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Abstract. This paper is concerned with the oscillatory behavior of the damped half-linear
oscillator (a(t)ϕp(x

′))′ + b(t)ϕp(x
′) + c(t)ϕp(x) = 0, where ϕp(x) = |x|p−1 sgn x for x ∈ R

and p > 1. A sufficient condition is established for oscillation of all nontrivial solutions of
the damped half-linear oscillator under the integral averaging conditions. The main result
can be given by using a generalized Young’s inequality and the Riccati type technique.
Some examples are included to illustrate the result. Especially, an example which asserts
that all nontrivial solutions are oscillatory if and only if p 6= 2 is presented.
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1. Introduction

We consider the damped nonlinear oscillator

(1.1) (a(t)ϕp(x
′))′ + b(t)ϕp(x

′) + c(t)ϕp(x) = 0

for t > t0, where the prime denotes d/dt; the coefficients a(t), b(t) and c(t) are

continuous for t > t0, and a(t) > 0 for t > t0; the real-valued function ϕp(x)

is defined by ϕp(x) = |x|p−1 sgnx for x ∈ R and p > 1. Note that ϕp(xy) =

ϕp(x)ϕp(y) holds for any x, y ∈ R, but ϕp(x+ y) = ϕp(x) + ϕp(y) does not hold for

any x, y ∈ R \ {0} and p 6= 2. Therefore, the solution space of (1.1) is homogeneous,

but it is not additive in the case p 6= 2. For this reason, this equation is often

called “half-linear“. For example, half-linear differential equation can be found in
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[1], [2], [3], [6], [7], [8], [12], [13], [14], [17]–[26], [30], [31], [35], [37]. Clearly, the

equation (1.1) has a trivial solution x(t) ≡ 0. It is known that the global existence

and uniqueness of solutions of (1.1) are guaranteed for the initial-value problem

(see [6], page 170, and [7], pages 8–13). Hence, all nontrivial solutions of (1.1) are

divided as follows: a nontrivial solution x(t) of (1.1) is said to be “oscillatory” if

there exists a sequence {tn} such that x(tn) = 0 and lim
n→∞

tn = ∞; otherwise, it is
said to be “non-oscillatory“. Multiplying (1.1) by exp

(∫ t

t0
(b(s)/a(s)) ds

)

, we obtain

an undamped half-linear differential equation

(1.2)

(

a(t) exp

(
∫ t

t0

b(s)

a(s)
ds

)

ϕp(x
′)

)′
+ c(t) exp

(
∫ t

t0

b(s)

a(s)
ds

)

ϕp(x) = 0

for t > t0. It is well known that all nontrivial solutions of second order undamped lin-

ear or half-linear differential equations are oscillatory if a nontrivial solution of them

is oscillatory by virtue of Sturm’s separation theorem (see [1], [5], [6], [7], [11], [29]).

Needless to say, the oscillatory behavior of (1.1) and (1.2) are equivalent. Hence,

if (1.1) has an oscillatory solution, then all nontrivial solutions of (1.1) are oscillatory.

We call the sufficient conditions for all nontrivial solutions of differential equations

to be oscillatory “oscillation theorems”. Many researchers have been interested in

the oscillation theorems for linear or nonlinear differential equations. For example,

the reader is referred to [1], [2], [4]–[13], [15], [16], [21], [22], [23], [26]–[32], [34], [35],

[36], [38]. Our main aim of this paper is to establish conditions on the coefficients

a(t), b(t) and c(t) for all nontrivial solutions to be oscillatory.

Since ϕ2(x) = x, the half-linear differential equation becomes the linear differential

equation. If p = 2, a(t) ≡ 1 and b(t) ≡ 0, then (1.1) corresponds to the linear

oscillator

(L1) x′′ + c(t)x = 0

for t > t0. Wintner in [33] established the following oscillation theorem by using an

integral averaging condition.

Theorem A. If

(1.3) lim
t→∞

1

t

∫ t

t0

∫ s

t0

c(τ) dτ ds = ∞

holds, then all nontrivial solutions of (L1) are oscillatory.

If p = 2 and b(t) ≡ 0, then (1.1) becomes the linear oscillator

(L2) (a(t)x′)′ + c(t)x = 0
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for t > t0. The following result was presented by Grace and Lalli in [9]. In the

book of Agarwal, Grace and O’Regan, see [1], pages 40–42, it was introduced in the

following form.

Theorem B. If (1.3) and

(1.4) lim
t→∞

∫ t(∫ s

t0

a(τ)dτ

)−1

ds = ∞

hold, then all nontrivial solutions of (L2) are oscillatory.

Theorems A and B have been extended by many authors to more precise and

general results for nonlinear differential equations (see [1], [2], [4], [9], [10], [15], [16],

[30], [31], [32], [34], [36], [38]).

If p = 2, then (1.1) becomes the damped linear oscillator

(L3) (a(t)x′)′ + b(t)x′ + c(t)x = 0

for t > t0. Multiplying (L3) by exp
(∫ t

t0
(b(s)/a(s)) ds

)

, we obtain

(

a(t) exp

(
∫ t

t0

b(s)

a(s)
ds

)

x′
)′

+ c(t) exp

(
∫ t

t0

b(s)

a(s)
ds

)

x = 0

for t > t0. We can get the following corollary by using Theorem B.

Corollary 1.1. If

(1.5) lim
t→∞

∫ t(∫ s

t0

a(τ) exp

(
∫ τ

t0

b(σ)

a(σ)
dσ

)

dτ

)−1

ds = ∞

and

(1.6) lim
t→∞

1

t

∫ t

t0

∫ s

t0

c(τ) exp

(
∫ τ

t0

b(σ)

a(σ)
dσ

)

dτ ds = ∞

hold, then all nontrivial solutions of (L3) are oscillatory.

Letting x = y exp
(

−
∫ t

t0
(b(s)/(2a(s))) ds

)

, we can transform equation (L3) into

the equation

(1.7) (a(t)y′)′ +
(

c(t)− b2(t)

4a(t)
− b′(t)

2

)

y = 0
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for t > t0. Needless to say, all nontrivial solutions of (L3) are oscillatory if and only

if all nontrivial solutions of (1.7) are oscillatory. By using Theorem B, we can easily

establish the following corollary.

Corollary 1.2. Suppose that b(t) is continuously differentiable for t > t0. If (1.4)

and

(1.8) lim
t→∞

1

t

∫ t

t0

∫ s

t0

(

c(τ)− b2(τ)

4a(τ)
− b′(τ)

2

)

dτ ds = ∞

hold, then all nontrivial solutions of (L3) are oscillatory.

Now, we give two examples to illustrate the differences between Corollaries 1.1

and 1.2. We consider the damped linear oscillator

x′′ +
1

t
x′ + x = 0

for t > 1. In this case, we have

lim
t→∞

∫ t(∫ s

1

a(τ) exp

(
∫ τ

1

b(σ)

a(σ)
dσ

)

dτ

)−1

ds = lim
t→∞

(

log
t− 1

t+ 1
+ c1

)

= c1,

where c1 is an arbitrary constant. Hence, condition (1.5) in Corollary 1.1 does not

hold. However, we can show that conditions (1.4) and (1.8) in Corollary 1.2 hold.

Then all nontrivial solutions of this equation are oscillatory. On the other hand, we

consider the damped linear oscillator

(1

t
x′
)′

+
1

t2
x′ +

1

t2
x = 0

for t > 1. In this case, we can estimate that

lim
t→∞

1

t

∫ t

1

∫ s

1

(

c(τ) − b2(τ)

4a(τ)
− b′(τ)

2

)

dτ ds = lim
t→∞

1

t

(

− log t+
3

8t
+

11

8
t− 7

4

)

=
11

8
,

that is, condition (1.8) in Corollary 1.2 does not hold. However, since conditions (1.5)

and (1.6) in Corollary 1.1 hold, all nontrivial solutions of this equation are oscillatory.

From the above mentioned examples, we conclude that Corollaries 1.1 and 1.2 have no

relation of inclusion. Moreover, they show that the criteria for the damped equation

change according to the transformation to the undamped equation. This means that

we cannot use fully a theory for the undamped equation to analyse the damped

equation.
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If b(t) ≡ 0, then (1.1) becomes the undamped half-linear oscillator

(H) (a(t)ϕp(x
′))′ + c(t)ϕp(x) = 0

for t > t0. The following result can be found in the book [1], pages 166–167, by

Agarwal, Grace and O’Regan.

Theorem C. Suppose p > 2 is satisfied. If (1.3) and

(1.9) lim
t→∞

∫ t(∫ s

t0

a(τ) dτ

)1/(1−p)

ds = ∞

hold, then all nontrivial solutions of (H) are oscillatory.

By using Theorem C and (1.2), we can get the following result immediately.

Corollary 1.3. Suppose p > 2 is satisfied. If (1.6) and

(1.10) lim
t→∞

∫ t(∫ s

t0

a(τ) exp

(
∫ τ

t0

b(σ)

a(σ)
dσ

)

dτ

)1/(1−p)

ds = ∞

hold, then all nontrivial solutions of (1.1) are oscillatory.

This corollary is a generalization of Theorems A, B, C and Corollary 1.1. On

the other hand, we cannot transform equation (1.1) into the half-linear version of

equation (1.7) since ϕp(x + y) = ϕp(x) + ϕp(y) does not hold for any x, y ∈ R \ {0}
if p 6= 2. The main purpose of this paper is to give an oscillation theorem which

includes Corollary 1.2 without requiring the transformation for equation (1.1). Our

main result is stated as follows.

Theorem 1.1. Let λp = max{1, p− 1}. Suppose that a2−p(t)ϕp(b(t)) is continu-

ously differentiable for t > t0. If (1.9) and

(1.11) lim
t→∞

1

t

∫ t

t0

∫ s

t0

{

c(τ) − λpa
1−p(τ)

∣

∣

∣

b(τ)

p

∣

∣

∣

p

−
(

a2−p(τ)ϕp

(b(τ)

p

))′}
dτ ds = ∞

hold, then all nontrivial solutions of (1.1) are oscillatory.

This theorem is a generalization of Theorems A, B, C and Corollary 1.2. Moreover,

it becomes the following result when b(t) ≡ 0.

Corollary 1.4. If (1.3) and (1.9) hold, then all nontrivial solutions of (1.1) are

oscillatory.
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By using Corollary 1.4 and (1.2), we can obtain a generalization of Corollary 1.3.

Corollary 1.5. If (1.6) and (1.10) hold, then all nontrivial solutions of (1.1) are

oscillatory.

Before we give the proof of the main theorem, we prepare a generalized Young’s

inequality in Section 2. The proof of Theorem 1.1 is given in Section 3, which is

a core of this paper. A Riccati type substitution plays an important role in the

proof. To illustrate the results, we take two concrete examples in Section 4.

2. Generalized Young inequality

We now define a real-valued function F on R
2 by

(2.1) F (u, v) =
|u|p
p

− uv +
|v|q
q
,

where q is the positive number satisfying

1

p
+

1

q
= 1.

Since p > 1, the number q is also greater than 1. Note that if 1 < p < 2 or 1 < q < 2,

then the number q or p, respectively, is greater than 2, and the function ϕq is the

inverse function of ϕp. It is well known that the inequality

F (u, v) > 0

holds on R
2. This inequality is often called the “Young inequality”. In this section,

we give a generalization of the Young inequality.

Theorem 2.1. Let F (u, v) be the function given by (2.1). Then the following

inequalities hold:

(i) there exists a constant 0 < ε0 6 1/q such that

(2.2) F (u, v) > ε0|ϕp(u)− v|q

for (u, v) ∈ R
2 and 1 < p 6 2;

(ii) there exists a constant 0 < ε0 6 1/q such that

(2.3) F (u, v) > ε0|ϕp(u)− v|q − p− 2

p
|u|p

for (u, v) ∈ R
2 and p > 2.
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P r o o f. If p = 2, then we have

F (u, v) =
1

2
(u− v)2

for any (u, v) ∈ R
2 when ε0 = 1/2. Clearly, inequalities (2.2) and (2.3) hold. More-

over, if u = 0 holds, then we have

F (0, v) =
|v|q
q

=
1

q
|ϕp(0)− v|q =

1

q
|ϕp(0)− v|q − p− 2

p
|0|p

for u ∈ R. This means that inequalities (2.2) and (2.3) hold when u = 0. Thus, we

have only to consider the case that p 6= 2 and u 6= 0.

Next, we prove the assertion (i) with 1 < p < 2 and u 6= 0. We consider two

real-valued functions

f(v) = F (1, v) =
|v|q
q

− v +
1

p
and g(v) = |1− v|q

for v ∈ R. Since f(1) = 0 and

d

dv
f(v) = ϕq(v)− 1 for v ∈ R,

we see that f(v) is decreasing for v < 1 and increasing for v > 1, and f(v) > 0 for

v ∈ R \ {1}. Therefore, the inequality

g(v)

f(v)
> 0 for v ∈ R \ {1}

holds. Since q > 2, we get

lim
v→1

g(v)

f(v)
= lim

v→1

qϕq(v − 1)

ϕq(v) − 1
= lim

v→1

q|v − 1|q−2

|v|q−2
= 0.

In addition, we have

lim
v→±∞

g(v)

f(v)
= lim

v→±∞
|v−1 − 1|q

q−1 − ϕ−1
q (v) + p−1|v|−q

= q.

Hence, we see that the function g(v)/f(v) is bounded from above. Let

ε0 =
1

sup{g(v)/f(v) : v ∈ R} 6
1

q
.
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Then we get

F
(

1,
v

ϕp(u)

)

> ε0

∣

∣

∣
1− v

ϕp(u)

∣

∣

∣

q

.

Multiplying this inequality by |u|p = |ϕp(u)|q, we obtain inequality (2.2).
Next, we prove the assertion (ii) with p > 2 and u 6= 0. Since p > 2 and f(v) > 0

for v ∈ R, we see that

g(v)

f(v) + (p− 2)p−1
> 0 for v ∈ R,

where f and g are the functions given in the previous part. In addition, we obtain

lim
v→1

g(v)

f(v) + (p− 2)p−1
= 0

and

lim
v→±∞

g(v)

f(v) + (p− 2)p−1
= lim

v→±∞
|v−1 − 1|q

q−1 − ϕ−1
q (v) + q−1|v|−q

= q.

Hence, we see that the function g(v)/(f(v)+(p−2)p−1) is bounded from above. Let

ε0 =
1

sup{g(v)/(f(v) + (p− 2)p−1) : v ∈ R} 6
1

q
.

Then we have

F
(

1,
v

ϕp(u)

)

+
p− 2

p
> ε0

∣

∣

∣
1− v

ϕp(u)

∣

∣

∣

q

.

Multiplying this inequality by |ϕp(u)|q, we get inequality (2.3). This completes the
proof of Theorem 2.1. �

3. Proof of the main theorem

In this section we present the proof of the main theorem. The method of the proof

is based on the undamped linear case in [1], pages 40–42.

P r o o f of Theorem 1.1. The proof is by contradiction. Suppose that (1.1)

has a nontrivial non-oscillatory solution x(t). We may assume without loss of

generality that there exists a t1 > max{0, t0} such that x(t) > 0 for t > t1,

because the function −x(t) is also a solution of (1.1). Define a function r(t) =

a(t)ϕp(x
′(t)/x(t)). Note that the function ϕq is the inverse function of ϕp. Since
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x′(t)/x(t) = ϕq(r(t)/a(t)) and 1/p+ 1/q = 1, we have

r′(t) = −(p− 1)a(t)
∣

∣

∣

x′(t)

x(t)

∣

∣

∣

p

− b(t)ϕp

(x′(t)

x(t)

)

− c(t)

= −(p− 1)a(t)
∣

∣

∣

r(t)

a(t)

∣

∣

∣

q

− b(t)
r(t)

a(t)
− c(t)

= −pa1−q(t)
( |r(t)|q

q
+
aq−2(t)b(t)

p
r(t)

)

− c(t)

= −pa1−q(t)F
(aq−2(t)b(t)

p
,−r(t)

)

+ λpa
1−p(t)

∣

∣

∣

b(t)

p

∣

∣

∣

p

− c(t)

for t > t1, where F (u, v) is the function given by (2.1). Let

w(t) = a2−p(t)ϕp

(b(t)

p

)

+ r(t);

it follows from Theorem 2.1 that

r′(t) 6 −pε0a1−q(t)
∣

∣

∣
ϕp

(aq−2(t)b(t)

p

)

+ r(t)
∣

∣

∣

q

+ λpa
1−p(t)

∣

∣

∣

b(t)

p

∣

∣

∣

p

− c(t)

= −pε0a1−q(t)|w(t)|q + λpa
1−p(t)

∣

∣

∣

b(t)

p

∣

∣

∣

p

− c(t)

for t > t1. Therefore, we get a generalized Riccati inequality

w′(t) = r′(t) +
(

a2−p(t)ϕp

(b(t)

p

))′
6 −pε0a1−q(t)|w(t)|q − ψ(t)

for t > t1, where

ψ(t) = c(t)− λpa
1−p(t)

∣

∣

∣

b(t)

p

∣

∣

∣

p

−
(

a2−p(t)ϕp

(b(t)

p

))′
.

Integrating twice the above inequality from t1 to t > t1, we obtain

∫ t

t1

w(s) ds− w(t1)(t− t1) 6 −pε0
∫ t

t1

∫ s

t1

a1−q(τ)|w(τ)|q dτ ds−
∫ t

t1

∫ s

t1

ψ(τ) dτ ds

for t > t1. Hence, we have

(3.1)

∫ t

t1

w(s) ds+ pε0

∫ t

t1

∫ s

t1

a1−q(τ)|w(τ)|q dτ ds

6 −t1w(t1) + t

(

w(t1)−
1

t

∫ t

t1

∫ s

t1

ψ(τ) dτ ds

)
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for t > t1. Taking into account that

1

t

∫ t

t1

∫ s

t1

ψ(τ) dτ ds =
1

t

(
∫ t

t0

∫ s

t1

ψ(τ) dτ ds−
∫ t1

t0

∫ s

t1

ψ(τ) dτ ds

)

=
1

t

∫ t

t0

∫ s

t0

ψ(τ) dτ ds− t− t0
t

∫ t1

t0

ψ(τ) dτ − 1

t

∫ t1

t0

∫ s

t1

ψ(τ) dτ ds

for t > t1, from (1.11) and (3.1) we can choose a t2 > t1 such that

∫ t

t1

w(s) ds+ pε0

∫ t

t1

∫ s

t1

a1−q(τ)|w(τ)|q dτ ds < 0 for t > t2.

Let

R(t) = pε0

∫ t

t1

∫ s

t1

a1−q(τ)|w(τ)|q dτ ds > 0 for t > t2.

Then we have

0 6 R(t) < −
∫ t

t1

w(s) ds 6

∣

∣

∣

∣

∫ t

t1

w(s) ds

∣

∣

∣

∣

6

∫ t

t1

|w(s)| ds for t > t2.

Using Hölder’s inequality, we obtain

0 6 Rq(t) <

(
∫ t

t1

|w(s)| ds
)q

6

{(
∫ t

t1

|w(s)|q
aq−1(s)

ds

)1/q(∫ t

t1

a(s) ds

)1/p}q

=
R′(t)

pε0

(
∫ t

t1

a(s) ds

)q−1

for t > t2. Since
(∫ t

t1
a(s) ds

)q−1
is positive for t > t2, we see that R

′(t) is also

positive for t > t2. For this reason, we can find a t3 > t2 such that R(t) is positive

for t > t3. Thus, we get

(3.2)

∫ t

t3

(
∫ s

t1

a(τ) dτ

)1−q

ds 6
1

pε0

∫ t

t3

R−q(s)R′(s) ds <
1

qε0
R1−q(t3)

for t > t3. From (1.9) it follows that the left-hand side of (3.2) diverges to infinity

as t→ ∞, which contradicts the fact that the right-hand side of (3.2) is finite. This
completes the proof of Theorem 1.1. �

764



4. Examples

To illustrate our main theorem, we give two examples. For the sake of simplicity,

let

ψ(t) = c(t)− λpa
1−p(t)

∣

∣

∣

b(t)

p

∣

∣

∣

p

−
(

a2−p(t)ϕp

(b(t)

p

))′
.

Example 4.1. Consider the damped half-linear oscillator

(4.1) ((p− 1) tp−2ϕp(x
′))′ +

1

t
ϕp(x

′) + ϕp(x) = 0

for t > 1. Then all nontrivial solutions of (4.1) are oscillatory. Moreover, in the case

that p = 2, we cannot use Corollaries 1.1, 1.3 and 1.5.

Since p > 1 and a(t) = (p− 1) tp−2, we have

(
∫ t

1

a(s) ds

)1/(1−p)

= (tp−1 − 1)1/(1−p) >
1

t

for t > 1. From this inequality, we can estimate that

lim
t→∞

∫ t

2

(
∫ s

1

a(τ) dτ

)1/(1−p)

ds = ∞.

Hence, condition (1.9) holds. Since p > 1, a(t) = (p−1)tp−2, b(t) = 1/t and c(t) = 1,

we have

ψ(t) = 1− λpt
(1−p)(p−2)−p

pp(p− 1)p−1
+

{(p− 2)2 + p− 1}(p− 1)2−pt−(p−2)2−p

pp−1
> 1− c1

t

for t > 1, where c1 is a positive number satisfying

c1 =
λp

pp(p− 1)p−1
.

Consequently, we get

1

t

∫ t

1

∫ s

1

ψ(τ) dτ ds >
1

t

{ (t− 1)2

2
− c1(t log t− t+ 1)

}

= t
{ (1− t−1)2

2
− c1

( log t

t
− 1

t
+

1

t2

)}

for t > 1. From this inequality we can easily see that condition (1.11) holds. Thus, by

using Theorem 1.1, we conclude that all nontrivial solutions of (4.1) are oscillatory.

In the case that p = 2, (4.1) becomes the damped linear oscillator

x′′ +
1

t
x′ + x = 0.

We have already shown that condition (1.5) does not hold in Section 1.
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Finally, we take the other example which is very delicate.

Example 4.2. Consider the damped half-linear oscillator

(4.2) ((p− 1)tp−2ϕp(x
′))′ + pt−p2+5p−7+1/pϕp(x

′) +
(1

t
− 1

2t
√
t

)

ϕp(x) = 0

for t > 1. Then all nontrivial solutions of (4.2) are oscillatory if and only if p 6= 2.

Moreover, in the case that 1 < p < 1
2 (3+

√
5), we cannot use Corollaries 1.3 and 1.5.

If p = 2, then equation (4.2) becomes the damped linear oscillator

x′′ +
2√
t
x′ +

(1

t
− 1

2t
√
t

)

x = 0

for t > 1. It is easy to see that the function x(t) = e−2
√
t is a nontrivial solution of

this equation. That is, (4.2) has a non-oscillatory solution when p = 2.

Since a(t) is the same as in Example 4.1, condition (1.9) holds. From p > 1,

a(t) = (p− 1)tp−2, b(t) = pt−p2+5p−7+1/p and c(t) = t−1 − 1
2 t

−3/2, we have

ψ(t) = t−1 − t−3/2

2
− λpt

−p(p−2)2−1

(p− 1)p−1
− (p− 1)2−p(t−(p−1)(p−2)2−1/p)′.

Integrating both sides of this equality from 1 to t > 1 and using p 6= 2, we obtain

∫ t

1

ψ(s) ds = log t+
1√
t
− 1 +

λp(t
−p(p−2)2 − 1)

p(p− 2)2(p− 1)p−1

− (p− 1)2−p(t−(p−1)(p−2)2−1/p − 1) > log t− c2

for t > 1, where c2 is a positive number satisfying

c2 = 1+
λp

p(p− 2)2(p− 1)p−1
.

Therefore, we get

1

t

∫ t

1

∫ s

1

ψ(τ) dτ ds >
1

t
(t log t− t− c2t+ 1 + c2) = log t− 1− c2 +

1 + c2
t

for t > 1. From this inequality, we can estimate that

lim
t→∞

1

t

∫ t

1

∫ s

1

ψ(τ) dτ ds = ∞.

Hence, condition (1.11) holds. Thus, by virtue of Theorem 1.1, we conclude that all

nontrivial solutions of (4.2) are oscillatory.
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Next, we will show that condition (1.10) in Corollaries 1.3 and 1.5 does not hold

when 1 < p < 1
2 (3 +

√
5). Suppose that 1 < p < 1

2 (3 +
√
5). From p > 1, a(t) =

(p− 1)tp−2 and b(t) = pt−p2+5p−7+1/p, we have

(4.3)
b(t)

a(t)
=

p

p− 1
t−p2+4p−5+1/p =

p

p− 1
th(p)/p−1,

where h(p) = −p(p − 2)2 + 1. Note here that the equation h(p) = 0 has three real

roots

p = 1,
3±

√
5

2
.

Moreover, we can easily see that h(p) is increasing for 1 < p < 2 and decreasing for

2 < p < 1
2 (3 +

√
5). Thus, we obtain

(4.4) 0 < h(p) 6 1 for 1 < p <
3 +

√
5

2
.

From this inequality and p > 1 we get

p2 − (p− 1)h(p) >
(

p− 1

2

)2

+
3

4
> 0 for 1 < p <

3 +
√
5

2
,

and
∫ τ

1

b(σ)

a(σ)
dσ =

p2

(p− 1)h(p)
(τh(p)/p − 1) > 0 for τ > 1.

Using these inequalities, (4.4) and the Taylor series expansion of the exponential

function, we can estimate that

exp

(
∫ τ

1

b(σ)

a(σ)
dσ

)

> 1 +
p2

(p− 1)h(p)
(τh(p)/p − 1)

=
p2

(p− 1)h(p)

{

τh(p)/p − p2 − (p− 1)h(p)

p2

}

=
p2

(p− 1)h(p)

{

1− p2 − (p− 1)h(p)

p2
τ−h(p)/p

}

τh(p)/p > τh(p)/p

for τ > 1. Multiplying this inequality by a(τ) and integrating both sides from 1 to

s > 1, we have

∫ s

1

a(τ) exp

(
∫ τ

1

b(σ)

a(σ)
dσ

)

dτ > (p− 1)

∫ s

1

τp−2+h(p)/p dτ

=
(p− 1)(sp−1+h(p)/p − 1)

p− 1 + h(p)p−1
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for s > 1. Since the right-hand side of this inequality is positive for s > 2 and

1/(1− p) is negative, it follows that

(
∫ s

1

a(τ) exp

(
∫ τ

1

b(σ)

a(σ)
dσ

)

dτ

)1/(1−p)

6

{ (p− 1)(sp−1+h(p)/p − 1)

p− 1 + h(p)p−1

}−1/(p−1)

6 H(p)s−1−h(p)/{p(p−1)}

for s > 2, where

H(p) =
{ (p− 1)(1− 2−(p−1+h(p)/p))

p− 1 + h(p)p−1

}−1/(p−1)

> 0.

Therefore, we obtain

∫ t

2

(
∫ s

1

a(τ) exp

(
∫ τ

1

b(σ)

a(σ)
dσ

)

dτ

)1/(1−p)

ds <
p(p− 1)H(p)

h(p)
2−h(p)/{p(p−1)}

for t > 2. This means that (1.10) in Corollaries 1.3 and 1.5 does not hold when

1 < p < 1
2 (3 +

√
5).
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