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Abstract. We discuss the validity of the Helmholtz decomposition of the Muckenhoupt
Ap-weighted Lp-space (Lp

w(Ω))
n for any domain Ω in Rn, n ∈ Z, n > 2, 1 < p < ∞

and Muckenhoupt Ap-weight w ∈ Ap. Set p
′ := p/(p− 1) and w′ := w−1/(p−1). Then

the Helmholtz decomposition of (Lp
w(Ω))

n and (Lp′

w′(Ω))
n and the variational estimate of

Lp
w,π(Ω) and Lp′

w′,π(Ω) are equivalent. Furthermore, we can replace L
p
w,π(Ω) and Lp′

w′,π(Ω)

by Lp
w,σ(Ω) and Lp′

w′,σ(Ω), respectively. The proof is based on the reflexivity and orthog-

onality of Lp
w,π(Ω) and Lp

w,σ(Ω) and the Hahn-Banach theorem. As a corollary of our
main result, we obtain the extrapolation theorem with the aid of the Helmholtz projection
of (Lp

w(Ω))
n.

Keywords: Helmholtz decomposition; Muckenhoupt Ap-weighted Lp-spaces; variational
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1. Introduction

Let n ∈ Z and n > 2, and consider the Muckenhoupt Ap-weighted L
p-space

(Lp
w(Ω))

n for any domain Ω in Rn, 1 < p <∞ and Muckenhoupt Ap-weight w ∈ Ap.

From the viewpoint of the Stokes and Navier-Stokes equations as abstract evolution

equations in (Lp
w(Ω))

n, it is crucial to discuss the Helmholtz decomposition

(1.1) (Lp
w(Ω))

n = Lp
w,σ(Ω)⊕ Lp

w,π(Ω)

of (Lp
w(Ω))

n, where Lp
w,σ(Ω) and L

p
w,π(Ω) are closed subspaces of solenoidal vector

fields and gradient vector fields of (Lp
w(Ω))

n, respectively. Indeed, the Helmholtz
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decomposition of (Lp
w(Ω))

n constructs the Helmholtz projection Pp,w from (Lp
w(Ω))

n

onto Lp
w,σ(Ω), and the theory of the Stokes operator Ap,w in L

p
w,σ(Ω) defined as

(1.2) Ap,w = −Pp,w∆, Dom(Ap,w) = (W 2,p
w (Ω))n ∩ (W 1,p

w,0(Ω))
n ∩ Lp

w,σ(Ω)

was established by Farwig and Sohr, see [6], and Fröhlich, see [9], [10]. In the case of

Ω = Rn, Ω = Rn
+ or a bounded domain Ω in R

n with C1,1-boundary ∂Ω, the resolvent

estimate with an Ap-consistency increasing constant holds for any 1 < p < ∞ and

w ∈ Ap. Consequently, Ap,w has the property of maximal L
q regularity for any

1 < q < ∞, i.e., for any f ∈ Lq(R+;L
p
w,σ(Ω)), the mild solution u of the Stokes

initial value problem

(1.3)

{
dtu+Ap,wu = f in R+,

u(0) = 0

satisfies the estimate

(1.4) ‖dtu‖Lq(R+;Lp

w,σ(Ω)) + ‖Ap,wu‖Lq(R+;Lp

w,σ(Ω))

6 C(p,Ap(w), q)‖f‖Lq(R+;Lp

w,σ(Ω)).

The Helmholtz decomposition of the Lp-space (Lp(Ω))n is well known for Ω = Rn,

Ω = Rn
+ or any domain Ω in Rn with compact C1-boundary ∂Ω and 1 < p < ∞

(see Simader, Sohr and Varnhorn [17]). As for any domain Ω in Rn with uniform

C1-boundary ∂Ω, the function space

L̃p(Ω) =

{
L2(Ω) + Lp(Ω), 1 < p < 2,

L2(Ω) ∩ Lp(Ω), 2 6 p <∞,

which constructs the Helmholtz decomposition, is introduced by Farwig, Kozono and

Sohr in [4], [5]. In the case of a domain Ω in Rn with compact C0,1-boundary ∂Ω,

conditions on Ω or p are essentially required. More precisely, 3/2 6 p 6 3 is optimal

in the validity of the Helmholtz decomposition of (Lp(Ω))n, which is due to Fabes,

Mendez and Mitrea in [2] and Lang and Méndez in [15]. If Ω is bounded convex, it

follows from Geng and Shen in [12] and Kim and Shen in [13] that the Helmholtz

decomposition of (Lp(Ω))n holds for any 1 < p <∞. Concerning any domain in Rn

with boundary given as a graph xn = η(x′) of a uniform C0,1-function in Rn−1, we

can refer to Maekawa and Miura in [16].

Analogously to (Lp(Ω))n, it follows from [6] and Fröhlich in [7] that the Helmholtz

decomposition of (Lp
w(Ω))

n holds for Ω = Rn, Ω = Rn
+ or any domain Ω in Rn
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with compact C1-boundary ∂Ω, 1 < p < ∞ and w ∈ Ap. Moreover, any aper-

ture domain Ω in Rn with C1-boundary ∂Ω admits the Helmholtz decomposition

of (Lp
w(Ω))

n, but the restriction of Ap is imposed for any perturbed half space Ω in R
n

with C1-boundary ∂Ω. See Fröhlich [8] and Kobayashi and Kubo [14]. In the case of

an unbounded domain in Rn, which is bounded with respect to x′ = (x1, . . . , xn−k),

1 6 k 6 n− 1, we can refer to Farwig, see [3].

Let Ω be a domain in Rn, 1 < p < ∞ and w ∈ Ap. The aim of this pa-

per is to provide equivalent conditions for the validity of the Helmholtz decom-

position of (Lp
w(Ω))

n. More precisely, we consider the weak Neumann problem

of (Lp
w(Ω))

n, the Helmholtz projection of (Lp
w(Ω))

n and the variational estimates

of Lp
w,π(Ω) and L

p
w,σ(Ω). See Definitions 2.2, 2.3 and 2.4 below, which are Muck-

enhoupt Ap-weighted cases of [17]. Proofs of our main results are based on the re-

flexivity and orthogonality of Lp
w,π(Ω) and L

p
w,σ(Ω) and the Hahn-Banach theorem.

Concerning the variational estimates of Lp
w,π(Ω) and L

p
w,σ(Ω), our proofs seem to be

simpler than that of [17]. Furthermore, as corollaries of our main results, we obtain

the extrapolation theorems with the aid of the Helmholtz projection of (Lp
w(Ω))

n.

This paper is organized as follows: In Subsections 2.1 and 2.2, we define Muck-

enhoupt Ap-weights and basic notation used in this paper. Subsection 2.3 provides

the notion of the Helmholtz decomposition of (Lp
w(Ω))

n, the weak Neumann problem

of (Lp
w(Ω))

n, the Helmholtz projection of (Lp
w(Ω))

n and the variational estimates of

Lp
w,π(Ω) and L

p
w,σ(Ω). In Subsection 2.4, we state our main results. Subsection 3.1

deals with the reflexivity and orthogonality of Lp
w,π(Ω) and L

p
w,σ(Ω). Finally, our

main results are proved in Subsections 3.2, 3.3 and 3.4.

2. Preliminaries and main results

2.1. Muckenhoupt Ap-weights. This subsection provides the notion of Mucken-

houpt Ap-weights and MuckenhouptAp-weighted L
p-spaces. First, the Muckenhoupt

class Ap of weights is defined as follows:

Definition 2.1. Let 1 < p < ∞, w ∈ L1
loc(R

n) and w > 0. Then w is called an

Ap-weight if

Ap(w) := sup

{
1

|Q|

∫

Q

w(x) dx

(
1

|Q|

∫

Q

w−1/(p−1)(x) dx

)p−1

: Q is a cube in Rn

}
<∞,

where |Q| is the Lebesgue measure of Q. Moreover, the set of all Ap-weights is

denoted by Ap.

It is important to indicate some examples of Muckenhoupt Ap-weights for any

1 < p < ∞. Let x0 ∈ Rn and −n < α < n(p − 1). A typical example is a radially
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symmetric weight with respect to x0

w(x) := |x− x0|
α, x ∈ Rn.

More generally, we can give the m-dimensional compact manifold case of this weight.

Let m ∈ {1, . . . , n − 1}, M be an m-dimensional compact manifold in Rn with

C0,1-boundary ∂M and −(n − m) < α < (n − m)(p − 1). The following example

extends x0 to M in the above:

w(x) := d(x,M)α, x ∈ Rn.

Note that further techniques for construction of Muckenhoupt Ap-weights are con-

sidered. For more details we refer to [6].

Second, we proceed to the notion of Muckenhoupt Ap-weighted L
p-spaces. For

any Lebesgue measurable set Ω in Rn, 1 < p < ∞ and w ∈ Ap, the Muckenhoupt

Ap-weighted L
p-space Lp

w(Ω) is defined as

Lp
w(Ω) :=

{
f ∈ L1

loc(Ω):

∫

Ω

|f(x)|pw(x) dx <∞

}

with the norm

‖f‖Lp

w(Ω) :=

(∫

Ω

|f(x)|pw(x) dx

)1/p
.

Set p′ := p/(p− 1) and w′ := w−1/(p−1). Analogously to Lp(Ω), the dual space

(Lp
w(Ω))

∗ of Lp
w(Ω) can be regarded as L

p′

w′(Ω), i.e., (Lp
w(Ω))

∗ = Lp′

w′(Ω) with equiv-

alent norms. Furthermore, we define the Muckenhoupt Ap-weighted homogeneous

Lp-Sobolev space Ẇ 1,p
w (Ω) as

Ẇ 1,p
w (Ω) :=

{
f ∈ L1

loc(Ω): ∀α ∈ Zn
>0, |α| = 1,

∫

Ω

|∂αf(x)|pw(x) dx <∞

}

with the seminorm

‖f‖Ẇ 1,p
w (Ω) :=

∑

|α|=1

‖∂αf‖Lp

w(Ω).

Note that the quotient space Ẇ 1,p
w (Ω)/R forms a separable and reflexive Banach

space. Hereafter, the superscript n denotes the space of vector fields, e.g., (Lp
w(Ω))

n.

For any f ∈ (Lp
w(Ω))

n and g ∈ (Lp′

w′(Ω))n we denote

〈f, g〉Ω :=

∫

Ω

f(x)g(x) dx,

which is well defined as a bilinear map from (Lp
w(Ω))

n × (Lp′

w′(Ω))n into R.
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Finally, an extrapolation theorem for the Muckenhoupt classes Ap is stated. The

following lemma plays an important role in corollaries of our main results.

Lemma 2.1. Let Ω be a Lebesgue measurable set in Rn, P be a sublinear map

from a linear space of measurable vector fields in Ω to the space of all measurable

vector fields in Ω and 1 < q <∞. Assume that

(2.1) ‖Pf‖(Lq

w(Ω))n 6 C(Aq(w))‖f‖(Lq

w(Ω))n

holds for any w ∈ Aq and f ∈ (Lq
w(Ω))

n. Then

(2.2) ‖Pf‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n

holds for any 1 < p <∞, w ∈ Ap and f ∈ (Lp
w(Ω))

n.

P r o o f. See [11], Theorem IV.5.19. �

2.2. Function spaces. Function spaces and basic notation which we use through-

out this paper are introduced as follows: Let X be a normed linear space and has

the norm ‖·‖X . The dual space of X is denoted by X
∗ and has the norm

‖f‖X∗ := sup
{ |f(x)|

‖x‖X
: x ∈ X, x 6= 0

}
.

Let Y be a normed linear space with the norm ‖·‖Y , and consider a linear map A

from X into Y . We denote by Im(A) := {Ax : x ∈ X} and Ker(A) := {x ∈ X :

Ax = 0} the image and the kernel of A, respectively. Moreover, the adjoint map

of A is denoted by A∗.

Let us introduce solenoidal function spaces. For any open set Ω in Rn, C∞(Ω) is

the space of all functions in Ω which are infinitely differentiable in Ω. Moreover, we

denote by C∞
0 (Ω) the space of all C∞-functions in Ω whose support is compact and

contained in Ω. Set C∞
0,σ(Ω) := {f ∈ (C∞

0 (Ω))n : div f = 0}. For any 1 < p <∞ and

w ∈ Ap, the space L
p
w,σ(Ω) of solenoidal vector fields is the completion of C

∞
0,σ(Ω)

in (Lp
w(Ω))

n with the norm ‖g‖Lp

w,σ(Ω) := ‖g‖(Lp

w(Ω))n . The space of gradient vector

fields is denoted by Lp
w,π(Ω) := {∇h : h ∈ Ẇ 1,p

w (Ω)} with the norm ‖∇h‖Lp

w,π(Ω) :=

‖∇h‖(Lp

w(Ω))n .

Let (X,Y ) be one of

((Lp
w,σ(Ω))

∗, Lp′

w′,σ(Ω)), ((Lp
w,σ(Ω))

∗∗, Lp
w,σ(Ω)) and ((Lp′

w′,σ(Ω))
∗, Lp

w,σ(Ω)).
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For any f ∈ X and g ∈ Y , ‖f‖X ≃ ‖g‖Y means that the equivalent norm inequality

‖f‖X 6 ‖g‖Y 6 C(Ap(w))‖f‖X

holds. In the case of ((Lp
w,π(Ω))

∗, Lp′

w′,π(Ω)), ((L
p
w,π(Ω))

∗∗, Lp
w,π(Ω)) or ((L

p′

w′,π(Ω))
∗,

Lp
w,π(Ω)), we denote by ‖f‖X ≃ ‖∇h‖Y the same as above.

Concerning constants in all estimates which appear in this paper, simplified no-

tations are given as follows: we denote by C a generic positive constant depending

only on n and Ω. Moreover, generic positive constants depending only on the above

elements and additive elements (e.g., p, Ap(w), a pair of p and Ap(w) and so on) are

simply denoted by C(p), C(Ap(w)), C(p,Ap(w)) and so on, respectively.

2.3. Helmholtz decomposition. In this subsection, the Helmholtz decomposi-

tion of (Lp
w(Ω))

n and equivalent conditions for it, which are proved in this paper,

are formulated. We begin with the Helmholtz decomposition of (Lp
w(Ω))

n.

Definition 2.2. Let Ω be a domain in Rn, 1 < p < ∞ and w ∈ Ap. Then the

Helmholtz decomposition of (Lp
w(Ω))

n holds if for any f ∈ (Lp
w(Ω))

n there uniquely

exists (g, h) ∈ Lp
w,σ(Ω)× (Ẇ 1,p

w (Ω)/R) such that

(2.3) g +∇h = f

and

(2.4) ‖g‖(Lp

w(Ω))n + ‖∇h‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n .

In the next definitions, we introduce four conditions which are proved to be equiv-

alent to the validity of the Helmholtz decomposition of (Lp
w(Ω))

n. The first and sec-

ond conditions are concerned with the weak Neumann problem and the Helmholtz

projection of (Lp
w(Ω))

n.

Definition 2.3. Let Ω be a domain in Rn, 1 < p <∞ and w ∈ Ap. Then

(1) the weak Neumann problem of (Lp
w(Ω))

n is uniquely solvable if for any f ∈

(Lp
w(Ω))

n there uniquely exists h ∈ Ẇ 1,p
w (Ω)/R such that

(2.5) 〈∇h,∇ϕ〉Ω = 〈f,∇ϕ〉Ω

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω) and

(2.6) ‖∇h‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n ;
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(2) the Helmholtz projection of (Lp
w(Ω))

n is uniquely defined if there uniquely exists

a linear map Pp,w from (Lp
w(Ω))

n into (Lp
w(Ω))

n such that

(2.7) Im(Pp,w) = Lp
w,σ(Ω), Ker(Pp,w) = Lp

w,π(Ω), P 2
p,w = Pp,w

and

(2.8) ‖Pp,wf‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n

holds for any f ∈ (Lp
w(Ω))

n.

From the viewpoint of [7], [17], the variational estimates of Lp
w,π(Ω) and L

p
w,σ(Ω),

i.e., Muckenhoupt Ap-weighted cases of [17], are the third and fourth conditions.

Definition 2.4. Let Ω be a domain in Rn, 1 < p <∞ and w ∈ Ap. Then

(1) the variational estimate of Lp
w,π(Ω) holds if

(2.9) ‖∇h‖(Lp

w(Ω))n 6 C(Ap(w)) sup
{ |〈∇h,∇ϕ〉Ω|

‖∇ϕ‖
(Lp′

w′
(Ω))n

: ϕ ∈ Ẇ 1,p′

w′ (Ω), ∇ϕ 6= 0
}

holds for any h ∈ Ẇ 1,p
w (Ω);

(2) the variational estimate of Lp
w,σ(Ω) holds if

(2.10) ‖g‖(Lp

w(Ω))n 6 C(Ap(w)) sup
{ |〈g, ϕ〉Ω|

‖ϕ‖
(Lp′

w′
(Ω))n

: ϕ ∈ Lp′

w′,σ(Ω), ϕ 6= 0
}

holds for any g ∈ Lp
w,σ(Ω).

2.4. Main results. This subsection will deal with our main results. The first part

of our main results yields the equivalence between the Helmholtz decomposition, the

weak Neumann problem and the Helmholtz projection of (Lp
w(Ω))

n.

Theorem 2.1. Let Ω be a domain in Rn, 1 < p < ∞ and w ∈ Ap. Then (i), (ii)

and (iii) are equivalent.

(i) The Helmholtz decomposition of (Lp
w(Ω))

n holds.

(ii) The weak Neumann problem of (Lp
w(Ω))

n is uniquely solvable.

(iii) The Helmholtz projection of (Lp
w(Ω))

n is uniquely defined.
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Corollary 2.1. Let Ω be a domain in Rn and 1 < q <∞. Then (i), (ii) and (iii)

are equivalent.

(i) The Helmholtz decomposition of (Lq
w(Ω))

n holds for any w ∈ Aq.

(ii) The weak Neumann problem of (Lq
w(Ω))

n is uniquely solvable for any w ∈ Aq.

(iii) The Helmholtz projection of (Lq
w(Ω))

n is uniquely defined for any w ∈ Aq.

Moreover, (i), (ii) or (iii) implies (iv), (v) and (vi).

(iv) The Helmholtz decomposition of (Lp
w(Ω))

n holds for any 1 < p < ∞ and

w ∈ Ap.

(v) The weak Neumann problem of (Lp
w(Ω))

n is uniquely solvable for any 1 <

p <∞ and w ∈ Ap.

(vi) The Helmholtz projection of (Lp
w(Ω))

n is uniquely defined for any 1 < p < ∞

and w ∈ Ap.

We proceed to the second part of our main results, on the equivalence between

the Helmholtz decomposition of (Lp
w(Ω))

n and the variational estimates of Lp
w,π(Ω)

and Lp
w,σ(Ω). Not only this equivalence but also the duality of L

p
w,π(Ω) and L

p
w,σ(Ω)

are established as follows:

Theorem 2.2. Let Ω be a domain in Rn, 1 < p < ∞ and w ∈ Ap. Then (i), (ii)

and (iii) are equivalent.

(i) The Helmholtz decomposition of (Lp
w(Ω))

n and (Lp′

w′(Ω))n holds.

(ii) The variational estimate of Lp
w,π(Ω) and L

p′

w′,π(Ω) holds.

(iii) The variational estimate of Lp
w,σ(Ω) and L

p′

w′,σ(Ω) holds.

Moreover, (i), (ii) or (iii) implies (Lp
w,π(Ω))

∗ = Lp′

w′,π(Ω), (L
p
w,σ(Ω))

∗ = Lp′

w′,σ(Ω) and

(Pp,w)
∗ = Pp′,w′ .

Corollary 2.2. Let Ω be a domain in Rn and 1 < q <∞. Then (i), (ii) and (iii)

are equivalent.

(i) The Helmholtz decomposition of (Lq
w(Ω))

n and (Lq′

w′(Ω))n holds for any

w ∈ Aq.

(ii) The variational estimate of Lq
w,π(Ω) and L

q′

w′,π(Ω) holds for any w ∈ Aq.

(iii) The variational estimate of Lq
w,σ(Ω) and L

q′

w′,σ(Ω) holds for any w ∈ Aq.

Moreover, (i), (ii) or (iii) implies (iv), (v) and (vi).

(iv) The Helmholtz decomposition of (Lp
w(Ω))

n holds for any 1 < p < ∞ and

w ∈ Ap.

(v) The variational estimate of Lp
w,π(Ω) holds for any 1 < p <∞ and w ∈ Ap.

(vi) The variational estimate of Lp
w,σ(Ω) holds for any 1 < p <∞ and w ∈ Ap.
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3. Proofs of Theorems 2.1 and 2.2

3.1. Auxiliary lemmas. In this subsection, we will state and prove two auxil-

iary lemmas which are essentially required for proofs of our main results. The first

auxiliary lemma establishes the reflexivity of Lp
w,π(Ω) and L

p
w,σ(Ω).

Lemma 3.1. Let Ω be a domain in Rn, 1 < p <∞ and w ∈ Ap. Then

(1) Lp
w,π(Ω) is a reflexive Banach space;

(2) Lp
w,σ(Ω) is a reflexive Banach space.

P r o o f. Since (Lp
w(Ω))

n is a reflexive Banach space and Lp
w,π(Ω) and L

p
w,σ(Ω)

are closed subspaces of (Lp
w(Ω))

n, Lp
w,π(Ω) and L

p
w,σ(Ω) are reflexive Banach spaces.

�

We proceed to the second auxiliary lemma, i.e., annihilator properties in Lp
w,π(Ω)

and in Lp
w,σ(Ω). The following lemma yields the orthogonality of L

p
w,π(Ω) and

Lp
w,σ(Ω).

Lemma 3.2. Let Ω be a domain in Rn, 1 < p <∞ and w ∈ Ap.

(1) Define the orthogonal complement (Lp′

w′,π(Ω))
⊥ of Lp′

w′,π(Ω) as

(Lp′

w′,π(Ω))
⊥ := {g ∈ (Lp

w(Ω))
n : ∀ϕ ∈ Ẇ 1,p′

w′ (Ω), 〈g,∇ϕ〉Ω = 0}.

Then Lp
w,σ(Ω) = (Lp′

w′,π(Ω))
⊥ holds.

(2) Define the orthogonal complement (Lp′

w′,σ(Ω))
⊥ of Lp′

w′,σ(Ω) as

(Lp′

w′,σ(Ω))
⊥ := {ψ ∈ (Lp

w(Ω))
n : ∀g ∈ Lp′

w′,σ(Ω), 〈ψ, g〉Ω = 0}.

Then Lp
w,π(Ω) = (Lp′

w′,σ(Ω))
⊥ holds.

P r o o f. First, we will prove Lp
w,σ(Ω) ⊆ (Lp′

w′,π(Ω))
⊥. Let g ∈ Lp

w,σ(Ω). Since

C∞
0,σ(Ω) is dense in L

p
w,σ(Ω), it follows from integration by parts that

〈g,∇ϕ〉Ω = 0

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω). Therefore g ∈ (Lp′

w′,π(Ω))
⊥.

Second, we proceed by contradiction as in [17], Remark 1.4 (d). Assume that

Lp
w,σ(Ω) ( (Lp′

w′,π(Ω))
⊥. Then there exists ψ ∈ (Lp′

w′(Ω))n with ψ 6= 0 such that

〈g, ψ〉Ω = 0
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holds for any g ∈ Lp
w,σ(Ω) and

〈h, ψ〉Ω 6= 0

holds for at least one h ∈ (Lp′

w′,π(Ω))
⊥. By the well known argument of de Rham,

see [1], Théoréme 17′, there exists ϕ ∈ Ẇ 1,p′

w′ (Ω) such that ψ = ∇ϕ. Therefore,

0 6= 〈h, ψ〉Ω = 〈h,∇ϕ〉Ω = 0

holds, which is a contradiction and completes the proof of Lemma 3.2 (1).

Lemma 3.2 (2) is an immediate consequence of Lemmas 3.1 (1) and 3.2 (1). Ac-

tually, Lp
w,σ(Ω) = (Lp′

w′,π(Ω))
⊥ implies (Lp′

w′,σ(Ω))
⊥ = (Lp

w,π(Ω))
⊥⊥ = Lp

w,π(Ω) by

classical annihilator properties in Lp
w,π(Ω). �

3.2. Proof of Theorem 2.1: (i) ⇔ (ii). In this subsection, we will obtain

the equivalence between Theorem 2.1 (i) and (ii). The first part is to prove that

(i) implies (ii). Assume that for any f ∈ (Lp
w(Ω))

n there uniquely exists (g, h) ∈

Lp
w,σ(Ω)× (Ẇ 1,p

w (Ω)/R) such that

(3.1) g +∇h = f

and

(3.2) ‖g‖(Lp

w(Ω))n + ‖∇h‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n .

Since Lemma 3.2 (1) yields g ∈ Lp
w,σ(Ω) = (Lp′

w′,π(Ω))
⊥,

〈g,∇ϕ〉Ω = 0

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω). Combining this equality with (3.1) and (3.2),

〈∇h,∇ϕ〉Ω = 〈f,∇ϕ〉Ω

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω) and

‖∇h‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n .

Let h̃ ∈ Ẇ 1,p
w (Ω), and assume that

(3.3) 〈∇h̃,∇ϕ〉Ω = 〈f,∇ϕ〉Ω
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holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω) and

(3.4) ‖∇h̃‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n .

Then f −∇h̃ ∈ (Lp′

w′,π(Ω))
⊥. Indeed, it follows from (3.3) that

〈f −∇h̃,∇ϕ〉Ω = 〈f,∇ϕ〉Ω − 〈∇h̃,∇ϕ〉Ω = 0

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω). Moreover, Lemma 3.2 (1) yields f −∇h̃ ∈ Lp
w,σ(Ω). By

f −∇h̃ ∈ Lp
w,σ(Ω) and (3.4), f is decomposed into

f = (f −∇h̃) +∇h̃

and

‖f −∇h̃‖(Lp

w(Ω))n + ‖∇h̃‖(Lp

w(Ω))n 6 (1 + 2C(Ap(w)))‖f‖(Lp

w(Ω))n .

Therefore, (i) (uniqueness) implies g = f −∇h̃ and ∇h = ∇h̃.

Second, we conversely prove that (i) is derived from (ii). Suppose that for any

f ∈ (Lp
w(Ω))

n there uniquely exists h ∈ Ẇ 1,p
w (Ω)/R such that

(3.5) 〈∇h,∇ϕ〉Ω = 〈f,∇ϕ〉Ω

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω) and

(3.6) ‖∇h‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n .

Then f −∇h ∈ Lp
w,σ(Ω) follows from (3.5) and Lemma 3.2 (1). Furthermore, (3.6)

implies

(f −∇h) +∇h = f

and

‖f −∇h‖(Lp

w(Ω))n + ‖∇h‖(Lp

w(Ω))n 6 (1 + 2C(Ap(w)))‖f‖(Lp

w(Ω))n .

It remains to obtain the uniqueness of the Helmholtz decomposition of f . Set g :=

f −∇h, and assume that there exists (g̃, h̃) ∈ Lp
w,σ(Ω)× (Ẇ 1,p

w (Ω)/R) such that

(3.7) g̃ +∇h̃ = f

and

‖g̃‖(Lp

w(Ω))n + ‖∇h̃‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n .
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Then Lemma 3.2 (1) yields g̃ − g ∈ Lp
w,σ(Ω) = (Lp′

w′,π(Ω))
⊥. Moreover, it follows

from (3.7) that

(3.8) 〈∇h−∇h̃,∇ϕ〉Ω = 〈g̃ − g,∇ϕ〉Ω = 0

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω). Hence, (ii) (uniqueness) implies g = g̃ and ∇h = ∇h̃

by (3.7) and (3.8). This completes the proof of the equivalence between Theorem 2.1

(i) and (ii).

3.3. Proof of Theorem 2.1: (ii) ⇔ (iii). The equivalence between Theo-

rem 2.1 (ii) and (iii) will be proved in this subsection. Assume first (ii). Then

for any f ∈ (Lp
w(Ω))

n there uniquely exists h ∈ Ẇ 1,p
w (Ω)/R such that

(3.9) 〈∇h,∇ϕ〉Ω = 〈f,∇ϕ〉Ω

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω) and

(3.10) ‖∇h‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n .

Define a map Pp,w from (Lp
w(Ω))

n into (Lp
w(Ω))

n as

Pp,wf := f −∇h, f ∈ (Lp
w(Ω))

n,

where h ∈ Ẇ 1,p
w (Ω)/R is taken as in (3.9) and (3.10). Then (3.9) clearly yields the

linearlity of Pp,w. Moreover, it follows from (3.9) and (3.10) that

Im(Pp,w) = (Lp′

w′,π(Ω))
⊥, Ker(Pp,w) = Lp

w,π(Ω)

and

‖Pp,wf‖(Lp

w(Ω))n 6 (1 + C(Ap(w)))‖f‖(Lp

w(Ω))n

holds for any f ∈ (Lp
w(Ω))

n. Note that Lemma 3.2 (1) implies Im(Pp,w) =

(Lp′

w′,π(Ω))
⊥ = Lp

w,σ(Ω). It remains to obtain the idempotence of Pp,w, i.e.,

P 2
p,w = Pp,w. For any f ∈ (Lp

w(Ω))
n there uniquely exists h̃ ∈ Ẇ 1,p

w (Ω)/R such

that

(3.11) 〈∇h̃,∇ϕ〉Ω = 〈Pp,wf,∇ϕ〉Ω

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω) and

(3.12) ‖∇h̃‖(Lp

w(Ω))n 6 C(Ap(w))‖Pp,wf‖(Lp

w(Ω))n .
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By definition, we have

P 2
p,wf = Pp,wf −∇h̃.

Since Im(Pp,w) = (Lp′

w′,π(Ω))
⊥, ∇h̃ = 0 follows from (3.11) and (ii) (uniqueness).

Therefore P 2
p,w = Pp,w.

Suppose conversely (iii). Then there uniquely exists a linear map Pp,w from

(Lp
w(Ω))

n into (Lp
w(Ω))

n such that

(3.13) Im(Pp,w) = Lp
w,σ(Ω), Ker(Pp,w) = Lp

w,π(Ω), P 2
p,w = Pp,w

and

(3.14) ‖Pp,wf‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n

holds for any f ∈ (Lp
w(Ω))

n. Since (3.13) yields that

Pp,w(f − Pp,wf) = Pp,wf − P 2
p,wf = 0

holds for any f ∈ (Lp
w(Ω))

n and Ker(Pp,w) = Lp
w,π(Ω), there exists h ∈ Ẇ 1,p

w (Ω)/R

such that f −Pp,wf = ∇h. Furthermore, h solves the weak Neumann problem for f .

Indeed, it follows from Lemma 3.2 (1), (3.13) and (3.14) that

(3.15) 〈∇h,∇ϕ〉Ω = 〈f,∇ϕ〉Ω − 〈Pp,wf,∇ϕ〉Ω = 〈f,∇ϕ〉Ω

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω) and

‖∇h‖(Lp

w(Ω))n 6 (1 + C(Ap(w)))‖f‖(Lp

w(Ω))n .

We proceed to the uniqueness of the weak Neumann problem for f . Let h̃ ∈ Ẇ 1,p
w (Ω),

and assume that

(3.16) 〈∇h̃,∇ϕ〉Ω = 〈f,∇ϕ〉Ω

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω) and

‖∇h̃‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n .

Then ∇h − ∇h̃ ∈ Lp
w,σ(Ω) follows from (3.15), (3.16) and Lemma 3.2 (1). There-

fore, (3.13) implies

∇h−∇h̃ = Pp,w(∇h−∇h̃) = 0,
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i.e., ∇h = ∇h̃. This completes the proof of the equivalence between Theorem 2.1 (ii)

and (iii). Combining Theorem 2.1 (iii) with Lemma 2.1, we can easily obtain Corol-

lary 2.1.

3.4. Proof of Theorem 2.2. This subsection will deal with three lemmas which

we combine to prove Theorem 2.2. First, the variational estimates of Lp′

w′,π(Ω) and

Lp′

w′,σ(Ω) are derived from the Helmholtz decomposition of (L
p
w(Ω))

n.

Lemma 3.3. Let Ω be a domain in Rn, 1 < p < ∞ and w ∈ Ap. Then (i)

implies (ii).

(i) The Helmholtz decomposition of (Lp
w(Ω))

n holds.

(ii) The variational estimates of Lp′

w′,π(Ω) and L
p′

w′,σ(Ω) hold.

P r o o f. We obtain the variational estimate of Lp′

w′,π(Ω) as in [17], Theo-

rem 2.2 b). By the well known duality of (Lp
w(Ω))

n and (Lp′

w′(Ω))n,

‖∇h‖
(Lp′

w′
(Ω))n

6 sup
{ |〈∇h, f〉Ω|

‖f‖(Lp

w(Ω))n
: f ∈ (Lp

w(Ω))
n, f 6= 0

}

=: ‖∇h‖((Lp

w(Ω))n)′

holds for any h ∈ Ẇ 1,p′

w′ (Ω). Moreover, (i) implies that there uniquely exists ϕ ∈

Ẇ 1,p
w (Ω)/R such that

(3.17) f −∇ϕ ∈ Lp
w,σ(Ω), (f −∇ϕ) +∇ϕ = f

and

(3.18) ‖∇ϕ‖(Lp

w(Ω))n 6 C(Ap(w))‖f‖(Lp

w(Ω))n .

It follows from Lemma 3.2 (1), (3.17) and (3.18) that

‖∇h‖((Lp

w(Ω))n)′ = sup
{ |〈∇h,∇ϕ〉Ω|

‖f‖(Lp

w(Ω))n
: f ∈ (Lp

w(Ω))
n, f 6= 0

}

6 C(Ap(w)) sup
{ |〈∇h,∇ϕ〉Ω|

‖∇ϕ‖(Lp

w(Ω))n
: ϕ ∈ Ẇ 1,p

w (Ω), ∇ϕ 6= 0
}
.

Since the variational estimate of Lp′

w′,σ(Ω) is established as in the above and [17],

Theorem 2.3 b), we omit the details. This completes the proof of Lemma 3.3. �
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The second lemma is concerned with the weak Neumann problem of (Lp
w(Ω))

n.

The unique solvability follows from the variational estimate of Lp
w,π(Ω) and L

p′

w′,π(Ω).

Lemma 3.4. Let Ω be a domain in Rn, 1 < p < ∞ and w ∈ Ap. Then (i)

implies (ii).

(i) The variational estimate of Lp
w,π(Ω) and L

p′

w′,π(Ω) holds.

(ii) The weak Neumann problem of (Lp
w(Ω))

n and (Lp′

w′(Ω))n is uniquely solvable.

Moreover, (i) implies (Lp
w,π(Ω))

∗ = Lp′

w′,π(Ω).

P r o o f. First, we prove the inclusion relation between Lp′

w′,π(Ω) and (L
p
w,π(Ω))

∗.

Let h ∈ Ẇ 1,p′

w′ (Ω), and define a map fh from Lp
w,π(Ω) into R as

fh(∇ϕ) = 〈∇h,∇ϕ〉Ω, ϕ ∈ Ẇ 1,p
w (Ω).

Then it follows from the Hölder inequality and the variational estimate of Lp′

w′,π(Ω)

that

‖fh‖(Lp

w,π(Ω))∗ 6 ‖∇h‖
(Lp′

w′
(Ω))n

6 C(Ap(w))‖fh‖(Lp

w,π(Ω))∗

holds, i.e., ‖fh‖(Lp

w,π(Ω))∗ ≃ ‖∇h‖
(Lp′

w′
(Ω))n

. Therefore, we can regard Lp′

w′,π(Ω) as

a closed subspace of (Lp
w,π(Ω))

∗, i.e., Lp′

w′,π(Ω) ⊆ (Lp
w,π(Ω))

∗ with equivalent norms.

The second part is the unique solvability of the weak Neumann problem of

(Lp
w(Ω))

n. For any f ∈ (Lp′

w′,π(Ω))
∗, the Hahn-Banach theorem admits an extension

f̃ ∈ (Lp
w,π(Ω))

∗∗ of f such that

(3.19) f̃(∇ϕ) = f(∇ϕ)

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω) and

(3.20) ‖f‖
(Lp′

w′,π
(Ω))∗

= ‖f̃‖(Lp

w,π(Ω))∗∗ .

Since Lemma 3.1 (1) yields f̃ ∈ (Lp
w,π(Ω))

∗∗ = Lp
w,π(Ω), there exists h ∈ Ẇ 1,p

w (Ω)

such that

〈∇h,∇ϕ〉Ω = f̃(∇ϕ)

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω) and

‖f̃‖(Lp

w,π(Ω))∗∗ ≃ ‖∇h‖(Lp

w(Ω))n .

It follows from (3.19) and (3.20) that

(3.21) 〈∇h,∇ϕ〉Ω = f(∇ϕ)

785



holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω) and

(3.22) ‖f‖
(Lp′

w′,π
(Ω))∗

≃ ‖∇h‖(Lp

w(Ω))n .

Assume that there exists h̃ ∈ Ẇ 1,p
w (Ω) such that

(3.23) 〈∇h̃,∇ϕ〉Ω = f(∇ϕ)

holds for any ϕ ∈ Ẇ 1,p′

w′ (Ω) and

‖f‖
(Lp′

w′,π
(Ω))∗

≃ ‖∇h̃‖(Lp

w(Ω))n .

Then it follows from the variational estimate of Lp
w,π(Ω), (3.21) and (3.23) that

‖∇h−∇h̃‖(Lp

w(Ω))n

6 C(Ap(w)) sup
{ |〈∇h−∇h̃,∇ϕ〉Ω|

‖∇ϕ‖
(Lp′

w′
(Ω))n

: ϕ ∈ Ẇ 1,p′

w′ (Ω), ∇ϕ 6= 0
}
= 0,

i.e., ∇h = ∇h̃. According to (3.21), (3.22) and the uniqueness of h, (Lp′

w′,π(Ω))
∗

can be regarded as a closed subspace of Lp
w,π(Ω), i.e., (L

p′

w′,π(Ω))
∗ ⊆ Lp

w,π(Ω) with

equivalent norms. Let f ∈ (Lp
w(Ω))

n, and define a map f from Lp′

w′,π(Ω) into R as

f(∇ϕ) = 〈f,∇ϕ〉Ω, ϕ ∈ Ẇ 1,p′

w′ (Ω).

Then f ∈ (Lp′

w′,π(Ω))
∗ immediately follows from the Hölder inequality. Combining

f ∈ (Lp′

w′,π(Ω))
∗ with (3.21) and (3.22), the weak Neumann problem of (Lp

w(Ω))
n is

uniquely solvable.

Concerning the unique solvability of the weak Neumann problem of (Lp′

w′(Ω))n, it

is sufficient to replace p and w by p′ and w′, respectively, in the above. Moreover,

we obtain Lp
w,π(Ω) ⊆ (Lp′

w′,π(Ω))
∗ and (Lp

w,π(Ω))
∗ ⊆ Lp′

w′,π(Ω). Therefore, (i) implies

(Lp
w,π(Ω))

∗ = Lp′

w′,π(Ω), (L
p′

w′,π(Ω))
∗ = Lp

w,π(Ω) and (ii), which completes the proof

of Lemma 3.4. �

Third, we proceed to the Helmholtz projection Pp,w of (L
p
w(Ω))

n. Analogously to

the above lemma, the variational estimate of Lp
w,σ(Ω) and L

p′

w′,σ(Ω) yields not only

the unique definedness of Pp,w but also adjoint properties of Pp,w.

Lemma 3.5. Let Ω be a domain in Rn, 1 < p < ∞ and w ∈ Ap. Then (i)

implies (ii).

(i) The variational estimate of Lp
w,σ(Ω) and L

p′

w′,σ(Ω) holds.

(ii) The Helmholtz projection of (Lp
w(Ω))

n and (Lp′

w′(Ω))n is uniquely defined.

Moreover, (i) implies (Lp
w,σ(Ω))

∗ = Lp′

w′,σ(Ω), and (ii) implies (Pp,w)
∗ = Pp′,w′ .
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P r o o f. The first part is to obtain the inclusion relation between Lp′

w′,σ(Ω) and

(Lp
w,σ(Ω))

∗. Let g ∈ Lp′

w′,σ(Ω), and define a map fg from Lp
w,σ(Ω) into R as

fg(ϕ) = 〈g, ϕ〉Ω, ϕ ∈ Lp
w,σ(Ω).

Then ‖fg‖(Lp

w,σ(Ω))∗ ≃ ‖g‖
(Lp′

w′
(Ω))n

follows from the Hölder inequality and the varia-

tional estimate of Lp′

w′,σ(Ω). Therefore, L
p′

w′,σ(Ω) can be regarded as a closed subspace

of (Lp
w,σ(Ω))

∗, i.e., Lp′

w′,σ(Ω) ⊆ (Lp
w,σ(Ω))

∗ with equivalent norms.

Second, we proceed to the unique definedness of the Helmholtz projection of

(Lp
w(Ω))

n. For any f ∈ (Lp′

w′,σ(Ω))
∗, the Hahn-Banach theorem is applied, and f

is extended to f̃ ∈ (Lp
w,σ(Ω))

∗∗ such that

(3.24) f̃(ϕ) = f(ϕ)

holds for any ϕ ∈ Lp′

w′,σ(Ω) and

(3.25) ‖f‖
(Lp′

w′,σ
(Ω))∗

= ‖f̃‖(Lp

w,σ(Ω))∗∗ .

Since Lemma 3.1 (2) implies f̃ ∈ (Lp
w,σ(Ω))

∗∗ = Lp
w,σ(Ω), there exists g ∈ Lp

w,σ(Ω)

such that

〈g, ϕ〉Ω = f̃(ϕ)

holds for any ϕ ∈ Lp′

w′,σ(Ω) and

‖f̃‖(Lp

w,σ(Ω))∗∗ ≃ ‖g‖(Lp

w(Ω))n .

By (3.24) and (3.25), we have

(3.26) 〈g, ϕ〉Ω = f(ϕ)

for any ϕ ∈ Lp′

w′,σ(Ω) and

(3.27) ‖f‖
(Lp′

w′,σ
(Ω))∗

≃ ‖g‖(Lp

w(Ω))n .

Suppose that there exists g̃ ∈ Lp
w,σ(Ω) such that

(3.28) 〈g̃, ϕ〉Ω = f(ϕ)

holds for any ϕ ∈ Lp′

w′,σ(Ω) and

‖f‖
(Lp′

w′,σ
(Ω))∗

≃ ‖g̃‖(Lp

w(Ω))n .
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Then it follows from the variational estimate of Lp
w,σ(Ω), (3.26) and (3.28) that

‖g − g̃‖(Lp

w(Ω))n 6 C(Ap(w)) sup
{ |〈g − g̃, ϕ〉Ω|

‖ϕ‖
(Lp′

w′
(Ω))n

: ϕ ∈ Lp′

w′,σ(Ω), ϕ 6= 0
}
= 0,

i.e., g = g̃. By (3.26), (3.27) and the uniqueness of g, we can regard (Lp′

w′,σ(Ω))
∗

as a closed subspace of Lp
w,σ(Ω), i.e., (L

p′

w′,σ(Ω))
∗ ⊆ Lp

w,σ(Ω) with equivalent norms.

Let f ∈ (Lp
w(Ω))

n, and define a map f from Lp′

w′,σ(Ω) into R as

f(ϕ) = 〈f, ϕ〉Ω, ϕ ∈ Lp′

w′,σ(Ω).

Then the Hölder inequality obviously yields f ∈ (Lp′

w′,σ(Ω))
∗. By this functional,

a map Pp,w from (Lp
w(Ω))

n into Lp
w,σ(Ω) is defined as

Pp,wf = g,

where g ∈ Lp
w,σ(Ω) is taken as in (3.26) and (3.27). Analogously to the proof of

Theorem 2.1, it is not difficult to verify (2.7) and (2.8) with the aid of Lemma 3.2 (2),

(3.26) and (3.27). Consequently, the Helmholtz projection of (Lp
w(Ω))

n is uniquely

defined.

Replacing p and w by p′ and w′, respectively, in the above, the Helmholtz pro-

jection Pp′,w′ of (Lp′

w′(Ω))n is uniquely defined. Moreover, we obtain Lp
w,σ(Ω) ⊆

(Lp′

w′,σ(Ω))
∗ and (Lp

w,σ(Ω))
∗ ⊆ Lp′

w′,σ(Ω). Therefore, (i) implies (Lp
w,σ(Ω))

∗ =

Lp′

w′,σ(Ω), (L
p′

w′,σ(Ω))
∗ = Lp

w,σ(Ω) and (ii).

It remains to prove that (ii) implies (Pp,w)
∗ = Pp′,w′ . Since C∞

0,σ(Ω) is dense in

Lp
w,σ(Ω) and in L

p′

w′,σ(Ω), it follows from integration by parts that

〈Pp,wf, g〉Ω = 〈Pp,wf, Pp′,w′g〉Ω = 〈f, Pp′,w′g〉Ω

holds for any f ∈ (Lp
w(Ω))

n and g ∈ (Lp′

w′(Ω))n. This equality means (Pp,w)
∗ = Pp′,w′

and (Pp′,w′)∗ = Pp,w, which completes the proof of Lemma 3.5. �

At this point, we are ready to prove Theorem 2.2 and Corollary 2.2. It is obvious to

see that Theorem 2.2 is an immediate consequence of Theorem 2.1, Lemmas 3.3, 3.4

and 3.5. Combining Theorem 2.2 with Corollary 2.1, we can easily obtain Corol-

lary 2.2. Therefore, proofs of our main results are complete.
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