ON LINEAR PRESERVERS OF TWO-SIDED GUT-MAJORIZATION ON $\mathbf{M}_{n, m}$<br>Asma Ilkhanizadeh Manesh, Rafsanjan, Ahmad Mohammadhasani, Sirjan

Received December 25, 2016. Published online April 11, 2018.

Abstract. For $X, Y \in \mathbf{M}_{n, m}$ it is said that $X$ is gut-majorized by $Y$, and we write $X \prec_{\text {gut }} Y$, if there exists an $n$-by- $n$ upper triangular g -row stochastic matrix $R$ such that $X=R Y$. Define the relation $\sim_{\text {gut }}$ as follows. $X \sim_{\text {gut }} Y$ if $X$ is gut-majorized by $Y$ and $Y$ is gut-majorized by $X$. The (strong) linear preservers of $\prec_{\text {gut }}$ on $\mathbb{R}^{n}$ and strong linear preservers of this relation on $\mathbf{M}_{n, m}$ have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of $\sim$ gut on $\mathbb{R}^{n}$ and $\mathbf{M}_{n, m}$.

Keywords: g-row stochastic matrix; gut-majorization; linear preserver; strong linear preserver; two-sided gut-majorization

MSC 2010: 15A04, 15A21

## 1. Introduction

Let $\mathbf{M}_{n, m}$ be the algebra of all $n$-by- $m$ real matrices, and $\mathbb{R}^{n}$ be the set of all $n$-by- 1 real column vectors. An $n$-by- $n$ real matrix (not necessarily nonnegative) $A$ is g-row stochastic (generalized row stochastic) if all its row sums are one. Let $X, Y \in \mathbf{M}_{n, m}$. Matrix $X$ is said to be gut-majorized by $Y$ and it is denoted by $X \prec_{\text {gut }} Y$ if there exists an $n$-by- $n$ upper triangular g-row stochastic matrix $R$ such that $X=R Y$. We also say that $X \sim_{\text {gut }} Y$ if and only if $X \prec_{\text {gut }} Y \prec_{\text {gut }} X$, and call this two-sided gut-majorization.

A linear function $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ preserves an order relation $\prec$ in $\mathbf{M}_{n, m}$ if $T X \prec T Y$ whenever $X \prec Y$. Also, $T$ is said to strongly preserve if for all $X$, $Y \in \mathbf{M}_{n, m}$

$$
X \prec Y \Leftrightarrow T X \prec T Y .
$$

The research has been supported by Vali-e-Asr University of Rafsanjan and Sirjan University of Technology.

The (strong) linear preservers and strong preservers of $\prec_{\text {gut }}$ on $\mathbb{R}^{n}$ and $\mathbf{M}_{n, m}$ are fully characterized in [1]. For more information about linear preservers of majorization we refer the reader to [2]-[10].

Some of our notation and symbols are as follows:
$\mathcal{R}_{n}^{\text {gut. }}$ : the collection of all $n$-by- $n$ upper triangular g-row stochastic matrices;
$E$ : the $n$-by- $n$ matrix with all of the entries of the last column equal to one and the other entries equal to zero;
$e$ : the column real vectors with all of the entries equal to one;
$\left\{e_{1}, \ldots, e_{n}\right\}$ : the standard basis of $\mathbb{R}^{n}$;
$\left[x_{1}|\ldots| x_{m}\right]$ : the $n$-by- $m$ matrix with columns $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$;
$A\left(n_{1}, \ldots, n_{l} \mid m_{1}, \ldots, m_{k}\right)$ : the submatrix of $A$ obtained from $A$ by deleting rows
$n_{1}, \ldots, n_{l}$ and columns $m_{1}, \ldots, m_{k}$;
$A\left(n_{1}, \ldots, n_{l}\right)$ : the abbreviation of $A\left(n_{1}, \ldots, n_{l} \mid n_{1}, \ldots, n_{l}\right)$;
$\mathbb{N}_{k}$ : the set $\{1, \ldots, k\} \subset \mathbb{N}$;
$A^{t}$ : the transpose of a given matrix $A$;
$[T]$ : the matrix representation of a linear function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with respect to the standard basis;
$r_{i}$ : the sum of entries on the $i$ th row of $[T]$.
This paper is organized as follows. In Section 2, we first introduce the relation $\sim_{\text {gut }}$ on $\mathbb{R}^{n}$ and we express an equivalent condition for this majorization. Finally, we obtain some results characterizing the structure of (strong) linear preservers of this relation on $\mathbb{R}^{n}$. One of the main results of this paper is to find the structure of linear functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving (strongly preserving) $\sim_{\text {gut }}$. The last section of this paper studies some facts of this concept that are necessary for studying the strong linear preservers of $\sim_{\text {gut }}$ on $\mathbf{M}_{n, m}$. Also, the strong linear preservers of $\sim_{\text {gut }}$ on $\mathbf{M}_{n, m}$ are obtained.

## 2. Two-sided gut-majorization on $\mathbb{R}^{n}$

First, we review some sticking point of $\sim_{\text {gut }}$ on $\mathbb{R}^{n}$, and then we establish some properties to prove the main theorems. Also, we characterize all linear functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving (strongly preserving) $\sim_{\text {gut }}$.

Definition 2.1. Let $x, y \in \mathbb{R}^{n}$. Then $x$ is said to be two-sided gut-majorized by $y$ (in symbol $x \sim_{\text {gut }} y$ ) if $x \prec_{\text {gut }} y \prec_{\text {gut }} x$.

The following proposition gives an equivalent condition for this relation on $\mathbb{R}^{n}$. We state the result without proof.

Proposition 2.1. Let $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. Then $x \sim_{\text {gut }} y$ if and only if

$$
\min \left\{i: x_{i}=x_{i+1}=\ldots=x_{n}\right\}=\min \left\{i: y_{i}=y_{i+1}=\ldots=y_{n}\right\}
$$

and $x_{n}=y_{n}$.
The following lemmas are useful for finding the structure of (strong) linear preservers of two-sided gut-majorization on $\mathbb{R}^{n}$.

Lemma 2.1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear preserver of $\sim_{\text {gut }}$. Assume $S: \mathbb{R}^{n-k} \rightarrow$ $\mathbb{R}^{n-k}$ is a linear function such that $[S]=[T](1, \ldots, k)$. Then $S$ preserves $\sim_{\text {gut }}$ on $\mathbb{R}^{n-k}$.

Proof. Let $x^{\prime}=\left(x_{k+1}, \ldots, x_{n}\right)^{t}, y^{\prime}=\left(y_{k+1}, \ldots, y_{n}\right)^{t} \in \mathbb{R}^{n-k}$ and let $x^{\prime} \sim_{\text {gut }} y^{\prime}$. Define $x:=\left(0, \ldots, 0, x_{k+1}, \ldots, x_{n}\right)^{t}, y:=\left(0, \ldots, 0, y_{k+1}, \ldots, y_{n}\right)^{t} \in \mathbb{R}^{n}$. Then, by Propositon $2.1, x \sim_{\text {gut }} y$ and hence $T x \sim_{\text {gut }} T y$. It implies that $S x^{\prime} \sim_{\text {gut }} S y^{\prime}$. Therefore $S$ preserves $\sim_{\text {gut }}$ on $\mathbb{R}^{n-k}$.

Lemma 2.2. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear preserver of $\sim_{\text {gut }}$, and let $[T]=\left[a_{i j}\right]$. Then $a_{n 1}=a_{n 2}=\ldots=a_{n n-1}=0$.

Proof. We proceed by induction. The result is clear for $n=1$. For $n=2$ we should prove $a_{21}=0$. Set $x=2 e_{1}+e_{2}$ and $y=e_{2}$. As $x \sim_{\text {gut }} y$, it follows that $T x \sim_{\text {gut }} T y$. Thus, $2 a_{21}+a_{22}=a_{22}$, and hence $a_{21}=0$. Suppose that $n>2$ and that the assertion has been established for all linear preservers of $\sim_{\text {gut }}$ on $\mathbb{R}^{n-1}$. Let $S: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ be a linear function with $[S]=[T](1)$. Lemma 2.1 states that $S$ preserves $\sim_{\text {gut }}$ on $\mathbb{R}^{n-1}$. The induction hypothesis ensures that $a_{n 2}=\ldots=a_{n n-1}=0$. So it is enough to show that $a_{n 1}=0$. Consider $x=e_{1}+e_{n}$ and $y=e_{n}$. Observe that $x \sim_{\text {gut }} y$, and then $T x \sim_{\text {gut }} T y$. It implies that $a_{n 1}=0$ as well.

Lemma 2.3. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear function such that $a_{k t} \neq 0$ for some $k, t \in \mathbb{N}_{n-1}$, where $[T]=\left[a_{i j}\right]$. Suppose that $a_{k+1 t}=\ldots=a_{n t}=0$ and there exists some $j(t+1 \leqslant j \leqslant n-1)$ such that $a_{k+1 j}=\ldots=a_{n j}=0$. Then $T$ does not preserve $\sim_{\text {gut }}$.

Proof. Set $x=-\left(a_{k j} / a_{k t}\right) e_{t}+e_{j}$ and $y=y_{t} e_{t}+e_{j}$ where $y_{t} \in \mathbb{R} \backslash\left\{-a_{k j} / a_{k t}\right\}$. It is easy to see that $x \sim_{\text {gut }} y$ but $T x \not \chi_{\text {gut }} T y$. Therefore $T$ does not preserve $\sim_{\text {gut }}$.

Lemma 2.4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear preserver of $\sim_{\text {gut }}$. Then $[T]$ is an upper triangular matrix.

Proof. Let $[T]=\left[a_{i j}\right]$. Use induction on $n$. For $n=1$, the result is clear. If $n=2$, we should only prove that $a_{21}=0$. Then Lemma 2.2 ensures the result. For $n>2$ assume that the matrix representation of every linear preserver of $\sim_{\text {gut }}$ on $\mathbb{R}^{n-1}$ is an upper triangular matrix. Let $S: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ be the linear function with $[S]=[T](1)$. Lemma 2.1 ensures that the linear function $S$ preserves $\sim_{\text {gut }}$ on $\mathbb{R}^{n-1}$. The induction hypothesis ensures that $[S]$ is an $(n-1)$-by- $(n-1)$ upper triangular matrix. Also, Lemma 2.2 states that $a_{n 1}=0$. So it is enough to show that $a_{21}=a_{31}=\ldots=a_{n-11}=0$. Assume, if possible, that $a_{k 1} \neq 0$, where $k=\max \left\{2 \leqslant i \leqslant n-1: a_{i 1} \neq 0\right\}$. By Lemma 2.3, we see that $T$ does not preserve $\sim_{\text {gut }}$, which would be a contradiction. Thus $a_{21}=a_{31}=\ldots=a_{n-11}=0$, and then the induction argument is completed. Therefore $[T]$ is an upper triangular matrix.

The following theorem characterizes the structure of all linear functions $T$ : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, preserving $\sim_{\text {gut }}$.

Theorem 2.1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear function. Then $T$ preserves $\sim_{\text {gut }}$ if and only if one of the following assertions holds.
(i) $T e_{1}=\ldots=T e_{n-1}=0$. In other words,

$$
[T]=\left(\begin{array}{cccc}
0 & \ldots & 0 & a_{1 n} \\
0 & \ldots & 0 & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & a_{n n}
\end{array}\right)
$$

(ii) There exist $t \in \mathbb{N}_{n-1}$ and $1 \leqslant i_{1}<\ldots<i_{m} \leqslant n-1$ such that $a_{i_{1} t}, a_{i_{2} t+1}, \ldots$, $a_{i_{m} n-1} \neq 0$,

$$
[T]=\left(\begin{array}{ccccccc}
0 & * & & & & & \\
& a_{i_{1} t} & * & & & & \\
& & \ddots & & & & \\
& & & a_{i_{2} t+1} & & & \\
& & & & \ddots & & \\
& 0 & & & & a_{i_{m} n-1} & \\
& & & & & & \\
& & & & & & \\
& &
\end{array}\right)
$$

and
(1) $r_{i_{1}}=\ldots=r_{n}$ or
(2) for some $k \in\left(i_{m}, n\right) \cup \bigcup_{j=1}^{i_{m-1}}\left(i_{j}, i_{j+1}\right), r_{k} \neq r_{k+1}=\ldots=r_{n}$.

Proof. First, we prove the sufficiency of the conditions. If (i) holds, let $x=$ $\left(x_{1}, \ldots, x_{n}\right)^{t}, y=\left(y_{1}, \ldots, y_{n}\right)^{t} \in \mathbb{R}^{n}$ such that $x \sim_{\text {gut }} y$. Proposition 2.1 ensures that $x_{n}=y_{n}$. So $T x=T y$, and then $T x \sim_{\text {gut }} T y$. Assume that (ii) holds. The proof is by induction on $n$. If $n=2$, by the hypothesis we see $[T]=\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right)$, $a_{11} \neq 0$, and $r_{1}=r_{2}$. Let $x=\left(x_{1}, x_{2}\right)^{t}, y=\left(y_{1}, y_{2}\right)^{t} \in \mathbb{R}^{2}$ such that $x \sim_{\text {gut }} y$. So $T x=\left(a_{11} x_{1}+a_{12} y_{2}, a_{22} y_{2}\right)^{t}$ and $T y=\left(a_{11} y_{1}+a_{12} y_{2}, a_{22} y_{2}\right)^{t}$. Observe that $(T x)_{1}=(T x)_{2}$ if and only if $x_{1}=y_{2}$, and also $(T y)_{1}=(T y)_{2}$ if and only if $y_{1}=y_{2}$, because $r_{1}=r_{2}$ and $a_{11} \neq 0$. Now, as $x \sim_{\text {gut }} y$, we deduce that $(T x)_{1}=(T x)_{2}$ is equivalent to $(T y)_{1}=(T y)_{2}$. Thus, $T x \sim_{\text {gut }} T y$. Suppose that $n \geqslant 3$ and the result has been proved for all linear functions on $\mathbb{R}^{n-1}$ with the described conditions in the hypothesis. Let $x=\left(x_{1}, \ldots, x_{n}\right)^{t}, y=\left(y_{1}, \ldots, y_{n}\right)^{t} \in \mathbb{R}^{n}$ such that $x \sim_{\text {gut }} y$. We have to show that $T x \sim_{\text {gut }} T y$. For this purpose, let $S: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ be a linear function with $[S]=[T](1)$. Set $x^{\prime}=\left(x_{2}, \ldots, x_{n}\right)^{t}$ and $y^{\prime}=\left(y_{2}, \ldots, y_{n}\right)^{t}$. Then $x^{\prime} \sim_{\text {gut }} y^{\prime}$ and hence, by applying the induction hypothesis for $S, S x^{\prime} \sim_{\text {gut }}$ $S y^{\prime}$. That is, $\left((T x)_{2}, \ldots,(T x)_{n}\right)^{t} \sim_{\text {gut }}\left((T y)_{2}, \ldots,(T y)_{n}\right)^{t}$. If there exists some $i$ $(2 \leqslant i \leqslant n-1)$ such that $(T x)_{i} \neq(T x)_{i+1}$, then the proof is complete. Otherwise, $(T x)_{2}=\ldots=(T x)_{n}=(T y)_{2}=\ldots=(T y)_{n}$.

If (1) holds, $(T x)_{i_{m}}=(T x)_{n}$ implies that $x_{n-1}=y_{n}$, because $a_{i_{m} n-1} \neq 0$ and $r_{i_{m}}=r_{n}$. Since $x \sim_{\text {gut }} y$, we see that $y_{n-1}=y_{n}$. By continuing this process, we can conclude that $x_{t}=\ldots=x_{n}=y_{t}=\ldots=y_{n}$. Hence $(T x)_{1}=(T y)_{1}$, and then $T x \sim_{\text {gut }} T y$.

Suppose (2) holds, case (1). If there is some $k \in\left(i_{m}, n\right)$ such that $r_{k} \neq$ $r_{k+1}=\ldots=r_{n}$, as $(T x)_{k}=(T x)_{n}$, we have $a_{k n} y_{n}=a_{n n} y_{n}$. The relation $a_{k n} \neq a_{n n}$ ensures that $y_{n}=0$, and then $(T y)_{n}=0$. It means that $(T x)_{2}=\ldots=(T x)_{n}=(T y)_{2}=\ldots=(T y)_{n}=0$. On the other hand, since $(T x)_{i_{m}}=0$ and $a_{i_{m} n-1} \neq 0$, we deduce that $x_{n-1}$ and also $y_{n-1}$ are zero. It is a simple matter to see that $x_{t}=\ldots=x_{n}=y_{t}=\ldots=y_{n}=0$. So $(T x)_{1}=(T y)_{1}=0$, which completes the proof.

Case (2). If there exists some $k \in\left(i_{j}, i_{j+1}\right)$ for some $j \in \mathbb{N}_{i_{m-1}}$ such that $r_{k} \neq$ $r_{k+1}=\ldots=r_{n}$, as $r_{k+1}=\ldots=r_{n}$ and $a_{i_{j+1}} l, \ldots, a_{i_{m} n-1} \neq 0$, we observe that $x_{l}=\ldots=x_{n}=y_{l}=\ldots=y_{n}$. Now, $(T x)_{k}=(T x)_{n}$ and $r_{k} \neq r_{n}$ imply that $y_{n}=0$. So $x_{l}=\ldots=x_{n}=y_{l}=\ldots=y_{n}=0$. If $i_{1}=1$, by continuing this procedure, we find that $x_{t+1}=\ldots=x_{n}=y_{t+1}=\ldots=y_{n}=0$. So $(T x)_{2}=\ldots=(T x)_{n}=$ $(T y)_{2}=\ldots=(T y)_{n}=0,(T x)_{1}=a_{1 t} x_{t}$, and $(T y)_{1}=a_{1 t} y_{t}$. Clearly, $(T x)_{1} \neq 0$ is equivalent to $(T y)_{1} \neq 0$, and then $T x \sim_{\text {gut }} T y$. If $i_{1}>1$, we can prove that $x_{t}=\ldots=x_{n}=y_{t}=\ldots=y_{n}=0$, and thus $(T x)_{1}=(T y)_{1}=0$, which is the desired conclusion.

For the converse, assume that $T$ preserves $\sim_{\text {gut }}$ and (i) does not hold. We show that (ii) holds. We use induction on $n$. First, consider the case $n=2$. Lemma 2.4 ensures
that $T$ is upper triangular. So $a_{11} \neq 0$. We want to prove $r_{1}=r_{2}$. If $r_{1} \neq r_{2}$, choose $x=\left(\left(a_{22}-a_{12}\right) / a_{11}, 1\right)^{t}$ and $y=\left(y_{1}, 1\right)^{t}$, in which $y_{1} \in \mathbb{R} \backslash\left\{1,\left(a_{22}-a_{12}\right) / a_{11}\right\}$. Clearly $x \sim_{\text {gut }} y$ and hence $T x \sim_{\text {gut }} T y$. It means that $\left(a_{22}, a_{22}\right)^{t} \sim_{\text {gut }}\left(a_{11} y_{1}+\right.$ $\left.a_{12}, a_{22}\right)^{t}$, a contradiction. Thus, $r_{1}=r_{2}$. Now, suppose that $n \geqslant 3$ and the statement holds for linear preservers of $\sim_{\text {gut }}$ on $\mathbb{R}^{n-1}$. Let $S: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ be the linear function with $[S]=[T](1)$. Lemma 2.1 ensures that $S$ preserves $\sim_{\text {gut }}$ on $\mathbb{R}^{n-1}$. Apply the induction hypothesis for $S$. So the proof will be divided into two steps.

Step 1. $S$ satisfies (i). By Lemma 2.3, the first nonzero column of $T$ should be its ( $n-1$ )st column. Because if the first nonzero column of $T$ is less than its $(n-1)$ st column, since $(n-1)$ st column of $S$ is zero, $T$ does not preserve $\sim_{\text {gut }}$. If there exists some $i(2 \leqslant i \leqslant n-1)$ such that $a_{i n} \neq a_{n n}$, then $T$ satisfies (2). Otherwise we have to just show that $r_{1}=\ldots=r_{n}$. Assume, if possible, that $r_{1} \neq r_{2}=\ldots=$ $r_{n}$. Consider $x=\left(a_{n n}-a_{1 n}\right) /\left(a_{1 n-1}\right) e_{n-1}+e_{n}$ and $y=y_{n-1} e_{n-1}+e_{n}$, where $y_{n-1} \in \mathbb{R} \backslash\left\{1,\left(a_{n n}-a_{1 n}\right) /\left(a_{1 n-1}\right)\right\}$. Thus, $x \sim_{\text {gut }} y$, and so $T x \sim_{\text {gut }} T y$, which is a contradiction. Therefore $r_{1}=r_{n}$. We see that (1) holds.

Step 2. $S$ satisfies (ii). If columns $1, \ldots, t-1$ of $T$ are zero, then there is nothing to prove. If not, Lemma 2.3 ensures that the first nonzero column of $T$ should be its $(t-1)$ st column, that is,

$$
[T]=\left(\begin{array}{cccccc}
a_{1 t-1} & & & & * & \\
& \ddots & & & & \\
& & a_{i_{2} t} & & & \\
& & & \ddots & & \\
& & & & a_{i_{m} n-1} & \\
& & & & & 0
\end{array}\right)
$$

If (2) holds for $[S]$, then there is nothing to prove. Suppose that (1) holds for $[S]$. Then $r_{i_{2}}=\ldots=r_{n}$. If $\operatorname{card}\left\{r_{2}, \ldots, r_{i_{2}}\right\} \geqslant 2$, observe that $T$ satisfies (2), and then the proof is complete. If $r_{2}=\ldots=r_{i_{2}}$, it is enough to prove $r_{1}=r_{n}$. Without loss of generality, we can assume that $a_{1 t-1}=1$. If $r_{1} \neq r_{n}$, by setting $x=x_{t-1} e_{t-1}+\sum_{i=t}^{n} e_{i}$ and $y=y_{t-1} e_{t-1}+\sum_{i=t}^{n} e_{i}$, where $x_{t-1}=a_{n n}-\sum_{j=t}^{n} a_{1 j}$ and $y_{t-1} \in \mathbb{R} \backslash\left\{1, a_{n n}-\sum_{j=t}^{n} a_{1 j}\right\}$, it follows that $x \sim_{\text {gut }} y$, and so $T x \sim_{\text {gut }} T y$, which would be a contradiction. Therefore, $r_{1}=r_{n}$, and the desired conclusion holds.

Now, we focus on finding strong linear preservers of $\sim_{\text {gut }}$ on $\mathbb{R}^{n}$. We need the following lemma to prove the next theorem.

Lemma 2.5. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ be a linear function that strongly preserves $\sim_{\text {gut }}$. Then $T$ is invertible.

Proof. Suppose that $T X=0$, where $X \in \mathbf{M}_{n, m}$. Notice that since $T$ is linear, we have $T 0=0=T X$. Then it is obvious that $T X \sim_{\text {gut }} T 0$. Therefore $X \sim_{\text {gut }} 0$, because $T$ strongly preserves $\sim_{\text {gut }}$. Then $X=0$, and hence $T$ is invertible.

We are now ready to prove one of the main theorems of this section. The following theorem characterizes all linear functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which strongly preserve $\sim_{\text {gut }}$.

Theorem 2.2. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear function. Then $T$ strongly preserves $\sim_{\text {gut }}$ if and only if $[T]=\alpha A$ for some $\alpha \in \mathbb{R} \backslash\{0\}$ and invertible matrix $A \in \mathcal{R}_{n}^{\text {gut }}$.

Proof. First, we prove the necessity of the condition. Assume that $T$ strongly preserves $\sim_{\text {gut }}$. It means that $T$ is invertible. Lemma 2.4 ensures that $a_{11} \neq 0$. So, by Theorem 2.1, the desired conclusion is true.

Next, since both $T$ and $T^{-1}$ preserve $\sim_{\text {gut }}$ by Theorem 2.1 , we have that $T$ strongly preserves $\sim_{\text {gut }}$.

Corollary 2.1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserve $\sim_{\text {gut }}$. Then $T$ strongly preserves $\sim_{\text {gut }}$ if and only if $T$ is invertible.

## 3. Two-Sided gut-majorization on $M_{n, m}$

In this section, we discuss some properties of $\sim_{\text {gut }}$ on $\mathbf{M}_{n, m}$, and we find the structure of strong linear preservers of this relation on $\mathbf{M}_{n, m}$. First, we state some lemmas.

Lemma 3.1. Let $A \in \mathbf{M}_{n}$. Then the following conditions are equivalent.
(a) For each invertible matrix $D \in \mathcal{R}_{n}^{\text {gut }}, A D=D A$.
(b) For some $\alpha, \beta \in \mathbb{R}, A=\alpha I+\beta E$.
(c) For each invertible matrix $D \in \mathcal{R}_{n}^{\text {gut }}$ and for all $x, y \in \mathbb{R}^{n}$,

$$
(D x+A D y) \sim_{\text {gut }}(x+A y)
$$

Proof. (a) $\Rightarrow$ (b): First, by considering

$$
D=\left(\begin{array}{cccccc}
\frac{1}{2} & \frac{1}{2} & & & & \\
& \frac{1}{2} & \frac{1}{2} & & 0 & \\
& & & \ddots & & \\
& 0 & & & \frac{1}{2} & \frac{1}{2} \\
& & & & & 1
\end{array}\right),
$$

observe that

$$
A=\left(\begin{array}{ccccccc}
\alpha & \alpha_{1} & \alpha_{2} & \ldots & \alpha_{l} & \alpha_{l+1} & a_{1 n} \\
& \alpha & \alpha_{1} & \alpha_{2} & \ldots & \alpha_{l} & a_{2 n} \\
& & \ddots & \ddots & \ddots & & \\
& & & \alpha & \alpha_{1} & \alpha_{2} & a_{n-3 n} \\
& & 0 & & \alpha & \alpha_{1} & a_{n-2 n} \\
& & & & & \alpha & \beta \\
& & & & & & \alpha+\beta
\end{array}\right)
$$

for some $\alpha, \beta, \alpha_{1}, \ldots, \alpha_{l+1} \in \mathbb{R}$ such that $\alpha_{l+1}+a_{1 n}=a_{2 n}, \alpha_{l}+a_{2 n}=a_{3 n}, \ldots$, $\alpha_{1}+a_{n-2 n}=\beta$. Next set

$$
D=\left(\begin{array}{ccccccc}
1 & 0 & & \ldots & & & 0 \\
& \frac{1}{2} & 0 & & \ldots & 0 & \frac{1}{2} \\
& & \frac{1}{2} & 0 & \ldots & 0 & \frac{1}{2} \\
& & 0 & & \ddots & & \\
& & & & & \frac{1}{2} & \frac{1}{2} \\
& & & & & & 1
\end{array}\right)
$$

We deduce that $\alpha_{1}=\ldots=\alpha_{l+1}=0$. Then $a_{1 n}=a_{2 n}=\ldots=a_{n-2 n}=\beta$. Therefore $A=\alpha I+\beta E$.
(b) $\Rightarrow$ (c): Assume that the invertible matrix $D \in \mathcal{R}_{n}^{\text {gut }}$ and let $x, y \in \mathbb{R}^{n}$. As $E D=E=D E$, we see that $D x+A D y=D(x+A y)$. So $(D x+A D y) \sim_{\text {gut }}(x+A y)$.
(c) $\Rightarrow$ (a): Choose $i \in \mathbb{N}_{n}$ and define $x:=e-A e_{i}$ and $y:=e_{i}$. Consider the invertible matrix $D \in \mathcal{R}_{n}^{\text {gut. }}$. The hypothesis ensures that $\left(e-D A e_{i}+A D e_{i}\right) \sim_{\text {gut }} e$. Hence $(-D A+A D) e_{i}=0$, and then $A D=D A$.

For each $i, j \in \mathbb{N}_{m}$ consider the embedding $E^{j}: \mathbb{R}^{n} \rightarrow \mathbf{M}_{n, m}$ and the projection $E_{i}: \mathbf{M}_{n, m} \rightarrow \mathbb{R}^{n}$, where $E^{j}(x)=x e_{j}^{t}$ and $E_{i}(A)=A e_{i}$. It is easy to show that for every linear function $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$,

$$
T X=T\left[x_{1}|\ldots| x_{m}\right]=\left[\sum_{j=1}^{m} T_{1}^{j} x_{j}|\ldots| \sum_{j=1}^{m} T_{m}^{j} x_{j}\right]
$$

where $T_{i}^{j}=E_{i} T E^{j}$.
It is easy to see that if $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ is a linear preserver of $\sim_{\text {gut }}$, then $T_{i}^{j}$ preserves $\sim_{\text {gut }}$ on $\mathbb{R}^{n}$ for all $i, j \in \mathbb{N}_{m}$.

We need the following lemmas to prove the main theorem of this section.

Lemma 3.2 ([1], Lemma 3.3.). Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ satisfy $T X=X R+E X S$ for some $R, S \in \mathbf{M}_{m}$. Then $T$ is invertible if and only if $R(R+S)$ is invertible.

Lemma 3.3. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ preserve $\sim_{\text {gut }}$. If for some $i \in \mathbb{N}_{m}$ there exists $k \in \mathbb{N}_{m}$ such that $T_{i}^{k}$ is invertible, then

$$
\sum_{j=1}^{m} A_{i}^{j} x_{j}=A_{i}^{k} \sum_{j=1}^{m} \alpha_{i}^{j} x_{j}+E \sum_{j=1}^{m} \beta_{i}^{j} x_{j}
$$

for some $\alpha_{i}^{j}, \beta_{i}^{j} \in \mathbb{R}$, where $A_{i}^{j}=\left[T_{i}^{j}\right]$.
Proof. There is no loss of generality to assume that $i, k=1$ and $j=2$. We show that there exist $\alpha_{1}^{2}, \beta_{1}^{2} \in \mathbb{R}$ such that $A_{1}^{2}=\alpha_{1}^{2} A_{1}^{1}+\beta_{1}^{2} E$. Let $D \in \mathcal{R}_{n}^{\text {gut }}$ be invertible and $x, y \in \mathbb{R}^{n}$. Observe that

$$
D[x|y| 0|\ldots| 0] \sim_{\text {gut }}[x|y| 0|\ldots| 0]
$$

and then

$$
T[D x|D y| 0|\ldots| 0] \sim_{\text {gut }} T[x|y| 0|\ldots| 0] .
$$

So

$$
\left[A_{1}^{1} D x+A_{1}^{2} D y|*| *\right] \sim_{\mathrm{gut}}\left[A_{1}^{1} x+A_{1}^{2} y|*| *\right]
$$

and thus

$$
A_{1}^{1} D x+A_{1}^{2} D y \sim_{\mathrm{gut}} A_{1}^{1} x+A_{1}^{2} y
$$

By Theorem 2.2, $A_{1}^{1}$ is a nonzero multiple of an invertible matrix in $\mathcal{R}_{n}^{\text {gut }}$ and hence

$$
D x+\left(A_{1}^{1}\right)^{-1} A_{1}^{2} D y \sim_{\text {gut }} x+\left(A_{1}^{1}\right)^{-1} A_{1}^{2} y
$$

Now, Lemma 3.1 ensures that there exist $\alpha_{1}^{2}, \beta_{1}^{2} \in \mathbb{R}$ such that $A_{1}^{2}=\alpha_{1}^{2} A_{1}^{1}+\beta_{1}^{2} E$.
Lemma 3.4. If $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ strongly preserves $\sim_{\text {gut }}$, then for each $i \in \mathbb{N}_{m}$ there exists $j \in \mathbb{N}_{m}$ such that $T_{i}^{j}$ is invertible.

Proof. Let $I=\left\{i \in \mathbb{N}_{m}: T_{i}^{j} e_{1}=0\right.$ for all $\left.j \in \mathbb{N}_{m}\right\}$. We prove that $I$ is empty. If $I$ is not empty, we can assume without loss of generality $I=\{1,2, \ldots, k\}$, where $k \in \mathbb{N}_{m}$. We consider two cases.

Case 1. $k=m$; let $X=\left[e_{1}|0| \ldots \mid 0\right] \in \mathbf{M}_{n, m}$. We observe that $X \neq 0$ but $T X=0$. This yields that $T$ is not invertible, which is a contradiction by Lemma 2.5.

Case 2. $k<m$; by Lemma 3.3, for $i(k+1 \leqslant i \leqslant m)$ and $j \in \mathbb{N}_{m}$ there exist invertible matrices $A_{i}$ and $\alpha_{i}^{j}, \beta_{i}^{j} \in \mathbb{R}$ such that $\sum_{j=1}^{m} A_{i}^{j} x_{j}=A_{i} \sum_{j=1}^{m} \alpha_{i}^{j} x_{j}+E \sum_{j=1}^{m} \beta_{i}^{j} x_{j}$. Consider vectors $\left(\alpha_{k+1}^{1}, \ldots, \alpha_{m}^{1}\right)^{t}, \ldots,\left(\alpha_{k+1}^{m}, \ldots, \alpha_{m}^{m}\right)^{t} \in \mathbb{R}^{m-k}$. Since $m-k<m$, there exist $\gamma_{1}, \ldots, \gamma_{m} \in \mathbb{R}$, not all zero, such that $\gamma_{1}\left(\alpha_{k+1}^{1}, \ldots, \alpha_{m}^{1}\right)^{t}+\ldots+$
$\gamma_{m}\left(\alpha_{k+1}^{m}, \ldots, \alpha_{m}^{m}\right)^{t}=0$. Let $x_{j}=\gamma_{j} e_{1}$ for each $j \in \mathbb{N}_{m}$. Since for every $i$ $(k+1 \leqslant i \leqslant m), A_{i} \in \mathcal{R}_{\text {gut }}^{n}$ is invertible, we have $0 \neq A_{i} e_{1} \in \operatorname{Span}\left\{e_{1}\right\}$. As a multiple of $e_{1}$ has no effect on the desired answer, we can assume without loss of generality $A_{i} e_{1}=e_{1}$. This implies that $A_{i} \sum_{j=1}^{m} \alpha_{i}^{j} x_{j}+E \sum_{j=1}^{m} \beta_{i}^{j} x_{j}=0$. By putting $X=\left[x_{1}|\ldots| x_{m}\right] \in \mathbf{M}_{n, m}$ we see that $X \neq 0$, and $T X=0$, a contradiction. Therefore for each $i \in \mathbb{N}_{m}$ there exists $j \in \mathbb{N}_{m}$ such that $T_{i}^{j} e_{1} \neq 0$ and hence $T_{i}^{j}$ is invertible.

The last theorem of this paper, which is our main result in this section, characterizes the strong linear preservers of $\sim_{\text {gut }}$ on $\mathbf{M}_{n, m}$.

Theorem 3.1. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ be a linear function. Then $T$ strongly preserves $\sim_{\text {gut }}$ if and only if there exist $R, S \in \mathbf{M}_{m}$ such that $R(R+S)$ is invertible, and invertible matrix $A \in \mathcal{R}_{n}^{\text {gut }}$ such that $T X=A X R+E X S$.

Proof. First, we prove the sufficiency of the conditions. Let $X, Y \in \mathbf{M}_{n, m}$ such that $X \sim_{\text {gut }} Y$. [1], Theorem 1.3 ensures that $T$ strongly preserves $\prec_{\text {gut }}$. So $X \sim_{\text {gut }} Y$ if and only if $X \prec_{\text {gut }} Y \prec_{\text {gut }} X$ if and only if $T X \prec_{\text {gut }} T Y \prec_{\text {gut }} T X$ if and only if $T X \sim_{\text {gut }} T Y$. This shows that $T$ strongly preserves $\sim_{\text {gut }}$.

Next, assume that $T$ strongly preserves $\sim_{\text {gut }}$. For $m=1$ see Theorem 2.2. Suppose that $m>1$. Lemma 3.4 ensures that for each $i \in \mathbb{N}_{m}$ there exists some $j \in \mathbb{N}_{m}$ such that $T_{i}^{j}$ is invertible. Lemma 3.3 ensures that there exist invertible matrices $A_{1}, \ldots, A_{m} \in \mathbf{M}_{n}$, vectors $a_{1}, \ldots, a_{m} \in \mathbb{R}^{m}$, and a matrix $S^{\prime} \in \mathbf{M}_{m}$ such that $T X=\left[A_{1} X a_{1}|\ldots| A_{m} X a_{m}\right]+E X S^{\prime}$. One can prove that $\operatorname{rank}\left\{a_{1}, \ldots, a_{m}\right\} \geqslant 2$. Without loss of generality, assume that $\left\{a_{1}, a_{2}\right\}$ is a linearly independent set. This implies that for every $x, y \in \mathbb{R}^{n}$ there exists $B_{x, y} \in \mathbf{M}_{n, m}$ such that $B_{x, y} a_{1}=x$ and $B_{x, y} a_{2}=y$. Let $X \in \mathbf{M}_{n, m}$ and invertible matrix $D \in \mathcal{R}_{n}^{\text {gut }}$. So $D X \sim_{\text {gut }} X$, and then $T D X \sim_{\text {gut }} T X$. Thus

$$
\left[A_{1} D X a_{1}|\ldots| A_{m} D X a_{m}\right]+E D X S \sim_{\text {gut }}\left[A_{1} X a_{1}|\ldots| A_{m} X a_{m}\right]+E X S
$$

Clearly, $A_{1} D X a_{1}+A_{2} D X a_{2} \sim_{\text {gut }} A_{1} X a_{1}+A_{2} X a_{2}$. So for each $X \in \mathbf{M}_{n, m}$ and each invertible matrix $D \in \mathcal{R}_{n}^{\text {gut }}$ we have

$$
\begin{equation*}
D X a_{1}+A_{1}^{-1} A_{2} D X a_{2} \sim_{\text {gut }} X a_{1}+A_{1}^{-1} A_{2} X a_{2} \tag{1}
\end{equation*}
$$

By replacing $X=B_{x, y}$ in (1), $D x+A_{1}^{-1} A_{2} D y \sim_{\text {gut }} x+A_{1}^{-1} A_{2} y$ for each invertible matrix $D \in \mathcal{R}_{n}^{\text {gut }}$ and for each $x, y \in \mathbb{R}^{n}$. Lemma 3.1 states that $A_{2}=\alpha A_{1}+\beta E$ for some $\alpha, \beta \in \mathbb{R}$. For every $i \geqslant 3$ if $a_{i}=0$, we can choose $A_{i}=A_{1}$. If $a_{i} \neq 0$, then $\left\{a_{1}, a_{i}\right\}$ or $\left\{a_{2}, a_{i}\right\}$ is linearly independent. Similarly to the above, $A_{i}=\gamma_{i} A_{1}+\delta_{i} E$
for some $\gamma_{i}, \delta_{i} \in \mathbb{R}$. Define $A:=A_{1}$. Then for every $i \geqslant 2, A_{i}=\alpha_{i} A+\beta_{i} E$ for some $\alpha_{i}, \beta_{i} \in \mathbb{R}$. So

$$
T X=\left[A X a_{1}\left|A X\left(r_{2} a_{2}\right)\right| \ldots \mid A X\left(r_{m} a_{m}\right)\right]+E X S=A X R+E X S
$$

where $R=\left[a_{1}\left|r_{2} a_{2}\right| \ldots \mid r_{m} a_{m}\right]$ for some $r_{2}, \ldots, r_{m} \in \mathbb{R}$ and $S=S^{\prime}+$ $\left[0\left|\beta_{2} a_{2}\right| \ldots \mid \beta_{m} a_{m}\right]$.

## References

[1] A. Armandnejad, A. Ilkhanizadeh Manesh: GUT-majorization and its linear preservers. Electron. J. Linear Algebra 23 (2012), 646-654.
zbl MR doi
[2] R. A. Brualdi, G.Dahl: An extension of the polytope of doubly stochastic matrices. Linear Multilinear Algebra 61 (2013), 393-408.
[3] A.M. Hasani, M. Radjabalipour: The structure of linear operators strongly preserving majorizations of matrices. Electron. J. Linear Algebra 15 (2006), 260-268.
zbl MR doi
[4] A. M. Hasani, M. Radjabalipour: On linear preservers of (right) matrix majorization. Linear Algebra Appl. 423 (2007), 255-261.
zbl MR doi
[5] A. Ilkhanizadeh Manesh: On linear preservers of sgut-majorization on $\mathbf{M}_{n, m}$. Bull. Iran. Math. Soc. 42 (2016), 471-481.
zbl MR
[6] A. Ilkhanizadeh Manesh: Right gut-majorization on $\mathbf{M}_{n, m}$. Electron. J. Linear Algebra 31 (2016), 13-26.
zbl MR doi
[7] A. Ilkhanizadeh Manesh, A.Armandnejad: Ut-majorization on $\mathbb{R}^{n}$ and its linear preservers. Operator Theory, Operator Algebras and Applications (M. Bastos, ed.). Operator Theory: Advances and Applications 242, Birkhäuser, Basel, 2014, pp. 253-259.
[8] C. K. Li, E. Poon: Linear operators preserving directional majorization. Linear Algebra Appl. 235 (2001), 141-149.
zbl MR doi
[9] S. M. Motlaghian, A. Armandnejad, F. J. Hall: Linear preservers of row-dense matrices. Czech. Math. J. 66 (2016), 847-858.
zbl MR doi
[10] M. Niezgoda: Cone orderings, group majorizations and similarly separable vectors. Linear Algebra Appl. 436 (2012), 579-594.

Authors' addresses: Asma Ilkhanizadeh Manesh, Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box: 7713936417, Rafsanjan, Iran, e-mail: a.ilkhani@vru.ac.ir; Ahma Mohammadhasani, Department of Mathematics, Sirjan University of technology, Sirjan, Iran, e-mail: a.mohammadhasani53@gmail.com.

