A NEW PROOF OF THE q-DIXON IDENTITY

Victor J. W. Guo, Huai'an

Received February 2, 2017. First published April 16, 2018.

Abstract. We give a new and elementary proof of Jackson's terminating q-analogue of Dixon's identity by using recurrences and induction.

Keywords: q-binomial coefficient; q-Dixon identity; recurrence
MSC 2010: 05A30

1. Introduction

Jackson's terminating q-analogue of Dixon's identity [2], [8]:

$$
\sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{l}
a+b \tag{1.1}\\
a+k
\end{array}\right]\left[\begin{array}{l}
b+c \\
b+k
\end{array}\right]\left[\begin{array}{c}
c+a \\
c+k
\end{array}\right]=\left[\begin{array}{c}
a+b+c \\
a+b
\end{array}\right]\left[\begin{array}{c}
a+b \\
a
\end{array}\right]
$$

where the q-binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]= \begin{cases}\frac{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{k}\right)(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n-k}\right)} & \text { if } 0 \leqslant k \leqslant n \\
0 & \text { otherwise }\end{cases}
$$

is an important identity in combinatorics and number theory. Note that Dixon's identity (see [8], [12], page 43, equation (IV), or [9], page 11, equation (2.6)) is the $q=1$ case of (1.1). Several short proofs of the Dixon or q-Dixon identity can be found in [4], [5], [6], [7]. The q-Dixon identity can also be deduced from the q-Pfaff-Saalschütz identity (see [7], [13]).

This work was partially sponsored by the Natural Science Foundation of Jiangsu Province (grant BK20161304), and the Qing Lan Project of Education Committee of Jiangsu Province.

Recently, Mikić [10], [11] gave an elementary proof of Dixon's identity and some other binomial coefficient identities by using recurrences and induction. The aim of this note is to give a new proof of (1.1) by generalizing the argument of [10], [11].

2. Proof of (1.1)

For any integer n let $[n]=\left(1-q^{n}\right) /(1-q)$. Denote the left-hand side of (1.1) by $S(a, b, c)$. We introduce two auxiliary sums as follows:

$$
\begin{align*}
& P(a, b, c):=\sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}[a-k][a+k]\left[\begin{array}{l}
a+b \\
a+k
\end{array}\right]\left[\begin{array}{l}
b+c \\
b+k
\end{array}\right]\left[\begin{array}{l}
c+a \\
c+k
\end{array}\right], \tag{2.1}\\
& Q(a, b, c):=\sum_{k=-a}^{a}(-1)^{k} q^{3\left(k^{2}+k\right) / 2}[b-k][b+k]\left[\begin{array}{l}
a+b \\
a+k
\end{array}\right]\left[\begin{array}{l}
b+c \\
b+k
\end{array}\right]\left[\begin{array}{l}
c+a \\
c+k
\end{array}\right] . \tag{2.2}
\end{align*}
$$

It is easy to see that $[k]\left[\begin{array}{l}n \\ k\end{array}\right]=[n]\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]$, and so for $a, b, c \geqslant 1$,

$$
\begin{align*}
P(a, b, c) & =[a+b][a+c] \sum_{k=-a+1}^{a-1}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{l}
a-1+b \\
a-1+k
\end{array}\right]\left[\begin{array}{c}
b+c \\
b+k
\end{array}\right]\left[\begin{array}{c}
c+a-1 \\
c+k
\end{array}\right] \tag{2.3}\\
& =[a+b][a+c] S(a-1, b, c) .
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
Q(a, b, c)=[a+b][b+c] S(a, b-1, c) \tag{2.4}
\end{equation*}
$$

It follows from (2.1) and (2.2) that

$$
\begin{equation*}
P(a, b, c)-Q(a, b, c) q^{a-b}=[a+b][a-b] S(a, b, c) \tag{2.5}
\end{equation*}
$$

If $a \neq b$, then from (2.3)-(2.5) we deduce that

$$
\begin{equation*}
S(a, b, c)=\frac{1}{[a-b]}\left([a+c] S(a-1, b, c)-[b+c] S(a, b-1, c) q^{a-b}\right) \tag{2.6}
\end{equation*}
$$

We need to consider the case when $a=b=c$, separately. Noticing the well known relations (see, for example [1], equations (3.3.3) and (3.3.4))

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] q^{k}+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]=\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] q^{n-k}
$$

we have

$$
\begin{align*}
S(a, a, a)= & \sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left(\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right] q^{a+k}+\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right]\right) \tag{2.7}\\
& \times\left(\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]+\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right] q^{a-k}\right)^{2} \\
= & \sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left(\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]^{3} q^{a+k}+\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right]^{3} q^{2 a-2 k}\right. \\
& \left.+\left[\begin{array}{c}
2 a \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right]\left(1+q^{a-k}+q^{2 a}\right)\right) .
\end{align*}
$$

By the symmetry of q-binomial coefficients, it is clear that

$$
\begin{aligned}
\sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]^{3} q^{k} & =\sum_{k=-a}^{a-1}(-1)^{k} q^{\left(3 k^{2}+3 k\right) / 2}\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]^{3}=0, \\
\sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right]^{3} q^{-2 k} & =\sum_{k=-a+1}^{a}(-1)^{k} q^{\left(3 k^{2}-3 k\right) / 2}\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right]^{3}=0,
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{k=-a}^{a}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2}\left[\begin{array}{c}
2 a \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right] q^{a-k} \\
&=\sum_{k=1-a}^{a-1}(-1)^{k} q^{3 k^{2}-k / 2}\left[\begin{array}{c}
2 a \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 a-1 \\
a+k
\end{array}\right]\left[\begin{array}{c}
2 a-1 \\
a+k-1
\end{array}\right] q^{a}=q^{a} S(a, a, a-1) .
\end{aligned}
$$

Therefore the identity (2.7) implies that

$$
\begin{equation*}
S(a, a, a)=\left(1+q^{a}+q^{2 a}\right) S(a, a, a-1) . \tag{2.8}
\end{equation*}
$$

We now give a proof of (1.1) by induction on $a+b+c$. It is clear that (1.1) is true for $a=b=c=1$. Assume that (1.1) holds for all non-negative integers a, b and c with $a+b+c=n$. Let a, b and c be non-negative integers satisfying $a+b+c=n+1$. We consider three cases:
\triangleright If at least one of the numbers a, b and c is equal to 0 , then (1.1) is obviously true. \triangleright If $a=b=c$, then by the induction hypothesis we have

$$
S(a, a, a-1)=\left[\begin{array}{c}
3 a-1 \\
2 a
\end{array}\right]\left[\begin{array}{c}
2 a \\
a
\end{array}\right] .
$$

Therefore by (2.8) we obtain

$$
S(a, a, a)=\left(1+q^{a}+q^{2 a}\right)\left[\begin{array}{c}
3 a-1 \\
2 a
\end{array}\right]\left[\begin{array}{c}
2 a \\
a
\end{array}\right]=\left[\begin{array}{c}
3 a \\
2 a
\end{array}\right]\left[\begin{array}{c}
2 a \\
a
\end{array}\right] .
$$

\triangleright If $a \neq b$, then by (2.6) and the induction hypothesis we get

$$
\begin{aligned}
S(a, b, c)= & \frac{[a+c]}{[a-b]}\left[\begin{array}{c}
a+b+c-1 \\
a+b-1
\end{array}\right]\left[\begin{array}{c}
a+b-1 \\
a-1
\end{array}\right] \\
& -\frac{[b+c]}{[a-b]}\left[\begin{array}{c}
a+b+c-1 \\
a+b-1
\end{array}\right]\left[\begin{array}{c}
a+b-1 \\
a
\end{array}\right] q^{a-b} \\
= & {\left[\begin{array}{c}
a+b+c \\
a+b
\end{array}\right]\left[\begin{array}{c}
a+b \\
a
\end{array}\right] }
\end{aligned}
$$

as desired. If $a=b$, then $a \neq c$, and we can proceed similarly as before by noticing the symmetry of a, b and c in $S(a, b, c)$.

Hence, (1.1) holds for $a+b+c=n+1$, and by induction, it holds for all non-negative integers a, b and c.

References

[1] G. E. Andrews: The Theory of Partitions. Cambridge University Press, Cambridge, 1998.
[2] W. N. Bailey: A note on certain q-identities. Q. J. Math., Oxf. Ser. 12 (1941), 173-175.
[3] A. C. Dixon: Summation of a certain series. London M. S. Proc. 35 (1903), 284-289.
[3] A. C. Dixon: Summation of a certain series. London M. S. Proc. 35 (1903), 284-289.
[4] S. B. Ekhad: A very short proof of Dixon's theorem. J. Comb. Theory, Ser. A 54 (1990), 141-142.
zbl MR
zbl MR doi
[5] I. Gessel, D. Stanton: Short proofs of Saalschütz and Dixon's theorems. J. Comb. Theory Ser. A 38 (1985), 87-90.
[6] V. J. W. Guo: A simple proof of Dixon's identity. Discrete Math. 268 (2003), 309-310.
[7] V. J. W. Guo, J. Zeng: A short proof of the q-Dixon identity. Discrete Math. 296 (2005), 259-261.
[8] F. H. Jackson: Certain q-identities. Q. J. Math., Oxford Ser. 12 (1941), 167-172.
zbl MR doi
[9] W. Koepf: Hypergeometric Summation-An Algorithmic Approach to Summation and Special Function Identities. Universitext, Springer, London, 2014.
zbl MR doi
[10] J. Mikić: A proof of a famous identity concerning the convolution of the central binomial coefficients. J. Integer Seq. 19 (2016), Article ID 16.6.6, 10 pages.
zbl MR doi
[11] J. Mikić: A proof of Dixon's identity. J. Integer Seq. 19 (2016), Article ID 16.5.3, 5 pages. Zbl MR
[12] M. Petkovšek, H.S. Wilf, D. Zeilberger: A = B. With foreword by Donald E. Knuth. A. K. Peters, Wellesley, 1996.
[13] D. Zeilberger: A q-Foata proof of the q-Saalschütz identity. Eur. J. Comb. 8 (1987), 461-463.

Zbl MR doi
Authors' addresses: Victor J. W. Guo, School of Mathematical Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu, P. R. China, e-mail: jwguo@hytc.edu.cn.

