LIBERA AND HILBERT MATRIX OPERATOR ON LOGARITHMICALLY WEIGHTED BERGMAN, BLOCH AND HARDY-BLOCH SPACES

BOBAN KARAPETROVIĆ, Belgrade

Received October 23, 2016. First published March 6, 2018.

Abstract. We show that if $\alpha > 1$, then the logarithmically weighted Bergman space $A_{\log^{\alpha}}^2$ is mapped by the Libera operator \mathcal{L} into the space $A_{\log^{\alpha-1}}^2$, while if $\alpha > 2$ and $0 < \varepsilon \leqslant \alpha - 2$, then the Hilbert matrix operator H maps $A_{\log^{\alpha}}^2$ into $A_{\log^{\alpha-2-\varepsilon}}^2$.

We show that the Libera operator \mathcal{L} maps the logarithmically weighted Bloch space $\mathcal{B}_{\log^{\alpha}}$, $\alpha \in \mathbb{R}$, into itself, while H maps $\mathcal{B}_{\log^{\alpha}}$ into $\mathcal{B}_{\log^{\alpha+1}}$.

In Pavlović's paper (2016) it is shown that \mathcal{L} maps the logarithmically weighted Hardy-Bloch space $\mathcal{B}^{1}_{\log^{\alpha}}$, $\alpha > 0$, into $\mathcal{B}^{1}_{\log^{\alpha-1}}$. We show that this result is sharp. We also show that H maps $\mathcal{B}^{1}_{\log^{\alpha}}$, $\alpha \ge 0$, into $\mathcal{B}^{1}_{\log^{\alpha-1}}$ and that this result is sharp also.

Keywords: Libera operator; Hilbert matrix operator; Hardy space; Bergman space; Bloch space; Hardy-Bloch space

MSC 2010: 47B38, 47G10, 30H25

1. INTRODUCTION

We consider the action of the Libera and Hilbert matrix operators on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces.

We show that if $\alpha > 1$, then the logarithmically weighted Bergman space $A_{\log^{\alpha}}^2$ is mapped by the Libera operator \mathcal{L} into the space $A_{\log^{\alpha-1}}^2$. In [4] it is shown that if $f \in A_{\log^{\alpha}}^2$, where $\alpha > 3$, then $Hf \in A^2$. Here H is the Hilbert matrix operator. Also, in [1] it is shown that $H: A_{\log^{\alpha}}^2 \to A^2$ for $\alpha > 2$. We improve this result by showing that if $\alpha > 2$ and $0 < \varepsilon \leq \alpha - 2$, then H is well defined on $A_{\log^{\alpha}}^2$ and maps this space into $A_{\log^{\alpha-2-\varepsilon}}^2$.

The research has been supported by NTR Serbia, Project ON174032.

We show that the Libera operator \mathcal{L} maps the logarithmically weighted Bloch space $\mathcal{B}_{\log^{\alpha}}$, $\alpha \in \mathbb{R}$, into itself, while H maps $\mathcal{B}_{\log^{\alpha}}$ into $\mathcal{B}_{\log^{\alpha+1}}$.

In [8] it is shown that \mathcal{L} maps the logarithmically weighted Hardy-Bloch space $\mathcal{B}^{1}_{\log^{\alpha}}$, $\alpha > 0$, into $\mathcal{B}^{1}_{\log^{\alpha-1}}$. We note that this result is sharp. Our main results are given in Theorem 5.3. Among other things, we show that H maps $\mathcal{B}^{1}_{\log^{\alpha}}$, $\alpha \ge 0$, into $\mathcal{B}^{1}_{\log^{\alpha-1}}$ and that this result is sharp.

The definitions of logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces will be given in Sections 3, 4 and 5, respectively.

For $0 , Hardy space <math>H^p$ is the space of all functions f holomorphic in the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ for which

$$||f||_{H^p} = ||f||_p = \sup_{0 \le r < 1} M_p(r, f) < \infty,$$

where

$$M_p(r, f) = \left(\frac{1}{2\pi} \int_0^{2\pi} \left| f(r e^{it}) \right|^p dt \right)^{1/p} \quad \text{if } 0$$

and

$$M_{\infty}(r, f) = \sup_{0 \leqslant t < 2\pi} |f(r \mathrm{e}^{\mathrm{i}t})|.$$

The Lebesgue measure on \mathbb{D} will be denoted by A and will be normalized so as to have $A(\mathbb{D}) = 1$. That is,

$$\mathrm{d}A(z) = \frac{1}{\pi} \,\mathrm{d}x \,\mathrm{d}y = \frac{1}{\pi} r \,\mathrm{d}r \,\mathrm{d}t, \qquad \text{where} \quad z = x + \mathrm{i}y = r \mathrm{e}^{\mathrm{i}t}$$

The Bergman space A^p , $0 , is the space of holomorphic functions in <math>L^p(\mathbb{D}, dA)$, that is,

$$A^{p} = \bigg\{ f \in \mathcal{H}(\mathbb{D}) \colon \|f\|_{A^{p}}^{p} = \int_{\mathbb{D}} |f(z)|^{p} \, \mathrm{d}A(z) < \infty \bigg\}.$$

A function f holomorphic in the unit disk \mathbb{D} belongs to the Hardy-Bloch space $\mathcal{B}_0^{p,q}$, $0 , <math>0 < q \leq \infty$ (notation from [7]) if

$$\int_0^1 M_p^q(r,f')(1-r)^{q-1} \,\mathrm{d} r < \infty \quad \text{for } 0 < q < \infty,$$

and

$$\sup_{0 \leqslant r < 1} (1 - r) M_p(r, f') < \infty \quad \text{for } q = \infty.$$

Let $\mathcal{H}(\mathbb{D})$ denote the space of all functions holomorphic in the unit disk \mathbb{D} of the complex plane endowed with the topology of uniform convergence on compact

subsets of \mathbb{D} . The dual of $\mathcal{H}(\mathbb{D})$ is equal to $\mathcal{H}(\overline{\mathbb{D}})$, where $q \in \mathcal{H}(\overline{\mathbb{D}})$ means that q is holomorphic in a neighborhood of $\overline{\mathbb{D}}$ (depending on q). The duality pairing is given by

$$\langle f,g\rangle = \sum_{n=0}^{\infty} \widehat{f}(n)\overline{\widehat{g}(n)},$$

where $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n \in \mathcal{H}(\mathbb{D})$ and $g(z) = \sum_{n=0}^{\infty} \widehat{g}(n) z^n \in \mathcal{H}(\overline{\mathbb{D}}).$ It is easy to see that the Libera operator defined by

$$\overline{\mathcal{L}}g(z) = \sum_{n=0}^{\infty} \left(\sum_{k=n}^{\infty} \frac{\widehat{g}(k)}{k+1}\right) z^n = \int_0^1 g(t+(1-t)z) \, \mathrm{d}t,$$
$$g(z) = \sum_{n=0}^{\infty} \widehat{g}(n) z^n \in \mathcal{H}(\overline{\mathbb{D}})$$

maps $\mathcal{H}(\overline{\mathbb{D}})$ into $\mathcal{H}(\overline{\mathbb{D}})$.

We denote by \mathcal{L} the operator

$$\mathcal{L}g(z) = \int_0^1 g(t + (1 - t)z) \, \mathrm{d}t$$
$$g(z) = \sum_{n=0}^\infty \widehat{g}(n) z^n \in \mathcal{H}(\mathbb{D}),$$

whenever the integral converges uniformly on compact subsets of \mathbb{D} . Uniform convergence means that the limit

$$\lim_{r \to 1^{-}} \int_{0}^{r} g(t + (1 - t)z) \,\mathrm{d}t$$

is uniform with respect to z in any compact subset of \mathbb{D} . This hypothesis guarantees that $\mathcal{L}g$ is a holomorphic function in \mathbb{D} . We call \mathcal{L} also the Libera operator since $\mathcal{L} = \overline{\mathcal{L}} \text{ on } \mathcal{H}(\overline{\mathbb{D}}).$

The Hilbert matrix is an infinite matrix $H = [h_{n,k}]_{n,k=0}^{\infty}$ whose entries are $h_{n,k} =$ 1/(n+k+1) for all nonnegative integers n and k. It can be viewed as an operator on spaces of holomorphic functions by its action on their Taylor coefficients. If

$$f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n$$

is a holomorphic function in the unit disk \mathbb{D} , then we define the transformation H by

$$Hf(z) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} h_{n,k} \widehat{f}(k) z^n = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\widehat{f}(k)}{n+k+1} z^n.$$

It is possible to write Hf, $f \in H^p$, $1 \leq p \leq \infty$, in an integral form, which is quite convenient for analyzing the operator. More specifically, by looking at the Taylor series expansion of the function f, we have the following integral representation:

$$Hf(z) = \int_0^1 \frac{f(t)}{1 - tz} \,\mathrm{d}t.$$

It is well known that the Libera operator \mathcal{L} acts as a bounded operator from H^p into H^p if and only if $1 and that <math>\mathcal{L}$ acts as a bounded operator from A^p into A^p if and only if 2 (see [2], [6]). On the other hand, it is well knownthat the Hilbert matrix operator <math>H acts as a bounded operator from H^p into H^p if and only if 1 and that <math>H acts as a bounded operator from A^p into A^p if and only if 2 (see [3]).

2. Some preliminary results

In this section we shall collect some results which will be needed in our work. We start with one useful result.

Sublemma 2.1. Let $\alpha \in \mathbb{R}$ and $a \ge 2$. Then

$$\int_{\log a}^{\infty} t^{\alpha} \mathrm{e}^{-t} \, \mathrm{d}t \leqslant C_{\alpha} \frac{\log^{\alpha} a}{a},$$

where C_{α} is a constant independent of a.

Proof. (1) Case $\alpha \leq 0$.

$$\int_{\log a}^{\infty} t^{\alpha} e^{-t} dt \leq \log^{\alpha} a \int_{\log a}^{\infty} e^{-t} dt = \frac{\log^{\alpha} a}{a}.$$

(2) Case $\alpha > 0$. In this case, partial integration gives

$$\int_{\log a}^{\infty} t^{\alpha} e^{-t} dt = \frac{\log^{\alpha} a}{a} + \alpha \int_{\log a}^{\infty} t^{\alpha - 1} e^{-t} dt$$
$$= \frac{\log^{\alpha} a}{a} + \alpha \frac{\log^{\alpha - 1} a}{a} + \alpha(\alpha - 1) \int_{\log a}^{\infty} t^{\alpha - 2} e^{-t} dt$$
$$\leqslant C_{\alpha} \frac{\log^{\alpha} a}{a} + \alpha(\alpha - 1) \int_{\log a}^{\infty} t^{\alpha - 2} e^{-t} dt.$$

Continuing on this way, we find that

$$\int_{\log a}^{\infty} t^{\alpha} e^{-t} dt \leqslant C_{\alpha} \frac{\log^{\alpha} a}{a} + \alpha(\alpha - 1) \dots (\alpha - \lfloor \alpha \rfloor) \int_{\log a}^{\infty} t^{\alpha - \lfloor \alpha \rfloor - 1} e^{-t} dt$$
$$\leqslant C_{\alpha} \frac{\log^{\alpha} a}{a} + \alpha(\alpha - 1) \dots (\alpha - \lfloor \alpha \rfloor) \frac{\log^{\alpha - \lfloor \alpha \rfloor - 1} a}{a}$$
$$\leqslant C_{\alpha} \frac{\log^{\alpha} a}{a},$$

where $|\alpha|$ is the largest integer less then or equal to α .

Consequently, we get the following result.

Lemma 2.2. Let $\alpha \in \mathbb{R}$ and let *n* be a nonnegative integer. Then

$$\int_0^1 r^n \log^\alpha \frac{2}{1-r} \,\mathrm{d}r \asymp \frac{\log^\alpha (n+2)}{n+1},$$

where the corresponding constant is independent of n, i.e., there is a constant C_{α} independent of n such that

$$\frac{1}{C_{\alpha}}\frac{\log^{\alpha}(n+2)}{n+1} \leqslant \int_{0}^{1} r^{n} \log^{\alpha} \frac{2}{1-r} \,\mathrm{d}r \leqslant C_{\alpha} \frac{\log^{\alpha}(n+2)}{n+1}.$$

Proof. (1) Case $\alpha \ge 0$. First, we find that

$$\begin{split} \int_{0}^{1} r^{n} \log^{\alpha} \frac{2}{1-r} \, \mathrm{d}r &\geqslant \int_{1-1/(n+1)}^{1} r^{n} \log^{\alpha} \frac{2}{1-r} \, \mathrm{d}r \\ &\geqslant \log^{\alpha}(n+2) \int_{1-1/(n+1)}^{1} r^{n} \, \mathrm{d}r \\ &= \frac{\log^{\alpha}(n+2)}{n+1} \Big(1 - \Big(1 - \frac{1}{n+1} \Big)^{n+1} \Big) \\ &\geqslant C \frac{\log^{\alpha}(n+2)}{n+1}. \end{split}$$

On the other hand, by using Sublemma 2.1, we have that

$$\int_{1-1/(n+1)}^{1} r^n \log^\alpha \frac{2}{1-r} \, \mathrm{d}r \leqslant \int_{1-1/(n+1)}^{1} \log^\alpha \frac{2}{1-r} \, \mathrm{d}r$$
$$= 2 \int_{\log(2n+2)}^{\infty} t^\alpha \mathrm{e}^{-t} \, \mathrm{d}t$$
$$\leqslant 2 \int_{\log(n+2)}^{\infty} t^\alpha \mathrm{e}^{-t} \, \mathrm{d}t$$
$$\leqslant C_\alpha \frac{\log^\alpha(n+2)}{n+1},$$

563

and

$$\int_{0}^{1-1/(n+1)} r^{n} \log^{\alpha} \frac{2}{1-r} \, \mathrm{d}r \leqslant C_{\alpha} \log^{\alpha}(n+2) \int_{0}^{1-1/(n+1)} r^{n} \, \mathrm{d}r$$
$$= C_{\alpha} \frac{\log^{\alpha}(n+2)}{n+1} \left(1 - \frac{1}{n+1}\right)^{n+1}$$
$$\leqslant C_{\alpha} \frac{\log^{\alpha}(n+2)}{n+1}.$$

Therefore,

$$\int_0^1 r^n \log^\alpha \frac{2}{1-r} \, \mathrm{d}r \leqslant C_\alpha \frac{\log^\alpha (n+2)}{n+1}$$

(2) Case $\alpha < 0$. Let $\varphi(r) = r \log^{\alpha}(2/r)$, $0 < r \leq 1$. Then φ is a nonnegative, increasing function on the interval (0, 1] and

$$t^{1-2\alpha}\varphi(r) \leqslant \varphi(tr) \leqslant t\varphi(r)$$

for all 0 < t < 1. By using Lemma 4.1 in [5], we find that

$$\int_0^1 r^n \frac{\varphi(1-r)}{1-r} \,\mathrm{d}r \asymp \varphi\left(\frac{1}{n+1}\right).$$

Hence,

$$\int_0^1 r^n \log^\alpha \frac{2}{1-r} \,\mathrm{d}r \asymp \frac{\log^\alpha (n+2)}{n+1}.$$

The following auxiliary result will be useful.

Theorem 2.3. (a) For every real α , the Taylor coefficients $\widehat{F}(n)$ of the function

$$F(z) = \frac{1}{1-z} \log^{\alpha} \frac{2}{1-z}$$

have the property

$$\widehat{F}(n) \asymp \log^{\alpha}(n+2),$$

where the corresponding constant is independent of n.

(b) For every real α , the Taylor coefficients $\widehat{G}(n)$ of the function

$$G(z) = \log^{\alpha} \frac{2}{1-z}$$

have the property

$$\widehat{G}(n) \asymp \frac{\log^{\alpha - 1}(n+2)}{n+1},$$

where the corresponding constant is independent of n.

This theorem is a consequence of Theorem 2.31 on page 192 of the classical monograph [10], hence we omit its proof. Now, we are ready to prove our next result.

Lemma 2.4. Let $\alpha \in \mathbb{R}$ and let k be a nonnegative integer. Then

$$\sum_{n=0}^{\infty} \frac{\log^{\alpha}(n+2)}{(n+1)(n+k+1)} \asymp \frac{\log^{\alpha+1}(k+2)}{k+1}$$

where the corresponding constant is independent of k, i.e., there is a constant C_{α} independent of k such that

$$\frac{1}{C_{\alpha}} \frac{\log^{\alpha+1}(k+2)}{k+1} \leqslant \sum_{n=0}^{\infty} \frac{\log^{\alpha}(n+2)}{(n+1)(n+k+1)} \leqslant C_{\alpha} \frac{\log^{\alpha+1}(k+2)}{k+1}.$$

Proof. By using Lemma 2.2 and Theorem 2.3 (b), we find that

$$\frac{\log^{\alpha+1}(k+2)}{k+1} \asymp \int_0^1 r^k \log^{\alpha+1} \frac{2}{1-r} \, \mathrm{d}r$$
$$\asymp \int_0^1 r^k \sum_{n=0}^\infty \frac{\log^\alpha (n+2)}{n+1} r^n \, \mathrm{d}r$$
$$= \sum_{n=0}^\infty \frac{\log^\alpha (n+2)}{n+1} \int_0^1 r^{n+k} \, \mathrm{d}r$$
$$= \sum_{n=0}^\infty \frac{\log^\alpha (n+2)}{(n+1)(n+k+1)},$$

where the corresponding constant is independent of k.

3. LIBERA AND HILBERT MATRIX OPERATOR ON LOGARITHMICALLY WEIGHTED BERGMAN SPACES

For $\alpha \in \mathbb{R}$ we define the logarithmically weighted Bergman spaces $A^2_{\log^{\alpha}}$ as follows:

$$A_{\log^{\alpha}}^{2} = \left\{ f \in \mathcal{H}(\mathbb{D}) \colon \|f\|_{A_{\log^{\alpha}}^{2}}^{2} = \int_{\mathbb{D}} |f(z)|^{2} \log^{\alpha} \frac{2}{1 - |z|^{2}} \, \mathrm{d}A(z) < \infty \right\}.$$

Note that $A^2_{\log^{\alpha}} \subset A^2$ for $\alpha > 0$ and $A^2_{\log^0} = A^2$.

Let $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n \in A^2_{\log^{\alpha}}$. By using Parseval's formula and Lemma 2.2, we find that

$$\|f\|_{A^2_{\log^{\alpha}}}^2 = \sum_{n=0}^{\infty} |\widehat{f}(n)|^2 \int_0^1 r^n \log^{\alpha} \frac{2}{1-r} \,\mathrm{d}r \asymp \sum_{n=0}^{\infty} |\widehat{f}(n)|^2 \frac{\log^{\alpha}(n+2)}{n+1},$$

565

where the corresponding constant is independent of function f, i.e., there is a constant C independent of function f such that

$$\frac{1}{C}\|f\|_{A^2_{\log^\alpha}}^2 \leqslant \sum_{n=0}^\infty |\widehat{f}(n)|^2 \frac{\log^\alpha(n+2)}{n+1} \leqslant C \|f\|_{A^2_{\log^\alpha}}^2$$

3.1. Libera operator on logarithmically weighted Bergman spaces. Our next result describes the action of the Libera operator \mathcal{L} on the logarithmically weighted Bergman space $A_{\log^{\alpha}}^2$ for $\alpha > 1$.

Theorem 3.1. If $\alpha > 1$, then the operator \mathcal{L} is well defined on $A^2_{\log^{\alpha}}$ and maps this space into $A^2_{\log^{\alpha-1}}$.

Proof. Let $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n \in A^2_{\log^{\alpha}}$. Then, by using the Cauchy-Schwarz inequality, we find that

$$\sum_{n=0}^{\infty} \frac{|\widehat{f}(n)|}{n+1} \leqslant \left(\sum_{n=0}^{\infty} |\widehat{f}(n)|^2 \frac{\log^{\alpha}(n+2)}{n+1}\right)^{1/2} \left(\sum_{n=0}^{\infty} \frac{1}{(n+1)\log^{\alpha}(n+2)}\right)^{1/2} < \infty,$$

because $\alpha > 1$. From this, we get that if $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n \in A^2_{\log^{\alpha}}$, then $\sum_{n=0}^{\infty} |\widehat{f}(n)| \times (n+1)^{-1} < \infty$. Hence, the operator \mathcal{L} is well defined on $A^2_{\log^{\alpha}}$. Using inequality (59) from [6], we find that

$$rM_2^2(r, \mathcal{L}f) \leqslant C(1-r)^{-1} \int_r^1 M_2^2(s, f) \,\mathrm{d}s$$

for all $0 \leq r < 1$. Therefore,

$$\begin{split} \int_{\mathbb{D}} |\mathcal{L}f(z)|^2 \log^{\alpha - 1} \frac{2}{1 - |z|^2} \, \mathrm{d}A(z) &= 2 \int_0^1 r M_2^2(r, \mathcal{L}f) \log^{\alpha - 1} \frac{2}{1 - r^2} \, \mathrm{d}r \\ &\leqslant C \int_0^1 \frac{1}{1 - r} \int_r^1 M_2^2(s, f) \, \mathrm{d}s \log^{\alpha - 1} \frac{2}{1 - r^2} \, \mathrm{d}r \\ &= C \int_0^1 M_2^2(s, f) \int_0^s \frac{1}{1 - r} \log^{\alpha - 1} \frac{2}{1 - r^2} \, \mathrm{d}r \, \mathrm{d}s \\ &\leqslant C \int_0^1 M_2^2(s, f) \int_0^s \frac{1}{1 - r} \log^{\alpha - 1} \frac{2}{1 - r} \, \mathrm{d}r \, \mathrm{d}s \\ &= C \int_0^1 M_2^2(s, f) \left(\log^\alpha \frac{2}{1 - s} - \log^\alpha 2\right) \, \mathrm{d}s \\ &\leqslant C \int_0^1 M_2^2(s, f) \log^\alpha \frac{2}{1 - s} \, \mathrm{d}s \end{split}$$

$$\begin{split} &= C \int_0^1 u M_2^2(u^2, f) \log^{\alpha} \frac{2}{1 - u^2} \, \mathrm{d} u \\ &\leqslant C \int_0^1 u M_2^2(u, f) \log^{\alpha} \frac{2}{1 - u^2} \, \mathrm{d} u \\ &= C \int_{\mathbb{D}} |f(z)|^2 \log^{\alpha} \frac{2}{1 - |z|^2} \, \mathrm{d} A(z) < \infty. \end{split}$$

Hence, $\mathcal{L}f \in A^2_{\log^{\alpha-1}}$.

3.2. Hilbert matrix operator on logarithmically weighted Bergman spaces. In [4] it is shown that if $f \in A^2_{\log^{\alpha}}$, where $\alpha > 3$, then $Hf \in A^2$. Also, in [1] it is shown that $H: A^2_{\log^{\alpha}} \to A^2$ for $\alpha > 2$. Our next theorem improves this result.

Theorem 3.2. If $\alpha > 2$ and $0 < \varepsilon \leq \alpha - 2$, then *H* is well defined on $A^2_{\log^{\alpha}}$ and maps this space into $A^2_{\log^{\alpha-2-\varepsilon}}$.

Proof. For $\alpha > 2$, we have that if $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n \in A^2_{\log^{\alpha}}$, then we get $\sum_{n=0}^{\infty} |\widehat{f}(n)|/(n+1) < \infty$. Therefore, the operator H is well defined on $A^2_{\log^{\alpha}}$. On the other hand, if $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n \in A^2_{\log^{\alpha}}$, then by using the Cauchy-Schwarz inequality and Lemma 2.4, we find that

$$\begin{split} \|Hf\|_{A_{\log^{\alpha-2-\varepsilon}}^{2}}^{2} &\asymp \sum_{n=0}^{\infty} |\widehat{Hf}(n)|^{2} \frac{\log^{\alpha-2-\varepsilon}(n+2)}{n+1} \\ &= \sum_{n=0}^{\infty} \Big| \sum_{k=0}^{\infty} \frac{\widehat{f}(k)}{n+k+1} \Big|^{2} \frac{\log^{\alpha-2-\varepsilon}(n+2)}{n+1} \\ &\leqslant \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{|\widehat{f}(k)|^{2} \log^{\alpha}(k+2)}{n+k+1} \\ &\times \sum_{k=0}^{\infty} \frac{1}{(n+k+1)\log^{\alpha}(k+2)} \frac{\log^{\alpha-2-\varepsilon}(n+2)}{n+1} \\ &\leqslant \sum_{k=0}^{\infty} |\widehat{f}(k)|^{2} \frac{\log^{\alpha}(k+2)}{k+1} \sum_{k=0}^{\infty} \frac{1}{\log^{\alpha}(k+2)} \sum_{n=0}^{\infty} \frac{\log^{\alpha-2-\varepsilon}(n+2)}{(n+1)(n+k+1)} \\ &\leqslant C \|f\|_{A_{\log^{\alpha}}}^{2} \sum_{k=0}^{\infty} \frac{1}{\log^{\alpha}(k+2)} \frac{\log^{\alpha-1-\varepsilon}(k+2)}{k+1} \\ &= C \|f\|_{A_{\log^{\alpha}}}^{2} \sum_{k=0}^{\infty} \frac{1}{(k+1)\log^{1+\varepsilon}(k+2)} < \infty. \end{split}$$

Therefore, $Hf \in A^2_{\log^{\alpha-2-\varepsilon}}$.

567

We note that for $\alpha \in (1, 2]$ the operator H is well defined on $A^2_{\log^{\alpha}}$. We do not know whether Theorem 3.2 holds in this case. A natural question is: Does Theorem 3.2 hold for $\varepsilon = 0$?

4. LIBERA AND HILBERT MATRIX OPERATOR ON LOGARITHMICALLY WEIGHTED BLOCH SPACES

For $\alpha \in \mathbb{R}$ we define the logarithmically weighted Bloch spaces $\mathcal{B}_{\log^{\alpha}}$ as follows,

$$\mathcal{B}_{\log^{\alpha}} = \left\{ f \in \mathcal{H}(\mathbb{D}) \colon |f'(z)|(1-|z|) = \mathcal{O}\left(\log^{\alpha}\frac{2}{1-|z|}\right) \right\}.$$

The norm in the space $\mathcal{B}_{\log^{\alpha}}$ is defined by

$$||f||_{\mathcal{B}_{\log^{\alpha}}} = |f(0)| + \sup_{z \in \mathbb{D}} |f'(z)|(1-|z|) \log^{-\alpha} \frac{2}{1-|z|}.$$

Note that \mathcal{B}_{\log^0} is the Bloch space $\mathcal{B}_0^{\infty,\infty} = \mathcal{B}$.

4.1. Libera operator on logarithmically weighted Bloch spaces. Now, we have the following theorem.

Theorem 4.1. Let $\alpha \in \mathbb{R}$. Then \mathcal{L} is well defined on $\mathcal{B}_{\log^{\alpha}}$ and maps this space into $\mathcal{B}_{\log^{\alpha}}$.

Proof. By Theorem 2.1 (a) in [8], we have that if $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n \in \mathcal{B}_{\log^{\alpha}}$, then $\sum_{n=0}^{\infty} |\widehat{f}(n)|/(n+1) < \infty$. Therefore, the Libera operator \mathcal{L} is well defined on $\mathcal{B}_{\log^{\alpha}}$.

By using Lemma 22 from [6], for $\nu = 1$ and $p = \infty$, we find that

$$M_{\infty}(r, (\mathcal{L}f)') \leq (1-r)^{-2} \int_{r}^{1} (1-s) M_{\infty}(s, f') \,\mathrm{d}s$$

for all $0 \leq r < 1$. Then, by using Sublemma 2.1, we have that

$$(1-r)M_{\infty}(r,(\mathcal{L}f)') \leqslant \frac{1}{1-r} \int_{r}^{1} (1-s)M_{\infty}(s,f') \,\mathrm{d}s$$
$$\leqslant C \frac{1}{1-r} \int_{r}^{1} \log^{\alpha} \frac{2}{1-s} \,\mathrm{d}s$$
$$= C \frac{1}{1-r} \int_{\log(2/(1-r))}^{\infty} t^{\alpha} \mathrm{e}^{-t} \,\mathrm{d}t$$
$$\leqslant C \log^{\alpha} \frac{2}{1-r}.$$

Hence, we obtain $\mathcal{L}f \in \mathcal{B}_{\log^{\alpha}}$.

4.2. Hilbert matrix operator on logarithmically weighted Bloch spaces. Our next result describes the action of the Hilbert matrix operator H on the logaritmically weighted Bloch space $\mathcal{B}_{\log^{\alpha}}$ for $\alpha \in \mathbb{R}$. We improve results given in Proposition 5.1 and Proposition 5.2 in [4].

Theorem 4.2. Let $\alpha \in \mathbb{R}$. Then *H* is well defined on $\mathcal{B}_{\log^{\alpha}}$ and maps this space into $\mathcal{B}_{\log^{\alpha+1}}$.

Proof. By Theorem 2.1 (a) in [8], we have that if $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n \in \mathcal{B}_{\log^{\alpha}}$, then $\sum_{n=0}^{\infty} |\widehat{f}(n)|/(n+1) < \infty$. Hence, the Hilbert matrix operator H is well defined on $\mathcal{B}_{\log^{\alpha}}$.

Now, let $f \in \mathcal{B}_{\log^{\alpha}}$, where without loss of generality, we can additionally assume that f(0) = 0. Then, by Lemma 4.2.8 in [9], we can write

$$f(z) = \int_{\mathbb{D}} \frac{f'(w)(1-|w|^2)}{\overline{w}(1-\overline{w}z)^2} \,\mathrm{d}A(w),$$

for all $z \in \mathbb{D}$. Also, we have that

$$\int_{\mathbb{D}} \frac{z^k |z|^{2n}}{1-\overline{z}} \, \mathrm{d}A(z) = \frac{1}{n+k+1},$$

for all nonnegative integers n and k. Therefore,

$$\int_{\mathbb{D}} f(z) \frac{|z|^{2n}}{1-\overline{z}} \,\mathrm{d}A(z) = \sum_{k=0}^{\infty} \frac{\widehat{f}(k)}{n+k+1} = \widehat{Hf}(n).$$

Consequently,

$$\begin{split} |\widehat{Hf}(n)| &= \left| \int_{\mathbb{D}} f(z) \frac{|z|^{2n}}{1-\overline{z}} \, \mathrm{d}A(z) \right| \\ &= \left| \int_{\mathbb{D}} \frac{f'(w)(1-|w|^2)}{\overline{w}} \int_{\mathbb{D}} \frac{|z|^{2n}}{(1-\overline{w}z)^2(1-\overline{z})} \, \mathrm{d}A(z) \, \mathrm{d}A(w) \right| \\ &= \frac{1}{\pi} \left| \int_{\mathbb{D}} \frac{f'(w)(1-|w|^2)}{\overline{w}} \int_{0}^{1} r^{2n+1} \int_{0}^{2\pi} \frac{1}{(1-\overline{w}r\mathrm{e}^{\mathrm{i}\theta})^2(1-r\mathrm{e}^{-\mathrm{i}\theta})} \, \mathrm{d}\theta \, \mathrm{d}r \, \mathrm{d}A(w) \right| \\ &= \frac{1}{\pi} \left| \int_{\mathbb{D}} \frac{f'(w)(1-|w|^2)}{\overline{w}} \int_{0}^{1} r^{2n+1} \frac{2\pi}{(1-r^2\overline{w})^2} \, \mathrm{d}r \, \mathrm{d}A(w) \right| \\ &\leqslant C \int_{\mathbb{D}} \frac{|f'(w)|(1-|w|)}{|w|} \int_{0}^{1} \frac{r^{2n+1}}{|1-r^2w|^2} \, \mathrm{d}r \, \mathrm{d}A(w) \\ &\leqslant C \int_{\mathbb{D}} \frac{\log^{\alpha} \frac{2}{1-|w|}}{|w|} \int_{0}^{1} \frac{r^{2n+1}}{|1-r^2w|^2} \, \mathrm{d}r \, \mathrm{d}A(w) \end{split}$$

$$\begin{split} &= C \int_0^1 r^{2n+1} \int_{\mathbb{D}} \frac{\log^{\alpha} \frac{2}{1-|w|}}{|w||1-r^2w|^2} \,\mathrm{d}A(w) \,\mathrm{d}r \\ &= C \int_0^1 r^{2n+1} \int_0^1 \log^{\alpha} \frac{2}{1-\varrho} \int_0^{2\pi} \frac{1}{|1-r^2\varrho \mathrm{e}^{\mathrm{i}\theta}|^2} \,\mathrm{d}\theta \,\mathrm{d}\varrho \,\mathrm{d}r \\ &\leqslant C \int_0^1 r^{2n+1} \int_0^1 \frac{1}{1-r^2\varrho} \log^{\alpha} \frac{2}{1-\varrho} \,\mathrm{d}\varrho \,\mathrm{d}r \\ &= C \int_0^1 \log^{\alpha} \frac{2}{1-\varrho} \int_0^1 \frac{r^n}{1-r\varrho} \,\mathrm{d}r \,\mathrm{d}\varrho. \end{split}$$

On the other hand, we find that

$$\int_0^1 \frac{r^n}{1 - r\varrho} \,\mathrm{d}r = \sum_{k=0}^\infty \frac{\varrho^k}{n + k + 1}.$$

Hence, by using Lemma 2.2 and Lemma 2.4, we obtain

$$\begin{aligned} |\widehat{Hf}(n)| &\leq C \sum_{k=0}^{\infty} \frac{1}{n+k+1} \int_{0}^{1} \varrho^{k} \log^{\alpha} \frac{2}{1-\varrho} \,\mathrm{d}\varrho \\ &\leq C \sum_{k=0}^{\infty} \frac{\log^{\alpha}(k+2)}{(k+1)(n+k+1)} \\ &\leq C \frac{\log^{\alpha+1}(n+2)}{n+1}. \end{aligned}$$

Therefore,

$$\begin{split} |(Hf)'(z)| &= \left|\sum_{n=1}^{\infty} n\widehat{Hf}(n)z^{n-1}\right| \\ &\leqslant \sum_{n=1}^{\infty} n|\widehat{Hf}(n)||z|^{n-1} \\ &\leqslant C\sum_{n=1}^{\infty} \frac{n}{n+1}\log^{\alpha+1}(n+2)|z|^{n-1} \\ &\leqslant C\sum_{n=0}^{\infty}\log^{\alpha+1}(n+3)|z|^n \\ &\leqslant C\sum_{n=0}^{\infty}\log^{\alpha+1}(n+2)|z|^n. \end{split}$$

By using Theorem 2.3 (a), we find that

$$\frac{1}{1-|z|}\log^{\alpha+1}\frac{2}{1-|z|} \asymp \sum_{n=0}^{\infty}\log^{\alpha+1}(n+2)|z|^n.$$

Finally,

$$(Hf)'(z)| \leq C \sum_{n=0}^{\infty} \log^{\alpha+1} (n+2)|z|^n \\ \leq C \frac{1}{1-|z|} \log^{\alpha+1} \frac{2}{1-|z|}.$$

Hence, $Hf \in \mathcal{B}_{\log^{\alpha+1}}$.

5. LIBERA AND HILBERT MATRIX OPERATOR ON LOGARITHMICALLY WEIGHTED HARDY-BLOCH SPACES

For $\alpha \in \mathbb{R}$ we define the logarithmically weighted Hardy-Bloch spaces $\mathcal{B}^1_{\log^{\alpha}}$ in the following way:

$$\mathcal{B}^1_{\log^\alpha} = \bigg\{ f \in \mathcal{H}(\mathbb{D}) \colon \|f\|_{\mathcal{B}^1_{\log^\alpha}} = |f(0)| + \int_{\mathbb{D}} |f'(z)| \log^\alpha \frac{2}{1 - |z|} \, \mathrm{d}A(z) < \infty \bigg\}.$$

For $\alpha = 0$, $\mathcal{B}^{1}_{\log^{0}}$ is the Hardy-Bloch space $\mathcal{B}^{1,1}_{0}$ (notation from [7]). We note that if $\alpha \geq 0$, then $\mathcal{B}^{1}_{\log^{\alpha}} \subseteq \mathcal{B}^{1,1}_{0} \subseteq H^{1}$ and if $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in H^{1}$, then $\sum_{n=0}^{\infty} |\widehat{f}(n)|/(n+1) < \infty$.

5.1. Libera operator on logarithmically weighted Hardy-Bloch spaces. Action of the Libera operator on the logarithmically weighted Hardy-Bloch spaces has been considered in [8] and the following two theorems are proved.

Theorem 5.1 ([8]). Let $\alpha \ge -1$ and let $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n \in \mathcal{H}(\mathbb{D})$, where $\widehat{f}(n) \downarrow 0$ as $n \to \infty$. Then

$$f \in \mathcal{B}^1_{\log^{\alpha}}$$
 if and only if $\sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log^{\alpha}(n+2)}{n+1} < \infty.$

Moreover, there is a constant C independent of the function f, such that

$$\frac{1}{C}\|f\|_{\mathcal{B}^1_{\log^\alpha}}\leqslant \sum_{n=0}^\infty \widehat{f}(n)\frac{\log^\alpha(n+2)}{n+1}\leqslant C\|f\|_{\mathcal{B}^1_{\log^\alpha}}.$$

Theorem 5.2 ([8]). Let $\alpha > 0$.

- (a) Then \mathcal{L} is well defined on $\mathcal{B}^1_{\log^{\alpha}}$ and maps this space into $\mathcal{B}^1_{\log^{\alpha-1}}$.
- (b) If $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n$, where $\widehat{f}(n) \downarrow 0$ as $n \to \infty$ and $\sum_{n=0}^{\infty} \widehat{f}(n)/(n+1) < \infty$, then $\mathcal{L}f \in \mathcal{B}^1_{\log^{\alpha-1}}$ implies $f \in \mathcal{B}^1_{\log^{\alpha}}$.
- (c) If $\alpha < 0$, then $\overline{\mathcal{L}}$ cannot be extended to a continuous operator from $\mathcal{B}^1_{\log^{\alpha}}$ to $\mathcal{H}(\mathbb{D})$.

For (a) see Theorem 2.3 in [8]. Item (b) follows from Theorem 1.1 and Theorem 1.2 in [8]. For (c) see Theorem 2.1 (c) in [8].

5.2. Hilbert matrix operator on logarithmically weighted Hardy-Bloch spaces. Now we are ready to state the main theorem of this section.

Theorem 5.3. Let $\alpha \ge 0$.

- (a) Then H is well defined on $\mathcal{B}^1_{\log^{\alpha}}$ and maps this space into $\mathcal{B}^1_{\log^{\alpha-1}}$.
- (b) If $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n$, where $\widehat{f}(n) \downarrow 0$ as $n \to \infty$ and $\sum_{n=0}^{\infty} \widehat{f}(n)/(n+1) < \infty$, then $Hf \in \mathcal{B}^1_{\log^{\alpha-1}}$ implies $f \in \mathcal{B}^1_{\log^{\alpha}}$.
- (c) The result in (a) is sharp in the sense that for any $\varepsilon > 0$ there exists $f \in \mathcal{B}^1_{\log^{\alpha}}$ such that $Hf \notin \mathcal{B}^1_{\log^{\alpha-1+\varepsilon}}$.
- (d) If $\alpha < 0$, then H cannot be extended to a continuous operator from $\mathcal{B}^1_{\log^{\alpha}}$ to $\mathcal{H}(\mathbb{D})$.

Proof. (a) By Theorem 2.1 (b) in [8], we have that if $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n \in \mathcal{B}^1_{\log^{\alpha}}$, then $\sum_{n=0}^{\infty} |\widehat{f}(n)|/(n+1) < \infty$. Therefore, the operator H is well defined on $\mathcal{B}^1_{\log^{\alpha}}$.

Now, let $f \in \mathcal{B}^1_{\log^{\alpha}}$, where without loss of generality, we can additionally assume that f(0) = 0. Then, by Lemma 4.2.8 in [9], we have

$$f(z) = \int_{\mathbb{D}} \frac{f'(w)(1-|w|^2)}{\overline{w}(1-\overline{w}z)^2} \,\mathrm{d}A(w),$$

for all $z \in \mathbb{D}$. Let $S = \int_{\mathbb{D}} |(Hf)'(z)| \log^{\alpha-1}(2/(1-|z|)) dA(z)$. Then, by using the integral representation of the Hilbert matrix operator $Hf(z) = \int_0^1 (f(t)/(1-tz)) dt$,

we find that

$$\begin{split} S &\leqslant \int_{\mathbb{D}} \int_{0}^{1} \frac{|f(t)|}{|1 - tz|^{2}} \log^{\alpha - 1} \frac{2}{1 - |z|} \, \mathrm{d}t \, \mathrm{d}A(z) \\ &= \int_{\mathbb{D}} \int_{0}^{1} \frac{1}{|1 - tz|^{2}} \left| \int_{\mathbb{D}} \frac{f'(w)(1 - |w|^{2})}{w(1 - \overline{w}t)^{2}} \, \mathrm{d}A(w) \right| \log^{\alpha - 1} \frac{2}{1 - |z|} \, \mathrm{d}t \, \mathrm{d}A(z) \\ &\leqslant C \int_{\mathbb{D}} \frac{|f'(w)|(1 - |w|)}{|w|} \int_{\mathbb{D}} \log^{\alpha - 1} \frac{2}{1 - |z|} \int_{0}^{1} \frac{\mathrm{d}t}{|1 - tz|^{2}|1 - tw|^{2}} \, \mathrm{d}A(z) \, \mathrm{d}A(w) \\ &\leqslant C \int_{\mathbb{D}} \frac{|f'(w)|}{|w|} \int_{\mathbb{D}} \frac{1}{|1 - zw|^{2}} \log^{\alpha - 1} \frac{2}{1 - |z|} \, \mathrm{d}A(z) \, \mathrm{d}A(w) \\ &\leqslant C \int_{\mathbb{D}} \frac{|f'(w)|}{|w|} \int_{0} \frac{1}{|1 - zw|^{2}} \log^{\alpha - 1} \frac{2}{1 - |z|} \, \mathrm{d}A(z) \, \mathrm{d}A(w) \\ &\leqslant C \int_{\mathbb{D}} \frac{|f'(w)|}{|w|} \int_{0}^{1} \int_{0}^{2\pi} \frac{\mathrm{d}\theta}{|1 - re^{\mathrm{i}\theta}w|^{2}} \log^{\alpha - 1} \frac{2}{1 - r} \, \mathrm{d}r \, \mathrm{d}A(w) \\ &\leqslant C \int_{\mathbb{D}} \frac{|f'(w)|}{|w|} \int_{0}^{1} \frac{1}{1 - r|w|} \log^{\alpha - 1} \frac{2}{1 - r} \, \mathrm{d}r \, \mathrm{d}A(w). \end{split}$$

On the other hand, by using Lemma 2.2 and Theorem 2.3 (b), we have that

$$\begin{split} \int_0^1 \frac{1}{1-r|w|} \log^{\alpha-1} \frac{2}{1-r} \, \mathrm{d}r &= \sum_{n=0}^\infty |w|^n \int_0^1 r^n \log^{\alpha-1} \frac{2}{1-r} \, \mathrm{d}r \\ & \asymp \sum_{n=0}^\infty \frac{\log^{\alpha-1}(n+2)}{n+1} |w|^n \\ & \asymp \log^\alpha \frac{2}{1-|w|}. \end{split}$$

Consequently,

$$S \leqslant C \int_{\mathbb{D}} \frac{|f'(w)|}{|w|} \log^{\alpha} \frac{2}{1-|w|} dA(w)$$
$$\leqslant C \int_{\mathbb{D}} |f'(w)| \log^{\alpha} \frac{2}{1-|w|} dA(w)$$
$$< \infty$$

and we get that $Hf \in \mathcal{B}^{1}_{\log^{\alpha-1}}$. (b) We have $Hf(z) = \sum_{n=0}^{\infty} \widehat{Hf}(n)z^{n}$, where $\widehat{Hf}(n) = \sum_{k=0}^{\infty} \widehat{f}(k)/(n+k+1) \downarrow 0$ as $n \to \infty$. Then, by using Theorem 5.1, we find that

$$\|Hf\|_{\mathcal{B}^{1}_{\log^{\alpha-1}}} \asymp \sum_{n=0}^{\infty} \widehat{Hf}(n) \frac{\log^{\alpha-1}(n+2)}{n+1},$$

where the corresponding constant is independent of f. On the other hand, by using Lemma 2.4, we have that

$$\sum_{n=0}^{\infty} \widehat{Hf}(n) \frac{\log^{\alpha-1}(n+2)}{n+1} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\widehat{f}(k)}{n+k+1} \frac{\log^{\alpha-1}(n+2)}{n+1}$$
$$= \sum_{k=0}^{\infty} \widehat{f}(k) \sum_{n=0}^{\infty} \frac{\log^{\alpha-1}(n+2)}{(n+1)(n+k+1)}$$
$$\approx \sum_{k=0}^{\infty} \widehat{f}(k) \frac{\log^{\alpha}(k+2)}{k+1}.$$

Therefore,

$$\|Hf\|_{\mathcal{B}^{1}_{\log^{\alpha-1}}} \asymp \sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log^{\alpha}(n+2)}{n+1},$$

where the corresponding constant is independent of f. Then $\sum_{n=0}^{\infty} \widehat{f}(n) \log^{\alpha}(n+2) \times (n+1)^{-1} < \infty$ and by using Theorem 5.1 we find that $f \in \mathcal{B}^{1}_{\log^{\alpha}}$.

(c) Let $\varepsilon > 0$ and let $\widehat{f}(n) = (\log^{\alpha+1+\varepsilon/2}(n+2))^{-1}$ for all $n \ge 0$. Then $\sum_{n=0}^{\infty} \widehat{f}(n) \times (n+1)^{-1} < \infty$ and $\widehat{f}(n) \downarrow 0$ as $n \to \infty$. Also, we find that

$$\sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log^{\alpha}(n+2)}{n+1} < \infty \quad \text{and} \quad \sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log^{\alpha+\varepsilon}(n+2)}{n+1} = \infty$$

Let $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n$. Then $f \in \mathcal{B}^1_{\log^{\alpha}}$ by Theorem 5.1 and $Hf \notin \mathcal{B}^1_{\log^{\alpha-1+\varepsilon}}$, because otherwise we would have $\sum_{n=0}^{\infty} \widehat{f}(n) \log^{\alpha+\varepsilon} (n+2)(n+1)^{-1} < \infty$ by part (b) of this theorem. A contradiction.

(d) Since $\mathcal{B}^1_{\log^{\alpha}} \subset \mathcal{B}^1_{\log^{\beta}}$ for $\beta < \alpha$, we may assume that $-1 < \alpha < 0$. Let

$$f(z) = \sum_{n=0}^{\infty} \frac{z^n}{\log(n+2)}$$

For every $r \in (0,1)$ the function $f_r(z) = f(rz)$ belongs to $\mathcal{H}(\overline{\mathbb{D}})$ and by Theorem 5.1, the set $\{f_r : r \in (0,1)\}$ is bounded in $\mathcal{B}^1_{\log^{\alpha}}$. On the other hand,

$$Hf_r(0) = \sum_{k=0}^{\infty} \frac{r^k}{(k+1)\log(k+2)} \to \infty \quad \text{as } r \uparrow 1.$$

This contradicts the fact that if a set $X \subset \mathcal{B}^1_{\log^{\alpha}}$ is bounded and H is bounded on $\mathcal{B}^1_{\log^{\alpha}}$, then the set $\{Hf(0): f \in X\}$ is bounded, because the functional $h \to h(0)$ is continuous on $\mathcal{H}(\mathbb{D})$. This completes the proof. **Remark 5.4.** We note that the result stated in Theorem 5.2 (a) is sharp in the sense that for any $\varepsilon > 0$ and $\alpha > 0$ there exists $f \in \mathcal{B}^1_{\log^{\alpha}}$ such that $\mathcal{L}f \notin \mathcal{B}^1_{\log^{\alpha-1+\varepsilon}}$. As above, we have that

$$f(z) = \sum_{n=0}^{\infty} \frac{z^n}{\log^{\alpha+1+\varepsilon/2}(n+2)} \in \mathcal{B}^1_{\log^{\alpha}},$$

while $\mathcal{L}f \notin \mathcal{B}^{1}_{\log^{\alpha-1+\varepsilon}}$.

Corollary 5.5. Let $\alpha \ge 0$ and let $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n$, where $\widehat{f}(n) \ge 0$ for all nonnegative integers n and $\sum_{n=0}^{\infty} \widehat{f}(n)/(n+1) < \infty$. Then

$$Hf \in \mathcal{B}^{1}_{\log^{\alpha-1}}$$
 if and only if $\sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log^{\alpha}(n+2)}{n+1} < \infty.$

Moreover, there is a constant C independent of the function f, such that

$$\frac{1}{C} \|Hf\|_{\mathcal{B}^1_{\log^{\alpha-1}}} \leqslant \sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log^{\alpha}(n+2)}{n+1} \leqslant C \|Hf\|_{\mathcal{B}^1_{\log^{\alpha-1}}}$$

Proof. We have that $\widehat{Hf}(n) = \sum_{k=0}^{\infty} \widehat{f}(k)/(n+k+1) \downarrow 0$ as $n \to \infty$, because $\widehat{f}(k) \ge 0$ for all $k \ge 0$. Now the proof follows from the proof of part (b) of Theorem 5.3.

Corollary 5.6. Let $\alpha \ge 0$ and let $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n \in \mathcal{H}(\mathbb{D})$, such that $\sum_{n=0}^{\infty} |\widehat{f}(n)| \log^{\alpha}(n+2)(n+1)^{-1} < \infty$. Then $Hf \in \mathcal{B}^{1}_{\log^{\alpha-1}}$.

Proof. Let $x_n = \operatorname{Re} \widehat{f}(n)$ and $y_n = \operatorname{Im} \widehat{f}(n)$ for all nonnegative integers n. Then, functions $g(z) = \sum_{n=0}^{\infty} x_n z^n$ and $h(z) = \sum_{n=0}^{\infty} y_n z^n$ are holomorphic in the unit disk \mathbb{D} . Now, let $x_n^+ = (|x_n| + x_n)/2$ and $x_n^- = (|x_n| - x_n)/2$ for all $n = 0, 1, \ldots$. Then, $x_n^{\pm} \ge 0$, $x_n^{\pm} \le |x_n| \le |\widehat{f}(n)|$ and $x_n^+ - x_n^- = x_n$. Therefore, functions $g^+(z) = \sum_{n=0}^{\infty} x_n^+ z^n$ and $g^-(z) = \sum_{n=0}^{\infty} x_n^- z^n$ are holomorphic in the unit disk \mathbb{D} , and

$$\sum_{n=0}^{\infty} x_n^{\pm} \frac{\log^{\alpha}(n+2)}{n+1} \leqslant \sum_{n=0}^{\infty} |\widehat{f}(n)| \frac{\log^{\alpha}(n+2)}{n+1} < \infty.$$

۲		۲
n	1	n

Hence, by using Corollary 5.5, we find that

$$Hg^+ \in \mathcal{B}^1_{\log^{\alpha-1}}$$
 and $Hg^- \in \mathcal{B}^1_{\log^{\alpha-1}}$

Then, we have

$$\begin{split} \int_{\mathbb{D}} |(Hg)'(z)| \log^{\alpha - 1} \frac{2}{1 - |z|} \, \mathrm{d}A(z) &= \int_{\mathbb{D}} |(Hg^+)'(z) - (Hg^-)(z)| \log^{\alpha - 1} \frac{2}{1 - |z|} \, \mathrm{d}A(z) \\ &\leqslant \int_{\mathbb{D}} \left(|(Hg^+)'(z)| + |(Hg^-)(z)| \right) \log^{\alpha - 1} \frac{2}{1 - |z|} \, \mathrm{d}A(z) < \infty, \end{split}$$

and we get $Hg \in \mathcal{B}^1_{\log^{\alpha-1}}$. In the same way, we prove that $Hh \in \mathcal{B}^1_{\log^{\alpha-1}}$. Then, we have that Hf = Hg + iHh, because of f = g + ih. Consequently,

$$\begin{split} \int_{\mathbb{D}} |(Hf)'(z)| \log^{\alpha - 1} \frac{2}{1 - |z|} \, \mathrm{d}A(z) &= \int_{\mathbb{D}} |(Hg)'(z) + \mathrm{i}(Hh)'(z)| \log^{\alpha - 1} \frac{2}{1 - |z|} \, \mathrm{d}A(z) \\ &\leq \int_{\mathbb{D}} (|(Hg)'(z)| + |(Hh)'(z)|) \log^{\alpha - 1} \frac{2}{1 - |z|} \, \mathrm{d}A(z) \\ &< \infty. \end{split}$$

Therefore, $Hf \in \mathcal{B}^1_{\log^{\alpha-1}}$.

References

[1]	M. Jevtić, B. Karapetrović: Hilbert matrix operator on Besov spaces. Publ. Math. 90	
	(2017), 359-371.	MR doi
[2]	<i>M. Jevtić</i> , <i>B. Karapetrović</i> : Libera operator on mixed norm spaces $H^{p,q,\alpha}_{\nu}$ when	
	$0 . Filomat 31 (2017), 4641–4650.$	MR
[3]	M. Jevtić, D. Vukotić, M. Arsenović: Taylor Coefficients and Coefficient Multipliers of	
	Hardy and Bergman-Type Spaces. RSME Springer Series 2, Springer, Cham, 2016.	zbl MR doi
[4]	B. Lanucha, M. Nowak, M. Pavlović: Hilbert matrix operator on spaces of analytic func-	
	tions. Ann. Acad. Sci. Fenn., Math. 37 (2012), 161–174.	zbl MR doi
[5]	$M.$ Mateljević, $M.$ Pavlović: L^p -behaviour of the integral means of analytic functions.	
	Stud. Math. 77 (1984), 219–237.	zbl MR doi
[6]	M. Pavlović: Definition and properties of the libera operator on mixed norm spaces. The	
	Scientific World Journal 2014 (2014), Article ID 590656, 15 pages.	doi
[7]	M. Pavlović: Function Classes on the Unit Disc. An introduction. De Gruyter Studies	
	in Mathematics 52, De Gruyter, Berlin, 2014.	zbl MR doi
[8]	M. Pavlović: Logarithmic Bloch space and its predual. Publ. Inst. Math. (Beograd)	
	(N.S.) $100(114)$ (2016), 1–16.	zbl MR doi
[9]	K. Zhu: Operator Theory in Function Spaces. Monographs and Textbooks in Pure and	
	Applied Mathematics 139, Marcel Dekker, New York, 1990.	$\mathbf{zbl} \mathbf{MR}$
[10]	A. Zygmund: Trigonometric Series. Vol. I, II. Cambridge University Press, Cambridge,	
	1959.	$\mathrm{zbl}\ \mathrm{MR}$

Author's address: Boban Karapetrović, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia, e-mail: bkarapetrovic@matf.bg.ac.rs.