼gut if and only if [T ] = αA for some α ∈ R \ {0} and invertible matrix

A ∈ Rgut
n .

P r o o f. First, we prove the necessity of the condition. Assume that T strongly

preserves ∼gut. It means that T is invertible. Lemma 2.4 ensures that a11 6= 0. So,

by Theorem 2.1, the desired conclusion is true.

Next, since both T and T−1 preserve∼gut by Theorem 2.1, we have that T strongly

preserves ∼gut. �

Corollary 2.1. Let T : R
n → R

n preserve ∼gut. Then T strongly preserves ∼gut

if and only if T is invertible.

3. Two-sided gut-majorization on Mn,m

In this section, we discuss some properties of ∼gut on Mn,m, and we find the

structure of strong linear preservers of this relation on Mn,m. First, we state some

lemmas.

Lemma 3.1. Let A ∈ Mn. Then the following conditions are equivalent.

(a) For each invertible matrix D ∈ Rgut
n , AD = DA.

(b) For some α, β ∈ R, A = αI + βE.

(c) For each invertible matrix D ∈ Rgut
n and for all x, y ∈ R

n,

(Dx+ADy) ∼gut (x+Ay).

P r o o f. (a) ⇒ (b): First, by considering

D =

















1
2

1
2
1
2

1
2

0
. . .

0 1
2

1
2

1

















,
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observe that

A =

























α α1 α2 . . . αl αl+1 a1n
α α1 α2 . . . αl a2n
. . .

. . .
. . .

α α1 α2 an−3n

0 α α1 an−2n

α β

α+ β

























for some α, β, α1, . . . , αl+1 ∈ R such that αl+1 + a1n = a2n, αl + a2n = a3n,. . .,

α1 + an−2n = β. Next set

D =





















1 0 . . . 0
1
2

0 . . . 0 1
2

1
2

0 . . . 0 1
2

0
. . .

1
2

1
2

1





















.

We deduce that α1 = . . . = αl+1 = 0. Then a1n = a2n = . . . = an−2n = β. Therefore

A = αI + βE.

(b) ⇒ (c): Assume that the invertible matrix D ∈ Rgut
n and let x, y ∈ R

n. As

ED = E = DE, we see that Dx+ADy = D(x+Ay). So (Dx+ADy) ∼gut (x+Ay).

(c) ⇒ (a): Choose i ∈ Nn and define x : = e − Aei and y := ei. Consider the

invertible matrix D ∈ Rgut
n . The hypothesis ensures that (e−DAei +ADei) ∼gut e.

Hence (−DA+AD)ei = 0, and then AD = DA. �

For each i, j ∈ Nm consider the embedding Ej : R
n → Mn,m and the projection

Ei : Mn,m → R
n, where Ej(x) = xetj and Ei(A) = Aei. It is easy to show that for

every linear function T : Mn,m → Mn,m,

TX = T [x1 | . . . | xm] =

[ m
∑

j=1

T j
1xj | . . . |

m
∑

j=1

T j
mxj

]

,

where T j
i = EiTE

j.

It is easy to see that if T : Mn,m → Mn,m is a linear preserver of ∼gut, then T j
i

preserves ∼gut on R
n for all i, j ∈ Nm.

We need the following lemmas to prove the main theorem of this section.

Lemma 3.2 ([1], Lemma 3.3.). Let T : Mn,m → Mn,m satisfy TX = XR+EXS

for some R,S ∈ Mm. Then T is invertible if and only if R(R+ S) is invertible.
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Lemma 3.3. Let T : Mn,m → Mn,m preserve ∼gut. If for some i ∈ Nm there

exists k ∈ Nm such that T
k
i is invertible, then

m
∑

j=1

Aj
ixj = Ak

i

m
∑

j=1

αj
ixj + E

m
∑

j=1

βj
i xj

for some αj
i , β

j
i ∈ R, where Aj

i = [T j
i ].

P r o o f. There is no loss of generality to assume that i, k = 1 and j = 2. We

show that there exist α2
1, β

2
1 ∈ R such that A2

1 = α2
1A

1
1 + β2

1E. Let D ∈ Rgut
n be

invertible and x, y ∈ R
n. Observe that

D[x | y | 0 | . . . | 0] ∼gut [x | y | 0 | . . . | 0],

and then

T [Dx | Dy | 0 | . . . | 0] ∼gut T [x | y | 0 | . . . | 0].

So

[A1
1Dx+A2

1Dy | ∗ | ∗] ∼gut [A
1
1x+A2

1y | ∗ | ∗],

and thus

A1
1Dx+A2

1Dy ∼gut A
1
1x+A2

1y.

By Theorem 2.2, A1
1 is a nonzero multiple of an invertible matrix in Rgut

n and hence

Dx+ (A1
1)

−1A2
1Dy ∼gut x+ (A1

1)
−1A2

1y.

Now, Lemma 3.1 ensures that there exist α2
1, β

2
1 ∈ R such that A2

1 = α2
1A

1
1+β2

1E. �

Lemma 3.4. If T : Mn,m → Mn,m strongly preserves ∼gut, then for each i ∈ Nm

there exists j ∈ Nm such that T
j
i is invertible.

P r o o f. Let I = {i ∈ Nm : T j
i e1 = 0 for all j ∈ Nm}. We prove that I is empty.

If I is not empty, we can assume without loss of generality I = {1, 2, . . . , k}, where

k ∈ Nm. We consider two cases.

Case 1. k = m; let X = [e1 | 0 | . . . | 0] ∈ Mn,m. We observe that X 6= 0 but

TX = 0. This yields that T is not invertible, which is a contradiction by Lemma 2.5.

Case 2. k < m; by Lemma 3.3, for i (k + 1 6 i 6 m) and j ∈ Nm there exist

invertible matrices Ai and α
j
i , β

j
i ∈ R such that

m
∑

j=1

Aj
ixj = Ai

m
∑

j=1

αj
ixj +E

m
∑

j=1

βj
i xj .

Consider vectors (α1
k+1, . . . , α

1
m)t, . . . , (αm

k+1, . . . , α
m
m)t ∈ R

m−k. Since m− k < m,

there exist γ1, . . . , γm ∈ R, not all zero, such that γ1(α
1
k+1, . . . , α

1
m)t + . . . +
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γm(αm
k+1, . . . , α

m
m)t = 0. Let xj = γje1 for each j ∈ Nm. Since for every i

(k + 1 6 i 6 m), Ai ∈ Rn
gut is invertible, we have 0 6= Aie1 ∈ Span{e1}. As

a multiple of e1 has no effect on the desired answer, we can assume without loss of

generality Aie1 = e1. This implies that Ai

m
∑

j=1

αj
ixj + E

m
∑

j=1

βj
i xj = 0. By putting

X = [x1 | . . . | xm] ∈ Mn,m we see that X 6= 0, and TX = 0, a contradiction.

Therefore for each i ∈ Nm there exists j ∈ Nm such that T
j
i e1 6= 0 and hence T j

i is

invertible. �

The last theorem of this paper, which is our main result in this section, charac-

terizes the strong linear preservers of ∼gut onMn,m.

Theorem 3.1. Let T : Mn,m → Mn,m be a linear function. Then T strongly

preserves ∼gut if and only if there exist R,S ∈ Mm such that R(R+S) is invertible,

and invertible matrix A ∈ Rgut
n such that TX = AXR+ EXS.

P r o o f. First, we prove the sufficiency of the conditions. Let X,Y ∈ Mn,m

such that X ∼gut Y . [1], Theorem 1.3 ensures that T strongly preserves ≺gut. So

X ∼gut Y if and only if X ≺gut Y ≺gut X if and only if TX ≺gut TY ≺gut TX if

and only if TX ∼gut TY . This shows that T strongly preserves ∼gut.

Next, assume that T strongly preserves∼gut. Form = 1 see Theorem 2.2. Suppose

that m > 1. Lemma 3.4 ensures that for each i ∈ Nm there exists some j ∈ Nm

such that T j
i is invertible. Lemma 3.3 ensures that there exist invertible matrices

A1, . . . , Am ∈ Mn, vectors a1, . . . , am ∈ R
m, and a matrix S′ ∈ Mm such that

TX = [A1Xa1 | . . . | AmXam] + EXS′. One can prove that rank{a1, . . . , am} > 2.

Without loss of generality, assume that {a1, a2} is a linearly independent set. This

implies that for every x, y ∈ R
n there exists Bx,y ∈ Mn,m such that Bx,ya1 = x and

Bx,ya2 = y. Let X ∈ Mn,m and invertible matrix D ∈ Rgut
n . So DX ∼gut X , and

then TDX ∼gut TX . Thus

[A1DXa1 | . . . | AmDXam] + EDXS ∼gut [A1Xa1 | . . . | AmXam] + EXS.

Clearly, A1DXa1 + A2DXa2 ∼gut A1Xa1 + A2Xa2. So for each X ∈ Mn,m and

each invertible matrix D ∈ Rgut
n we have

(1) DXa1 +A−1
1 A2DXa2 ∼gut Xa1 +A−1

1 A2Xa2.

By replacing X = Bx,y in (1), Dx +A−1
1 A2Dy ∼gut x+A−1

1 A2y for each invertible

matrix D ∈ Rgut
n and for each x, y ∈ R

n. Lemma 3.1 states that A2 = αA1 + βE for

some α, β ∈ R. For every i > 3 if ai = 0, we can choose Ai = A1. If ai 6= 0, then

{a1, ai} or {a2, ai} is linearly independent. Similarly to the above, Ai = γiA1 + δiE
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for some γi, δi ∈ R. Define A := A1. Then for every i > 2, Ai = αiA+ βiE for some

αi, βi ∈ R. So

TX = [AXa1 | AX(r2a2) | . . . | AX(rmam)] + EXS = AXR+ EXS,

where R = [a1 | r2a2 | . . . | rmam] for some r2, . . . , rm ∈ R and S = S′ +

[0 | β2a2 | . . . | βmam]. �
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