LIBERA AND HILBERT MATRIX OPERATOR ON LOGARITHMICALLY WEIGHTED BERGMAN, BLOCH AND HARDY-BLOCH SPACES

Boban Karapetrović, Belgrade

Received October 23, 2016. First published March 6, 2018.

Abstract. We show that if $\alpha>1$, then the logarithmically weighted Bergman space $A_{\log ^{\alpha}}^{2}$ is mapped by the Libera operator \mathcal{L} into the space $A_{\log ^{\alpha-1}}^{2}$, while if $\alpha>2$ and $0<\varepsilon \leqslant \alpha-2$, then the Hilbert matrix operator H maps $A_{\log ^{\alpha}}^{2}$ into $A_{\log ^{\alpha-2-\varepsilon}}^{2}$.

We show that the Libera operator \mathcal{L} maps the logarithmically weighted Bloch space $\mathcal{B}_{\log ^{\alpha}}, \alpha \in \mathbb{R}$, into itself, while H maps $\mathcal{B}_{\log ^{\alpha}}$ into $\mathcal{B}_{\log ^{\alpha+1}}$.

In Pavlović's paper (2016) it is shown that \mathcal{L} maps the logarithmically weighted HardyBloch space $\mathcal{B}_{\log ^{\alpha}}^{1}, \alpha>0$, into $\mathcal{B}_{\log ^{\alpha-1}}^{1}$. We show that this result is sharp. We also show that H maps $\mathcal{B}_{\log ^{\alpha}}^{1}, \alpha \geqslant 0$, into $\mathcal{B}_{\log ^{\alpha-1}}^{1}$ and that this result is sharp also.

Keywords: Libera operator; Hilbert matrix operator; Hardy space; Bergman space; Bloch space; Hardy-Bloch space

MSC 2010: 47B38, 47G10, 30H25

1. Introduction

We consider the action of the Libera and Hilbert matrix operators on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces.

We show that if $\alpha>1$, then the logarithmically weighted Bergman space $A_{\log ^{\alpha}}^{2}$ is mapped by the Libera operator \mathcal{L} into the space $A_{\log ^{\alpha-1}}^{2}$. In [4] it is shown that if $f \in A_{\log ^{\alpha}}^{2}$, where $\alpha>3$, then $H f \in A^{2}$. Here H is the Hilbert matrix operator. Also, in [1] it is shown that $H: A_{\log ^{\alpha}}^{2} \rightarrow A^{2}$ for $\alpha>2$. We improve this result by showing that if $\alpha>2$ and $0<\varepsilon \leqslant \alpha-2$, then H is well defined on $A_{\log ^{\alpha}}^{2}$ and maps this space into $A_{\log ^{\alpha-2-\varepsilon}}^{2}$.

The research has been supported by NTR Serbia, Project ON174032.

We show that the Libera operator \mathcal{L} maps the logarithmically weighted Bloch space $\mathcal{B}_{\log ^{\alpha}}, \alpha \in \mathbb{R}$, into itself, while H maps $\mathcal{B}_{\log ^{\alpha}}$ into $\mathcal{B}_{\log ^{\alpha+1}}$.

In [8] it is shown that \mathcal{L} maps the logarithmically weighted Hardy-Bloch space $\mathcal{B}_{\log ^{\alpha}}^{1}, \alpha>0$, into $\mathcal{B}_{\log ^{\alpha-1}}^{1}$. We note that this result is sharp. Our main results are given in Theorem 5.3. Among other things, we show that H maps $\mathcal{B}_{\log ^{\alpha}}^{1}, \alpha \geqslant 0$, into $\mathcal{B}_{\log ^{\alpha-1}}^{1}$ and that this result is sharp.

The definitions of logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces will be given in Sections 3, 4 and 5, respectively.

For $0<p \leqslant \infty$, Hardy space H^{p} is the space of all functions f holomorphic in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ for which

$$
\|f\|_{H^{p}}=\|f\|_{p}=\sup _{0 \leqslant r<1} M_{p}(r, f)<\infty
$$

where

$$
M_{p}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r \mathrm{e}^{\mathrm{i} t}\right)\right|^{p} \mathrm{~d} t\right)^{1 / p} \quad \text { if } 0<p<\infty
$$

and

$$
M_{\infty}(r, f)=\sup _{0 \leqslant t<2 \pi}\left|f\left(r \mathrm{e}^{\mathrm{i} t}\right)\right| .
$$

The Lebesgue measure on \mathbb{D} will be denoted by A and will be normalized so as to have $A(\mathbb{D})=1$. That is,

$$
\mathrm{d} A(z)=\frac{1}{\pi} \mathrm{~d} x \mathrm{~d} y=\frac{1}{\pi} r \mathrm{~d} r \mathrm{~d} t, \quad \text { where } z=x+\mathrm{i} y=r \mathrm{e}^{\mathrm{i} t} .
$$

The Bergman space $A^{p}, 0<p<\infty$, is the space of holomorphic functions in $L^{p}(\mathbb{D}, d A)$, that is,

$$
A^{p}=\left\{f \in \mathcal{H}(\mathbb{D}):\|f\|_{A^{p}}^{p}=\int_{\mathbb{D}}|f(z)|^{p} \mathrm{~d} A(z)<\infty\right\} .
$$

A function f holomorphic in the unit disk \mathbb{D} belongs to the Hardy-Bloch space $\mathcal{B}_{0}^{p, q}, 0<p \leqslant \infty, 0<q \leqslant \infty$ (notation from [7]) if

$$
\int_{0}^{1} M_{p}^{q}\left(r, f^{\prime}\right)(1-r)^{q-1} \mathrm{~d} r<\infty \quad \text { for } 0<q<\infty,
$$

and

$$
\sup _{0 \leqslant r<1}(1-r) M_{p}\left(r, f^{\prime}\right)<\infty \quad \text { for } q=\infty
$$

Let $\mathcal{H}(\mathbb{D})$ denote the space of all functions holomorphic in the unit disk \mathbb{D} of the complex plane endowed with the topology of uniform convergence on compact
subsets of \mathbb{D}. The dual of $\mathcal{H}(\mathbb{D})$ is equal to $\mathcal{H}(\overline{\mathbb{D}})$, where $g \in \mathcal{H}(\overline{\mathbb{D}})$ means that g is holomorphic in a neighborhood of $\overline{\mathbb{D}}$ (depending on g). The duality pairing is given by

$$
\langle f, g\rangle=\sum_{n=0}^{\infty} \widehat{f}(n) \overline{\bar{g}(n)},
$$

where $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in \mathcal{H}(\mathbb{D})$ and $g(z)=\sum_{n=0}^{\infty} \widehat{g}(n) z^{n} \in \mathcal{H}(\overline{\mathbb{D}})$.
It is easy to see that the Libera operator defined by

$$
\begin{gathered}
\overline{\mathcal{L}} g(z)=\sum_{n=0}^{\infty}\left(\sum_{k=n}^{\infty} \frac{\widehat{g}(k)}{k+1}\right) z^{n}=\int_{0}^{1} g(t+(1-t) z) \mathrm{d} t \\
g(z)=\sum_{n=0}^{\infty} \widehat{g}(n) z^{n} \in \mathcal{H}(\overline{\mathbb{D}})
\end{gathered}
$$

maps $\mathcal{H}(\overline{\mathbb{D}})$ into $\mathcal{H}(\overline{\mathbb{D}})$.
We denote by \mathcal{L} the operator

$$
\begin{aligned}
\mathcal{L} g(z) & =\int_{0}^{1} g(t+(1-t) z) \mathrm{d} t \\
g(z) & =\sum_{n=0}^{\infty} \widehat{g}(n) z^{n} \in \mathcal{H}(\mathbb{D})
\end{aligned}
$$

whenever the integral converges uniformly on compact subsets of \mathbb{D}. Uniform convergence means that the limit

$$
\lim _{r \rightarrow 1^{-}} \int_{0}^{r} g(t+(1-t) z) \mathrm{d} t
$$

is uniform with respect to z in any compact subset of \mathbb{D}. This hypothesis guarantees that $\mathcal{L} g$ is a holomorphic function in \mathbb{D}. We call \mathcal{L} also the Libera operator since $\mathcal{L}=\overline{\mathcal{L}}$ on $\mathcal{H}(\overline{\mathbb{D}})$.

The Hilbert matrix is an infinite matrix $H=\left[h_{n, k}\right]_{n, k=0}^{\infty}$ whose entries are $h_{n, k}=$ $1 /(n+k+1)$ for all nonnegative integers n and k. It can be viewed as an operator on spaces of holomorphic functions by its action on their Taylor coefficients. If

$$
f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n}
$$

is a holomorphic function in the unit disk \mathbb{D}, then we define the transformation H by

$$
H f(z)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} h_{n, k} \widehat{f}(k) z^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\widehat{f}(k)}{n+k+1} z^{n}
$$

It is possible to write $H f, f \in H^{p}, 1 \leqslant p \leqslant \infty$, in an integral form, which is quite convenient for analyzing the operator. More specifically, by looking at the Taylor series expansion of the function f, we have the following integral representation:

$$
H f(z)=\int_{0}^{1} \frac{f(t)}{1-t z} \mathrm{~d} t
$$

It is well known that the Libera operator \mathcal{L} acts as a bounded operator from H^{p} into H^{p} if and only if $1<p \leqslant \infty$ and that \mathcal{L} acts as a bounded operator from A^{p} into A^{p} if and only if $2<p<\infty$ (see [2], [6]). On the other hand, it is well known that the Hilbert matrix operator H acts as a bounded operator from H^{p} into H^{p} if and only if $1<p<\infty$ and that H acts as a bounded operator from A^{p} into A^{p} if and only if $2<p<\infty$ (see [3]).

2. Some preliminary results

In this section we shall collect some results which will be needed in our work. We start with one useful result.

Sublemma 2.1. Let $\alpha \in \mathbb{R}$ and $a \geqslant 2$. Then

$$
\int_{\log a}^{\infty} t^{\alpha} \mathrm{e}^{-t} \mathrm{~d} t \leqslant C_{\alpha} \frac{\log ^{\alpha} a}{a}
$$

where C_{α} is a constant independent of a.
Proof. (1) Case $\alpha \leqslant 0$.

$$
\int_{\log a}^{\infty} t^{\alpha} \mathrm{e}^{-t} \mathrm{~d} t \leqslant \log ^{\alpha} a \int_{\log a}^{\infty} \mathrm{e}^{-t} \mathrm{~d} t=\frac{\log ^{\alpha} a}{a}
$$

(2) Case $\alpha>0$. In this case, partial integration gives

$$
\begin{aligned}
\int_{\log a}^{\infty} t^{\alpha} \mathrm{e}^{-t} \mathrm{~d} t & =\frac{\log ^{\alpha} a}{a}+\alpha \int_{\log a}^{\infty} t^{\alpha-1} \mathrm{e}^{-t} \mathrm{~d} t \\
& =\frac{\log ^{\alpha} a}{a}+\alpha \frac{\log ^{\alpha-1} a}{a}+\alpha(\alpha-1) \int_{\log a}^{\infty} t^{\alpha-2} \mathrm{e}^{-t} \mathrm{~d} t \\
& \leqslant C_{\alpha} \frac{\log ^{\alpha} a}{a}+\alpha(\alpha-1) \int_{\log a}^{\infty} t^{\alpha-2} \mathrm{e}^{-t} \mathrm{~d} t
\end{aligned}
$$

Continuing on this way, we find that

$$
\begin{aligned}
\int_{\log a}^{\infty} t^{\alpha} \mathrm{e}^{-t} \mathrm{~d} t & \leqslant C_{\alpha} \frac{\log ^{\alpha} a}{a}+\alpha(\alpha-1) \ldots(\alpha-\lfloor\alpha\rfloor) \int_{\log a}^{\infty} t^{\alpha-\lfloor\alpha\rfloor-1} \mathrm{e}^{-t} \mathrm{~d} t \\
& \leqslant C_{\alpha} \frac{\log ^{\alpha} a}{a}+\alpha(\alpha-1) \ldots(\alpha-\lfloor\alpha\rfloor) \frac{\log ^{\alpha-\lfloor\alpha\rfloor-1} a}{a} \\
& \leqslant C_{\alpha} \frac{\log ^{\alpha} a}{a}
\end{aligned}
$$

where $\lfloor\alpha\rfloor$ is the largest integer less then or equal to α.
Consequently, we get the following result.
Lemma 2.2. Let $\alpha \in \mathbb{R}$ and let n be a nonnegative integer. Then

$$
\int_{0}^{1} r^{n} \log ^{\alpha} \frac{2}{1-r} \mathrm{~d} r \asymp \frac{\log ^{\alpha}(n+2)}{n+1}
$$

where the corresponding constant is independent of n, i.e., there is a constant C_{α} independent of n such that

$$
\frac{1}{C_{\alpha}} \frac{\log ^{\alpha}(n+2)}{n+1} \leqslant \int_{0}^{1} r^{n} \log ^{\alpha} \frac{2}{1-r} \mathrm{~d} r \leqslant C_{\alpha} \frac{\log ^{\alpha}(n+2)}{n+1}
$$

Proof. (1) Case $\alpha \geqslant 0$. First, we find that

$$
\begin{aligned}
\int_{0}^{1} r^{n} \log ^{\alpha} \frac{2}{1-r} \mathrm{~d} r & \geqslant \int_{1-1 /(n+1)}^{1} r^{n} \log ^{\alpha} \frac{2}{1-r} \mathrm{~d} r \\
& \geqslant \log ^{\alpha}(n+2) \int_{1-1 /(n+1)}^{1} r^{n} \mathrm{~d} r \\
& =\frac{\log ^{\alpha}(n+2)}{n+1}\left(1-\left(1-\frac{1}{n+1}\right)^{n+1}\right) \\
& \geqslant C \frac{\log ^{\alpha}(n+2)}{n+1}
\end{aligned}
$$

On the other hand, by using Sublemma 2.1, we have that

$$
\begin{aligned}
\int_{1-1 /(n+1)}^{1} r^{n} \log ^{\alpha} \frac{2}{1-r} \mathrm{~d} r & \leqslant \int_{1-1 /(n+1)}^{1} \log ^{\alpha} \frac{2}{1-r} \mathrm{~d} r \\
& =2 \int_{\log (2 n+2)}^{\infty} t^{\alpha} \mathrm{e}^{-t} \mathrm{~d} t \\
& \leqslant 2 \int_{\log (n+2)}^{\infty} t^{\alpha} \mathrm{e}^{-t} \mathrm{~d} t \\
& \leqslant C_{\alpha} \frac{\log ^{\alpha}(n+2)}{n+1}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{1-1 /(n+1)} r^{n} \log ^{\alpha} \frac{2}{1-r} \mathrm{~d} r & \leqslant C_{\alpha} \log ^{\alpha}(n+2) \int_{0}^{1-1 /(n+1)} r^{n} \mathrm{~d} r \\
& =C_{\alpha} \frac{\log ^{\alpha}(n+2)}{n+1}\left(1-\frac{1}{n+1}\right)^{n+1} \\
& \leqslant C_{\alpha} \frac{\log ^{\alpha}(n+2)}{n+1}
\end{aligned}
$$

Therefore,

$$
\int_{0}^{1} r^{n} \log ^{\alpha} \frac{2}{1-r} \mathrm{~d} r \leqslant C_{\alpha} \frac{\log ^{\alpha}(n+2)}{n+1} .
$$

(2) Case $\alpha<0$. Let $\varphi(r)=r \log ^{\alpha}(2 / r), 0<r \leqslant 1$. Then φ is a nonnegative, increasing function on the interval $(0,1]$ and

$$
t^{1-2 \alpha} \varphi(r) \leqslant \varphi(t r) \leqslant t \varphi(r)
$$

for all $0<t<1$. By using Lemma 4.1 in [5], we find that

$$
\int_{0}^{1} r^{n} \frac{\varphi(1-r)}{1-r} \mathrm{~d} r \asymp \varphi\left(\frac{1}{n+1}\right)
$$

Hence,

$$
\int_{0}^{1} r^{n} \log ^{\alpha} \frac{2}{1-r} \mathrm{~d} r \asymp \frac{\log ^{\alpha}(n+2)}{n+1} .
$$

The following auxiliary result will be useful.
Theorem 2.3. (a) For every real α, the Taylor coefficients $\widehat{F}(n)$ of the function

$$
F(z)=\frac{1}{1-z} \log ^{\alpha} \frac{2}{1-z}
$$

have the property

$$
\widehat{F}(n) \asymp \log ^{\alpha}(n+2),
$$

where the corresponding constant is independent of n.
(b) For every real α, the Taylor coefficients $\widehat{G}(n)$ of the function

$$
G(z)=\log ^{\alpha} \frac{2}{1-z}
$$

have the property

$$
\widehat{G}(n) \asymp \frac{\log ^{\alpha-1}(n+2)}{n+1}
$$

where the corresponding constant is independent of n.

This theorem is a consequence of Theorem 2.31 on page 192 of the classical monograph [10], hence we omit its proof. Now, we are ready to prove our next result.

Lemma 2.4. Let $\alpha \in \mathbb{R}$ and let k be a nonnegative integer. Then

$$
\sum_{n=0}^{\infty} \frac{\log ^{\alpha}(n+2)}{(n+1)(n+k+1)} \asymp \frac{\log ^{\alpha+1}(k+2)}{k+1}
$$

where the corresponding constant is independent of k, i.e., there is a constant C_{α} independent of k such that

$$
\frac{1}{C_{\alpha}} \frac{\log ^{\alpha+1}(k+2)}{k+1} \leqslant \sum_{n=0}^{\infty} \frac{\log ^{\alpha}(n+2)}{(n+1)(n+k+1)} \leqslant C_{\alpha} \frac{\log ^{\alpha+1}(k+2)}{k+1}
$$

Proof. By using Lemma 2.2 and Theorem 2.3 (b), we find that

$$
\begin{aligned}
\frac{\log ^{\alpha+1}(k+2)}{k+1} & \asymp \int_{0}^{1} r^{k} \log ^{\alpha+1} \frac{2}{1-r} \mathrm{~d} r \\
& \asymp \int_{0}^{1} r^{k} \sum_{n=0}^{\infty} \frac{\log ^{\alpha}(n+2)}{n+1} r^{n} \mathrm{~d} r \\
& =\sum_{n=0}^{\infty} \frac{\log ^{\alpha}(n+2)}{n+1} \int_{0}^{1} r^{n+k} \mathrm{~d} r \\
& =\sum_{n=0}^{\infty} \frac{\log ^{\alpha}(n+2)}{(n+1)(n+k+1)}
\end{aligned}
$$

where the corresponding constant is independent of k.

3. Libera and Hilbert matrix operator on logarithmically weighted Bergman spaces

For $\alpha \in \mathbb{R}$ we define the logarithmically weighted Bergman spaces $A_{\log ^{\alpha}}^{2}$ as follows:

$$
A_{\log ^{\alpha}}^{2}=\left\{f \in \mathcal{H}(\mathbb{D}):\|f\|_{A_{\log ^{\alpha}}^{2}}^{2}=\int_{\mathbb{D}}|f(z)|^{2} \log ^{\alpha} \frac{2}{1-|z|^{2}} \mathrm{~d} A(z)<\infty\right\}
$$

Note that $A_{\log ^{\alpha}}^{2} \subset A^{2}$ for $\alpha>0$ and $A_{\log ^{0}}^{2}=A^{2}$.
Let $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in A_{\log ^{\alpha}}^{2}$. By using Parseval's formula and Lemma 2.2, we find that

$$
\|f\|_{A_{\log \alpha}^{2}}^{2}=\sum_{n=0}^{\infty}|\widehat{f}(n)|^{2} \int_{0}^{1} r^{n} \log ^{\alpha} \frac{2}{1-r} \mathrm{~d} r \asymp \sum_{n=0}^{\infty}|\widehat{f}(n)|^{2} \frac{\log ^{\alpha}(n+2)}{n+1}
$$

where the corresponding constant is independent of function f, i.e., there is a constant C independent of function f such that

$$
\frac{1}{C}\|f\|_{A_{\log ^{\alpha}}^{2}}^{2} \leqslant \sum_{n=0}^{\infty}|\widehat{f}(n)|^{2} \frac{\log ^{\alpha}(n+2)}{n+1} \leqslant C\|f\|_{A_{\log ^{\alpha}}^{2}}^{2} .
$$

3.1. Libera operator on logarithmically weighted Bergman spaces. Our

 next result describes the action of the Libera operator \mathcal{L} on the logarithmically weighted Bergman space $A_{\log ^{\alpha}}^{2}$ for $\alpha>1$.Theorem 3.1. If $\alpha>1$, then the operator \mathcal{L} is well defined on $A_{\log ^{\alpha}}^{2}$ and maps this space into $A_{\log ^{\alpha-1}}^{2}$.

Proof. Let $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in A_{\log \alpha}^{2}$. Then, by using the Cauchy-Schwarz inequality, we find that

$$
\sum_{n=0}^{\infty} \frac{|\widehat{f}(n)|}{n+1} \leqslant\left(\sum_{n=0}^{\infty}|\widehat{f}(n)|^{2} \frac{\log ^{\alpha}(n+2)}{n+1}\right)^{1 / 2}\left(\sum_{n=0}^{\infty} \frac{1}{(n+1) \log ^{\alpha}(n+2)}\right)^{1 / 2}<\infty
$$

because $\alpha>1$. From this, we get that if $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in A_{\log ^{\alpha}}^{2}$, then $\sum_{n=0}^{\infty}|\widehat{f}(n)| \times$ $(n+1)^{-1}<\infty$. Hence, the operator \mathcal{L} is well defined on $A_{\log ^{\alpha}}^{2}$. Using inequality (59) from [6], we find that

$$
r M_{2}^{2}(r, \mathcal{L} f) \leqslant C(1-r)^{-1} \int_{r}^{1} M_{2}^{2}(s, f) \mathrm{d} s
$$

for all $0 \leqslant r<1$. Therefore,

$$
\begin{aligned}
\int_{\mathbb{D}}|\mathcal{L} f(z)|^{2} \log ^{\alpha-1} \frac{2}{1-|z|^{2}} \mathrm{~d} A(z) & =2 \int_{0}^{1} r M_{2}^{2}(r, \mathcal{L} f) \log ^{\alpha-1} \frac{2}{1-r^{2}} \mathrm{~d} r \\
& \leqslant C \int_{0}^{1} \frac{1}{1-r} \int_{r}^{1} M_{2}^{2}(s, f) \mathrm{d} s \log ^{\alpha-1} \frac{2}{1-r^{2}} \mathrm{~d} r \\
& =C \int_{0}^{1} M_{2}^{2}(s, f) \int_{0}^{s} \frac{1}{1-r} \log ^{\alpha-1} \frac{2}{1-r^{2}} \mathrm{~d} r \mathrm{~d} s \\
& \leqslant C \int_{0}^{1} M_{2}^{2}(s, f) \int_{0}^{s} \frac{1}{1-r} \log ^{\alpha-1} \frac{2}{1-r} \mathrm{~d} r \mathrm{~d} s \\
& =C \int_{0}^{1} M_{2}^{2}(s, f)\left(\log ^{\alpha} \frac{2}{1-s}-\log ^{\alpha} 2\right) \mathrm{d} s \\
& \leqslant C \int_{0}^{1} M_{2}^{2}(s, f) \log ^{\alpha} \frac{2}{1-s} \mathrm{~d} s
\end{aligned}
$$

$$
\begin{aligned}
& =C \int_{0}^{1} u M_{2}^{2}\left(u^{2}, f\right) \log ^{\alpha} \frac{2}{1-u^{2}} \mathrm{~d} u \\
& \leqslant C \int_{0}^{1} u M_{2}^{2}(u, f) \log ^{\alpha} \frac{2}{1-u^{2}} \mathrm{~d} u \\
& =C \int_{\mathbb{D}}|f(z)|^{2} \log ^{\alpha} \frac{2}{1-|z|^{2}} \mathrm{~d} A(z)<\infty
\end{aligned}
$$

Hence, $\mathcal{L} f \in A_{\log ^{\alpha-1}}^{2}$.

3.2. Hilbert matrix operator on logarithmically weighted Bergman

 spaces. In [4] it is shown that if $f \in A_{\log ^{\alpha}}^{2}$, where $\alpha>3$, then $H f \in A^{2}$. Also, in [1] it is shown that $H: A_{\log ^{\alpha}}^{2} \rightarrow A^{2}$ for $\alpha>2$. Our next theorem improves this result.Theorem 3.2. If $\alpha>2$ and $0<\varepsilon \leqslant \alpha-2$, then H is well defined on $A_{\log ^{\alpha}}^{2}$ and maps this space into $A_{\log ^{\alpha-2-\varepsilon}}^{2}$.

Proof. For $\alpha>2$, we have that if $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in A_{\log ^{\alpha}}^{2}$, then we get $\sum_{n=0}^{\infty}|\widehat{f}(n)| /(n+1)<\infty$. Therefore, the operator H is well defined on $A_{\log ^{\alpha}}^{2}$. On the other hand, if $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in A_{\log ^{\alpha}}^{2}$, then by using the Cauchy-Schwarz inequality and Lemma 2.4, we find that

$$
\begin{aligned}
\|H f\|_{A_{\log \alpha-2-\varepsilon}^{2}}^{2} & \sum_{n=0}^{\infty}|\widehat{H f}(n)|^{2} \frac{\log ^{\alpha-2-\varepsilon}(n+2)}{n+1} \\
= & \sum_{n=0}^{\infty}\left|\sum_{k=0}^{\infty} \frac{\widehat{f}(k)}{n+k+1}\right|^{2} \frac{\log ^{\alpha-2-\varepsilon}(n+2)}{n+1} \\
\leqslant & \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{|\widehat{f}(k)|^{2} \log ^{\alpha}(k+2)}{n+k+1} \\
& \times \sum_{k=0}^{\infty} \frac{1}{(n+k+1) \log ^{\alpha}(k+2)} \frac{\log ^{\alpha-2-\varepsilon}(n+2)}{n+1} \\
\leqslant & \sum_{k=0}^{\infty}|\widehat{f}(k)|^{2} \frac{\log ^{\alpha}(k+2)}{k+1} \sum_{k=0}^{\infty} \frac{1}{\log ^{\alpha}(k+2)} \sum_{n=0}^{\infty} \frac{\log ^{\alpha-2-\varepsilon}(n+2)}{(n+1)(n+k+1)} \\
\leqslant & C\|f\|_{A_{\log ^{\alpha}}^{2}}^{2} \sum_{k=0}^{\infty} \frac{1}{\log ^{\alpha}(k+2)} \frac{\log ^{\alpha-1-\varepsilon}(k+2)}{k+1} \\
= & C\|f\|_{A_{\log ^{\alpha}}^{2}}^{2} \sum_{k=0}^{\infty} \frac{1}{(k+1) \log ^{1+\varepsilon}(k+2)}<\infty
\end{aligned}
$$

Therefore, $H f \in A_{\log ^{\alpha-2-\varepsilon}}^{2}$.

We note that for $\alpha \in(1,2]$ the operator H is well defined on $A_{\log ^{\alpha}}^{2}$. We do not know whether Theorem 3.2 holds in this case. A natural question is: Does Theorem 3.2 hold for $\varepsilon=0$?

4. Libera and Hilbert matrix operator on logarithmically weighted Bloch spaces

For $\alpha \in \mathbb{R}$ we define the logarithmically weighted Bloch spaces $\mathcal{B}_{\log ^{\alpha}}$ as follows,

$$
\mathcal{B}_{\log ^{\alpha}}=\left\{f \in \mathcal{H}(\mathbb{D}):\left|f^{\prime}(z)\right|(1-|z|)=\mathcal{O}\left(\log ^{\alpha} \frac{2}{1-|z|}\right)\right\} .
$$

The norm in the space $\mathcal{B}_{\log ^{\alpha}}$ is defined by

$$
\|f\|_{\mathcal{B}_{\log ^{\alpha}}}=|f(0)|+\sup _{z \in \mathbb{D}}\left|f^{\prime}(z)\right|(1-|z|) \log ^{-\alpha} \frac{2}{1-|z|}
$$

Note that $\mathcal{B}_{\text {log }^{0}}$ is the Bloch space $\mathcal{B}_{0}^{\infty, \infty}=\mathcal{B}$.
4.1. Libera operator on logarithmically weighted Bloch spaces. Now, we have the following theorem.

Theorem 4.1. Let $\alpha \in \mathbb{R}$. Then \mathcal{L} is well defined on $\mathcal{B}_{\log ^{\alpha}}$ and maps this space into $\mathcal{B}_{\log \alpha}$.

Proof. By Theorem 2.1 (a) in [8], we have that if $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in \mathcal{B}_{\log ^{\alpha}}$, then $\sum_{n=0}^{\infty}|\widehat{f}(n)| /(n+1)<\infty$. Therefore, the Libera operator \mathcal{L} is well defined on $\mathcal{B}_{\log ^{\alpha}}$.

By using Lemma 22 from [6], for $\nu=1$ and $p=\infty$, we find that

$$
M_{\infty}\left(r,(\mathcal{L} f)^{\prime}\right) \leqslant(1-r)^{-2} \int_{r}^{1}(1-s) M_{\infty}\left(s, f^{\prime}\right) \mathrm{d} s
$$

for all $0 \leqslant r<1$. Then, by using Sublemma 2.1, we have that

$$
\begin{aligned}
(1-r) M_{\infty}\left(r,(\mathcal{L} f)^{\prime}\right) & \leqslant \frac{1}{1-r} \int_{r}^{1}(1-s) M_{\infty}\left(s, f^{\prime}\right) \mathrm{d} s \\
& \leqslant C \frac{1}{1-r} \int_{r}^{1} \log ^{\alpha} \frac{2}{1-s} \mathrm{~d} s \\
& =C \frac{1}{1-r} \int_{\log (2 /(1-r))}^{\infty} t^{\alpha} \mathrm{e}^{-t} \mathrm{~d} t \\
& \leqslant C \log ^{\alpha} \frac{2}{1-r}
\end{aligned}
$$

Hence, we obtain $\mathcal{L} f \in \mathcal{B}_{\log ^{\alpha}}$.

4.2. Hilbert matrix operator on logarithmically weighted Bloch spaces.

 Our next result describes the action of the Hilbert matrix operator H on the logaritmically weighted Bloch space $\mathcal{B}_{\log ^{\alpha}}$ for $\alpha \in \mathbb{R}$. We improve results given in Proposition 5.1 and Proposition 5.2 in [4].Theorem 4.2. Let $\alpha \in \mathbb{R}$. Then H is well defined on $\mathcal{B}_{\log ^{\alpha}}$ and maps this space into $\mathcal{B}_{\log ^{\alpha+1}}$.

Proof. By Theorem 2.1 (a) in [8], we have that if $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in \mathcal{B}_{\log ^{\alpha}}$, then $\sum_{n=0}^{\infty}|\widehat{f}(n)| /(n+1)<\infty$. Hence, the Hilbert matrix operator H is well defined on $\mathcal{B}_{\log ^{\alpha}}$.

Now, let $f \in \mathcal{B}_{\log ^{\alpha}}$, where without loss of generality, we can additionally assume that $f(0)=0$. Then, by Lemma 4.2 .8 in [9], we can write

$$
f(z)=\int_{\mathbb{D}} \frac{f^{\prime}(w)\left(1-|w|^{2}\right)}{\bar{w}(1-\bar{w} z)^{2}} \mathrm{~d} A(w),
$$

for all $z \in \mathbb{D}$. Also, we have that

$$
\int_{\mathbb{D}} \frac{z^{k}|z|^{2 n}}{1-\bar{z}} \mathrm{~d} A(z)=\frac{1}{n+k+1},
$$

for all nonnegative integers n and k. Therefore,

$$
\int_{\mathbb{D}} f(z) \frac{|z|^{2 n}}{1-\bar{z}} \mathrm{~d} A(z)=\sum_{k=0}^{\infty} \frac{\widehat{f}(k)}{n+k+1}=\widehat{H f}(n) .
$$

Consequently

$$
\begin{aligned}
|\widehat{H f}(n)| & =\left|\int_{\mathbb{D}} f(z) \frac{|z|^{2 n}}{1-\bar{z}} \mathrm{~d} A(z)\right| \\
& =\left|\int_{\mathbb{D}} \frac{f^{\prime}(w)\left(1-|w|^{2}\right)}{\bar{w}} \int_{\mathbb{D}} \frac{|z|^{2 n}}{(1-\bar{w} z)^{2}(1-\bar{z})} \mathrm{d} A(z) \mathrm{d} A(w)\right| \\
& =\frac{1}{\pi}\left|\int_{\mathbb{D}} \frac{f^{\prime}(w)\left(1-|w|^{2}\right)}{\bar{w}} \int_{0}^{1} r^{2 n+1} \int_{0}^{2 \pi} \frac{1}{\left(1-\bar{w} r \mathrm{e}^{\mathrm{i} \theta}\right)^{2}\left(1-r \mathrm{e}^{-\mathrm{i} \theta}\right)} \mathrm{d} \theta \mathrm{~d} r \mathrm{~d} A(w)\right| \\
& =\frac{1}{\pi}\left|\int_{\mathbb{D}} \frac{f^{\prime}(w)\left(1-|w|^{2}\right)}{\bar{w}} \int_{0}^{1} r^{2 n+1} \frac{2 \pi}{\left(1-r^{2} \bar{w}\right)^{2}} \mathrm{~d} r \mathrm{~d} A(w)\right| \\
& \leqslant C \int_{\mathbb{D}} \frac{\left|f^{\prime}(w)\right|(1-|w|)}{|w|} \int_{0}^{1} \frac{r^{2 n+1}}{\left|1-r^{2} w\right|^{2}} \mathrm{~d} r \mathrm{~d} A(w) \\
& \leqslant C \int_{\mathbb{D}} \frac{\log ^{\alpha} \frac{2}{1-|w|}}{|w|} \int_{0}^{1} \frac{r^{2 n+1}}{\left|1-r^{2} w\right|^{2}} \mathrm{~d} r \mathrm{~d} A(w)
\end{aligned}
$$

$$
\begin{aligned}
& =C \int_{0}^{1} r^{2 n+1} \int_{\mathbb{D}} \frac{\log ^{\alpha} \frac{2}{1-|w|}}{|w|\left|1-r^{2} w\right|^{2}} \mathrm{~d} A(w) \mathrm{d} r \\
& =C \int_{0}^{1} r^{2 n+1} \int_{0}^{1} \log ^{\alpha} \frac{2}{1-\varrho} \int_{0}^{2 \pi} \frac{1}{\left|1-r^{2} \varrho \mathrm{e}^{\mathrm{i} \theta}\right|^{2}} \mathrm{~d} \theta \mathrm{~d} \varrho \mathrm{~d} r \\
& \leqslant C \int_{0}^{1} r^{2 n+1} \int_{0}^{1} \frac{1}{1-r^{2} \varrho} \log ^{\alpha} \frac{2}{1-\varrho} \mathrm{d} \varrho \mathrm{~d} r \\
& =C \int_{0}^{1} \log ^{\alpha} \frac{2}{1-\varrho} \int_{0}^{1} \frac{r^{n}}{1-r \varrho} \mathrm{~d} r \mathrm{~d} \varrho .
\end{aligned}
$$

On the other hand, we find that

$$
\int_{0}^{1} \frac{r^{n}}{1-r \varrho} \mathrm{~d} r=\sum_{k=0}^{\infty} \frac{\varrho^{k}}{n+k+1}
$$

Hence, by using Lemma 2.2 and Lemma 2.4, we obtain

$$
\begin{aligned}
|\widehat{H f}(n)| & \leqslant C \sum_{k=0}^{\infty} \frac{1}{n+k+1} \int_{0}^{1} \varrho^{k} \log ^{\alpha} \frac{2}{1-\varrho} \mathrm{d} \varrho \\
& \leqslant C \sum_{k=0}^{\infty} \frac{\log ^{\alpha}(k+2)}{(k+1)(n+k+1)} \\
& \leqslant C \frac{\log ^{\alpha+1}(n+2)}{n+1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|(H f)^{\prime}(z)\right| & =\left|\sum_{n=1}^{\infty} n \widehat{H f}(n) z^{n-1}\right| \\
& \leqslant \sum_{n=1}^{\infty} n|\widehat{H f}(n)||z|^{n-1} \\
& \leqslant C \sum_{n=1}^{\infty} \frac{n}{n+1} \log ^{\alpha+1}(n+2)|z|^{n-1} \\
& \leqslant C \sum_{n=0}^{\infty} \log ^{\alpha+1}(n+3)|z|^{n} \\
& \leqslant C \sum_{n=0}^{\infty} \log ^{\alpha+1}(n+2)|z|^{n}
\end{aligned}
$$

By using Theorem 2.3 (a), we find that

$$
\frac{1}{1-|z|} \log ^{\alpha+1} \frac{2}{1-|z|} \asymp \sum_{n=0}^{\infty} \log ^{\alpha+1}(n+2)|z|^{n} .
$$

Finally,

$$
\begin{aligned}
\left|(H f)^{\prime}(z)\right| & \leqslant C \sum_{n=0}^{\infty} \log ^{\alpha+1}(n+2)|z|^{n} \\
& \leqslant C \frac{1}{1-|z|} \log ^{\alpha+1} \frac{2}{1-|z|}
\end{aligned}
$$

Hence, $H f \in \mathcal{B}_{\log ^{\alpha+1}}$.

5. Libera and Hilbert matrix operator on logarithmically weighted Hardy-Bloch spaces

For $\alpha \in \mathbb{R}$ we define the logarithmically weighted Hardy-Bloch spaces $\mathcal{B}_{\log ^{\alpha}}^{1}$ in the following way:

$$
\mathcal{B}_{\log ^{\alpha}}^{1}=\left\{f \in \mathcal{H}(\mathbb{D}):\|f\|_{\mathcal{B}_{\log ^{\alpha}}^{1}}=|f(0)|+\int_{\mathbb{D}}\left|f^{\prime}(z)\right| \log ^{\alpha} \frac{2}{1-|z|} \mathrm{d} A(z)<\infty\right\} .
$$

For $\alpha=0, \mathcal{B}_{\log ^{0}}^{1}$ is the Hardy-Bloch space $\mathcal{B}_{0}^{1,1}$ (notation from [7]). We note that if $\alpha \geqslant 0$, then $\mathcal{B}_{\log ^{\alpha}}^{1} \subseteq \mathcal{B}_{0}^{1,1} \subseteq H^{1}$ and if $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in H^{1}$, then $\sum_{n=0}^{\infty}|\widehat{f}(n)| /(n+1)<\infty$.
5.1. Libera operator on logarithmically weighted Hardy-Bloch spaces. Action of the Libera operator on the logarithmically weighted Hardy-Bloch spaces has been considered in [8] and the following two theorems are proved.

Theorem 5.1 ([8]). Let $\alpha \geqslant-1$ and let $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in \mathcal{H}(\mathbb{D})$, where $\widehat{f}(n) \downarrow 0$ as $n \rightarrow \infty$. Then

$$
f \in \mathcal{B}_{\log ^{\alpha}}^{1} \quad \text { if and only if } \quad \sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log ^{\alpha}(n+2)}{n+1}<\infty
$$

Moreover, there is a constant C independent of the function f, such that

$$
\frac{1}{C}\|f\|_{\mathcal{B}_{\log \alpha}^{1}} \leqslant \sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log ^{\alpha}(n+2)}{n+1} \leqslant C\|f\|_{\mathcal{B}_{\log ^{\alpha}}^{1}}
$$

Theorem 5.2 ([8]). Let $\alpha>0$.
(a) Then \mathcal{L} is well defined on $\mathcal{B}_{\log ^{\alpha}}^{1}$ and maps this space into $\mathcal{B}_{\log ^{\alpha-1}}^{1}$.
(b) If $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n}$, where $\widehat{f}(n) \downarrow 0$ as $n \rightarrow \infty$ and $\sum_{n=0}^{\infty} \widehat{f}(n) /(n+1)<\infty$, then $\mathcal{L} f \in \mathcal{B}_{\log ^{\alpha-1}}^{1}$ implies $f \in \mathcal{B}_{\log ^{\alpha}}^{1}$.
(c) If $\alpha<0$, then $\overline{\mathcal{L}}$ cannot be extended to a continuous operator from $\mathcal{B}_{\log ^{\alpha}}^{1}$ to $\mathcal{H}(\mathbb{D})$.

For (a) see Theorem 2.3 in [8]. Item (b) follows from Theorem 1.1 and Theorem 1.2 in [8]. For (c) see Theorem 2.1 (c) in [8].

5.2. Hilbert matrix operator on logarithmically weighted Hardy-Bloch

 spaces. Now we are ready to state the main theorem of this section.Theorem 5.3. Let $\alpha \geqslant 0$.
(a) Then H is well defined on $\mathcal{B}_{\log ^{\alpha}}^{1}$ and maps this space into $\mathcal{B}_{\log ^{\alpha-1}}^{1}$.
(b) If $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n}$, where $\widehat{f}(n) \downarrow 0$ as $n \rightarrow \infty$ and $\sum_{n=0}^{\infty} \widehat{f}(n) /(n+1)<\infty$, then $H f \in \mathcal{B}_{\log ^{\alpha-1}}^{1}$ implies $f \in \mathcal{B}_{\log ^{\alpha}}^{1}$.
(c) The result in (a) is sharp in the sense that for any $\varepsilon>0$ there exists $f \in \mathcal{B}_{\log ^{\alpha}}^{1}$ such that $H f \notin \mathcal{B}_{\log ^{\alpha-1+\varepsilon}}^{1}$.
(d) If $\alpha<0$, then H cannot be extended to a continuous operator from $\mathcal{B}_{\log ^{\alpha}}^{1}$ to $\mathcal{H}(\mathbb{D})$.

Proof. (a) By Theorem 2.1 (b) in [8], we have that if $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in \mathcal{B}_{\log ^{\alpha}}^{1}$, then $\sum_{n=0}^{\infty}|\widehat{f}(n)| /(n+1)<\infty$. Therefore, the operator H is well defined on $\mathcal{B}_{\log ^{\alpha}}^{1}$.

Now, let $f \in \mathcal{B}_{\log ^{\alpha}}^{1}$, where without loss of generality, we can additionally assume that $f(0)=0$. Then, by Lemma 4.2.8 in [9], we have

$$
f(z)=\int_{\mathbb{D}} \frac{f^{\prime}(w)\left(1-|w|^{2}\right)}{\bar{w}(1-\bar{w} z)^{2}} \mathrm{~d} A(w)
$$

for all $z \in \mathbb{D}$. Let $S=\int_{\mathbb{D}}\left|(H f)^{\prime}(z)\right| \log ^{\alpha-1}(2 /(1-|z|)) \mathrm{d} A(z)$. Then, by using the integral representation of the Hilbert matrix operator $H f(z)=\int_{0}^{1}(f(t) /(1-t z)) \mathrm{d} t$,
we find that

$$
\begin{aligned}
S & \leqslant \int_{\mathbb{D}} \int_{0}^{1} \frac{|f(t)|}{|1-t z|^{2}} \log ^{\alpha-1} \frac{2}{1-|z|} \mathrm{d} t \mathrm{~d} A(z) \\
& =\int_{\mathbb{D}} \int_{0}^{1} \frac{1}{|1-t z|^{2}}\left|\int_{\mathbb{D}} \frac{f^{\prime}(w)\left(1-|w|^{2}\right)}{\bar{w}(1-\bar{w} t)^{2}} \mathrm{~d} A(w)\right| \log ^{\alpha-1} \frac{2}{1-|z|} \mathrm{d} t \mathrm{~d} A(z) \\
& \leqslant C \int_{\mathbb{D}} \frac{\left|f^{\prime}(w)\right|(1-|w|)}{|w|} \int_{\mathbb{D}} \log ^{\alpha-1} \frac{2}{1-|z|} \int_{0}^{1} \frac{\mathrm{~d} t}{|1-t z|^{2}|1-t w|^{2}} \mathrm{~d} A(z) \mathrm{d} A(w) \\
& \leqslant C \int_{\mathbb{D}} \frac{\left|f^{\prime}(w)\right|(1-|w|)}{|w|} \int_{\mathbb{D}} \frac{1}{|1-z w|^{3}} \log ^{\alpha-1} \frac{2}{1-|z|} \mathrm{d} A(z) \mathrm{d} A(w) \\
& \leqslant C \int_{\mathbb{D}} \frac{\left|f^{\prime}(w)\right|}{|w|} \int_{\mathbb{D}} \frac{1}{|1-z w|^{2}} \log ^{\alpha-1} \frac{2}{1-|z|} \mathrm{d} A(z) \mathrm{d} A(w) \\
& \leqslant C \int_{\mathbb{D}} \frac{\left|f^{\prime}(w)\right|}{|w|} \int_{0}^{1} \int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{\left|1-r \mathrm{e}^{\mathrm{i} \theta} w\right|^{2}} \log ^{\alpha-1} \frac{2}{1-r} \mathrm{~d} r \mathrm{~d} A(w) \\
& \leqslant C \int_{\mathbb{D}} \frac{\left|f^{\prime}(w)\right|}{|w|} \int_{0}^{1} \frac{1}{1-r|w|} \log ^{\alpha-1} \frac{2}{1-r} \mathrm{~d} r \mathrm{~d} A(w) .
\end{aligned}
$$

On the other hand, by using Lemma 2.2 and Theorem 2.3 (b), we have that

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{1-r|w|} \log ^{\alpha-1} \frac{2}{1-r} \mathrm{~d} r & =\sum_{n=0}^{\infty}|w|^{n} \int_{0}^{1} r^{n} \log ^{\alpha-1} \frac{2}{1-r} \mathrm{~d} r \\
& \asymp \sum_{n=0}^{\infty} \frac{\log ^{\alpha-1}(n+2)}{n+1}|w|^{n} \\
& \asymp \log ^{\alpha} \frac{2}{1-|w|}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
S & \leqslant C \int_{\mathbb{D}} \frac{\left|f^{\prime}(w)\right|}{|w|} \log ^{\alpha} \frac{2}{1-|w|} \mathrm{d} A(w) \\
& \leqslant C \int_{\mathbb{D}}\left|f^{\prime}(w)\right| \log ^{\alpha} \frac{2}{1-|w|} \mathrm{d} A(w) \\
& <\infty
\end{aligned}
$$

and we get that $H f \in \mathcal{B}_{\log ^{\alpha-1}}^{1}$.
(b) We have $H f(z)=\sum_{n=0}^{\infty} \widehat{H f}(n) z^{n}$, where $\widehat{H f}(n)=\sum_{k=0}^{\infty} \widehat{f}(k) /(n+k+1) \downarrow 0$ as $n \rightarrow \infty$. Then, by using Theorem 5.1, we find that

$$
\|H f\|_{\mathcal{B}_{\log ^{\alpha-1}}^{1}} \asymp \sum_{n=0}^{\infty} \widehat{H f}(n) \frac{\log ^{\alpha-1}(n+2)}{n+1}
$$

where the corresponding constant is independent of f. On the other hand, by using Lemma 2.4, we have that

$$
\begin{aligned}
\sum_{n=0}^{\infty} \widehat{H f}(n) \frac{\log ^{\alpha-1}(n+2)}{n+1} & =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\widehat{f}(k)}{n+k+1} \frac{\log ^{\alpha-1}(n+2)}{n+1} \\
& =\sum_{k=0}^{\infty} \widehat{f}(k) \sum_{n=0}^{\infty} \frac{\log ^{\alpha-1}(n+2)}{(n+1)(n+k+1)} \\
& \asymp \sum_{k=0}^{\infty} \widehat{f}(k) \frac{\log ^{\alpha}(k+2)}{k+1}
\end{aligned}
$$

Therefore,

$$
\|H f\|_{\mathcal{B}_{\log ^{\alpha-1}}^{1}} \asymp \sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log ^{\alpha}(n+2)}{n+1}
$$

where the corresponding constant is independent of f. Then $\sum_{n=0}^{\infty} \widehat{f}(n) \log ^{\alpha}(n+2) \times$ $(n+1)^{-1}<\infty$ and by using Theorem 5.1 we find that $f \in \mathcal{B}_{\log ^{\alpha}}^{1=0}$.
(c) Let $\varepsilon>0$ and let $\widehat{f}(n)=\left(\log ^{\alpha+1+\varepsilon / 2}(n+2)\right)^{-1}$ for all $n \geqslant 0$. Then $\sum_{n=0}^{\infty} \widehat{f}(n) \times$ $(n+1)^{-1}<\infty$ and $\widehat{f}(n) \downarrow 0$ as $n \rightarrow \infty$. Also, we find that

$$
\sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log ^{\alpha}(n+2)}{n+1}<\infty \quad \text { and } \quad \sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log ^{\alpha+\varepsilon}(n+2)}{n+1}=\infty
$$

Let $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n}$. Then $f \in \mathcal{B}_{\log ^{\alpha}}^{1}$ by Theorem 5.1 and $H f \notin \mathcal{B}_{\log ^{\alpha-1+\varepsilon}}^{1}$, because otherwise we would have $\sum_{n=0}^{\infty} \widehat{f}(n) \log ^{\alpha+\varepsilon}(n+2)(n+1)^{-1}<\infty$ by part (b) of this theorem. A contradiction.
(d) Since $\mathcal{B}_{\log ^{\alpha}}^{1} \subset \mathcal{B}_{\log ^{\beta}}^{1}$ for $\beta<\alpha$, we may assume that $-1<\alpha<0$. Let

$$
f(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\log (n+2)}
$$

For every $r \in(0,1)$ the function $f_{r}(z)=f(r z)$ belongs to $\mathcal{H}(\overline{\mathbb{D}})$ and by Theorem 5.1, the set $\left\{f_{r}: r \in(0,1)\right\}$ is bounded in $\mathcal{B}_{\log ^{\alpha}}^{1}$. On the other hand,

$$
H f_{r}(0)=\sum_{k=0}^{\infty} \frac{r^{k}}{(k+1) \log (k+2)} \rightarrow \infty \quad \text { as } r \uparrow 1 .
$$

This contradicts the fact that if a set $X \subset \mathcal{B}_{\log ^{\alpha}}^{1}$ is bounded and H is bounded on $\mathcal{B}_{\log ^{\alpha}}^{1}$, then the set $\{H f(0): f \in X\}$ is bounded, because the functional $h \rightarrow h(0)$ is continuous on $\mathcal{H}(\mathbb{D})$. This completes the proof.

Remark 5.4. We note that the result stated in Theorem 5.2 (a) is sharp in the sense that for any $\varepsilon>0$ and $\alpha>0$ there exists $f \in \mathcal{B}_{\log ^{\alpha}}^{1}$ such that $\mathcal{L} f \notin \mathcal{B}_{\log ^{\alpha-1+\varepsilon}}^{1}$. As above, we have that

$$
f(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\log ^{\alpha+1+\varepsilon / 2}(n+2)} \in \mathcal{B}_{\log ^{\alpha}}^{1},
$$

while $\mathcal{L} f \notin \mathcal{B}_{\log ^{\alpha-1+\varepsilon}}^{1}$.
Corollary 5.5. Let $\alpha \geqslant 0$ and let $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n}$, where $\widehat{f}(n) \geqslant 0$ for all nonnegative integers n and $\sum_{n=0}^{\infty} \widehat{f}(n) /(n+1)<\infty$. Then

$$
H f \in \mathcal{B}_{\log ^{\alpha-1}}^{1} \quad \text { if and only if } \quad \sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log ^{\alpha}(n+2)}{n+1}<\infty .
$$

Moreover, there is a constant C independent of the function f, such that

$$
\frac{1}{C}\|H f\|_{\mathcal{B}_{\log ^{\alpha-1}}^{1}} \leqslant \sum_{n=0}^{\infty} \widehat{f}(n) \frac{\log ^{\alpha}(n+2)}{n+1} \leqslant C\|H f\|_{\mathcal{B}_{\log \alpha-1}^{1}} .
$$

Proof. We have that $\widehat{H f}(n)=\sum_{k=0}^{\infty} \widehat{f}(k) /(n+k+1) \downarrow 0$ as $n \rightarrow \infty$, because $\widehat{f}(k) \geqslant 0$ for all $k \geqslant 0$. Now the proof follows from the proof of part (b) of Theorem 5.3.

Corollary 5.6. Let $\alpha \geqslant 0$ and let $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n} \in \mathcal{H}(\mathbb{D})$, such that $\sum_{n=0}^{\infty}|\widehat{f}(n)| \log ^{\alpha}(n+2)(n+1)^{-1}<\infty$. Then $H f \in \mathcal{B}_{\log ^{\alpha-1}}^{1}$.

Proof. Let $x_{n}=\operatorname{Re} \widehat{f}(n)$ and $y_{n}=\operatorname{Im} \widehat{f}(n)$ for all nonnegative integers n. Then, functions $g(z)=\sum_{n=0}^{\infty} x_{n} z^{n}$ and $h(z)=\sum_{n=0}^{\infty} y_{n} z^{n}$ are holomorphic in the unit disk \mathbb{D}. Now, let $x_{n}^{+}=\left(\left|x_{n}\right|+x_{n}\right) / 2$ and $x_{n}^{-}=\left(\left|x_{n}\right|-x_{n}\right) / 2$ for all $n=0,1, \ldots$. Then, $x_{n}^{ \pm} \geqslant 0, x_{n}^{ \pm} \leqslant\left|x_{n}\right| \leqslant|\widehat{f}(n)|$ and $x_{n}^{+}-x_{n}^{-}=x_{n}$. Therefore, functions $g^{+}(z)=$ $\sum_{n=0}^{\infty} x_{n}^{+} z^{n}$ and $g^{-}(z)=\sum_{n=0}^{\infty} x_{n}^{-} z^{n}$ are holomorphic in the unit disk \mathbb{D}, and

$$
\sum_{n=0}^{\infty} x_{n}^{ \pm} \frac{\log ^{\alpha}(n+2)}{n+1} \leqslant \sum_{n=0}^{\infty}|\widehat{f}(n)| \frac{\log ^{\alpha}(n+2)}{n+1}<\infty
$$

Hence, by using Corollary 5.5, we find that

$$
H g^{+} \in \mathcal{B}_{\log ^{\alpha-1}}^{1} \quad \text { and } \quad H g^{-} \in \mathcal{B}_{\log ^{\alpha-1}}^{1}
$$

Then, we have

$$
\begin{gathered}
\int_{\mathbb{D}}\left|(H g)^{\prime}(z)\right| \log ^{\alpha-1} \frac{2}{1-|z|} \mathrm{d} A(z)=\int_{\mathbb{D}}\left|\left(H g^{+}\right)^{\prime}(z)-\left(H g^{-}\right)(z)\right| \log ^{\alpha-1} \frac{2}{1-|z|} \mathrm{d} A(z) \\
\leqslant \int_{\mathbb{D}}\left(\left|\left(H g^{+}\right)^{\prime}(z)\right|+\left|\left(H g^{-}\right)(z)\right|\right) \log ^{\alpha-1} \frac{2}{1-|z|} \mathrm{d} A(z)<\infty
\end{gathered}
$$

and we get $H g \in \mathcal{B}_{\log ^{\alpha-1}}^{1}$. In the same way, we prove that $H h \in \mathcal{B}_{\log ^{\alpha-1}}^{1}$. Then, we have that $H f=H g+\mathrm{i} H h$, because of $f=g+\mathrm{i} h$. Consequently,

$$
\begin{aligned}
\int_{\mathbb{D}}\left|(H f)^{\prime}(z)\right| \log ^{\alpha-1} \frac{2}{1-|z|} \mathrm{d} A(z) & =\int_{\mathbb{D}}\left|(H g)^{\prime}(z)+\mathrm{i}(H h)^{\prime}(z)\right| \log ^{\alpha-1} \frac{2}{1-|z|} \mathrm{d} A(z) \\
& \leqslant \int_{\mathbb{D}}\left(\left|(H g)^{\prime}(z)\right|+\left|(H h)^{\prime}(z)\right|\right) \log ^{\alpha-1} \frac{2}{1-|z|} \mathrm{d} A(z) \\
& <\infty
\end{aligned}
$$

Therefore, $H f \in \mathcal{B}_{\log ^{\alpha-1}}^{1}$.

References

[1] M. Jevtić, B. Karapetrović: Hilbert matrix operator on Besov spaces. Publ. Math. 90 (2017), 359-371.
[2] M. Jevtić, B. Karapetrović: Libera operator on mixed norm spaces $H_{\nu}^{p, q, \alpha}$ when $0<p<1$. Filomat 31 (2017), 4641-4650.
[3] M. Jevtić, D. Vukotić, M. Arsenović: Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces. RSME Springer Series 2, Springer, Cham, 2016.
zbl MR doi
[4] B. Łanucha, M. Nowak, M. Pavlović: Hilbert matrix operator on spaces of analytic functions. Ann. Acad. Sci. Fenn., Math. 37 (2012), 161-174.
[5] M. Mateljević, M. Pavlović: L^{p}-behaviour of the integral means of analytic functions. Stud. Math. 77 (1984), 219-237.
zbl MR doi
[6] M. Pavlović: Definition and properties of the libera operator on mixed norm spaces. The Scientific World Journal 2014 (2014), Article ID 590656, 15 pages.
[7] M. Pavlović: Function Classes on the Unit Disc. An introduction. De Gruyter Studies in Mathematics 52, De Gruyter, Berlin, 2014.
[8] M. Pavlović: Logarithmic Bloch space and its predual. Publ. Inst. Math. (Beograd) (N.S.) 100(114) (2016), 1-16.
[9] K. Zhu: Operator Theory in Function Spaces. Monographs and Textbooks in Pure and Applied Mathematics 139, Marcel Dekker, New York, 1990.
[10] A. Zygmund: Trigonometric Series. Vol. I, II. Cambridge University Press, Cambridge, 1959.

Author's address: Boban Karapetrović, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia, e-mail: bkarapetrovic@matf.bg.ac.rs.

