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Abstract. We show that if o > 1, then the logarithmically weighted Bergman space A%oga
2 whileif @ >2and 0 < e < a—2,

is mapped by the Libera operator £ into the space Alog"_l’
then the Hilbert matrix operator H maps A%Oga into A120 a—2_e-

We show that the Libera operator £ maps the logarithmically weighted Bloch space
Bioge, a € R, into itself, while H maps Bjgga into BloguH.

In Pavlovié’s paper (2016) it is shown that £ maps the logarithmically weighted Hardy-
Bloch space Bllogu7 a > 0, into B! We show that this result is sharp. We also show

logo—l .

that H maps Blloga, a 2 0, into Bllogu,l and that this result is sharp also.
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1. INTRODUCTION

We consider the action of the Libera and Hilbert matrix operators on logarithmi-

cally weighted Bergman, Bloch and Hardy-Bloch spaces.

2
log®

is mapped by the Libera operator £ into the space A120g°_1' In [4] it is shown that
if f € A2 ., where a > 3, then Hf € A% Here H is the Hilbert matrix operator.

We show that if > 1, then the logarithmically weighted Bergman space A

log™»
Also, in [1] it is shown that H: A7 . — A® for a > 2. We improve this result by
showing that if @ > 2 and 0 < € < o — 2, then H is well defined on A%Ogu and maps

2
logo—2—a .

this space into A
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We show that the Libera operator £ maps the logarithmically weighted Bloch
space Bloge, a € R, into itself, while H maps Bjoge into Bjgga+1.

In [8] it is shown that £ maps the logarithmically weighted Hardy-Bloch space
Blloga, a > 0, into Blloga_l. We note that this result is sharp. Our main results are
given in Theorem 5.3. Among other things, we show that H maps Blloga, a 2 0, into
Blloga,l and that this result is sharp.

The definitions of logarithmically weighted Bergman, Bloch and Hardy-Bloch
spaces will be given in Sections 3, 4 and 5, respectively.

For 0 < p < oo, Hardy space HP is the space of all functions f holomorphic in the

unit disk D = {z € C: |z| < 1} for which

[fllere =1 Fllp = sup Mp(r, f) < oo,

0<r<1

where

1 2n Qo 1/p
M,y(r, ) = (2_71/0 | f(re!)] dt) if 0<p<oo,

and
Moo(ra f) = Sup |f(reit)|'

o<t<2n

The Lebesgue measure on D will be denoted by A and will be normalized so as to
have A(D) = 1. That is,

1 1 .
dA(z) = —dady = —rdrdt, where z =z + iy = re'’.
T T

The Bergman space AP, 0 < p < oo, is the space of holomorphic functions in
LP(D,dA), that is,

w = {1 eu®: 11k = [P aae) < ).

A function f holomorphic in the unit disk D belongs to the Hardy-Bloch space
B 0 < p<oo,0<q< oo (notation from [7]) if

1
—1
/OMg(r,f’)(l—r)q dr < oo for 0 < g < oo,

and

sup (1 —r)My(r, f') < oo for ¢ = .
or<1

Let H(D) denote the space of all functions holomorphic in the unit disk D of
the complex plane endowed with the topology of uniform convergence on compact
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subsets of D. The dual of H(D) is equal to H (D), where g € H(D) means that g is
holomorphic in a neighborhood of D (depending on g). The duality pairing is given

by
= Z F(n)a(n)

where f(z) = Z f(n)z" € H(D) and g(2) = Z g(n)z" € H(D).
It is easy to see that the Libera operator deﬁned by

Lg(z) = i( ooﬂ?—ﬂ)z" = /Olg(t+ (1 —1t)z)dt,

maps H(D) into H(D).
We denote by L the operator

whenever the integral converges uniformly on compact subsets of D. Uniform con-
vergence means that the limit

r
lim glt+ (1 —1t)z)dt
r—=1= Jo
is uniform with respect to z in any compact subset of . This hypothesis guarantees
that Lg is a holomorphic function in D. We call £ also the Libera operator since
L = L on H(D).
The Hilbert matrix is an infinite matrix H = [hmk];’;’kzo whose entries are hy, ;, =
1/(n+ k + 1) for all nonnegative integers n and k. It can be viewed as an operator
on spaces of holomorphic functions by its action on their Taylor coefficients. If

by
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It is possible to write Hf, f € HP, 1 < p < 00, in an integral form, which is quite
convenient for analyzing the operator. More specifically, by looking at the Taylor
series expansion of the function f, we have the following integral representation:

[t
= | o

Hf(z)

It is well known that the Libera operator £ acts as a bounded operator from H?
into H? if and only if 1 < p < oo and that £ acts as a bounded operator from AP
into A? if and only if 2 < p < oo (see [2], [6]). On the other hand, it is well known
that the Hilbert matrix operator H acts as a bounded operator from H? into H?
if and only if 1 < p < oo and that H acts as a bounded operator from AP into AP if
and only if 2 < p < oo (see [3]).

2. SOME PRELIMINARY RESULTS

In this section we shall collect some results which will be needed in our work. We
start with one useful result.

Sublemma 2.1. Let « € R and a > 2. Then

o log® a
/ e tdt < 0228 ,
1 a

oga
where C,, is a constant independent of a.

Proof. (1) Case a <0.

oo oo 1 (03
/ t%e~t dt < log® a/ e tdt = M.
1

oga loga a

(2) Case o > 0. In this case, partial integration gives

o0 1 « oo
/ e tar = 28 %4 a/ fe—le=t 4
I loga

oga a
1 a 1 a—1 o0
— % 0, 0% 9, ala— 1)/ t*2e~tdt
a a loga

1 a oo
< Cq %8 4., ala — 1)/ t*2e~t dt.
a 1

oga

562



Continuing on this way, we find that

oo 1 a oo
/ t%e " dt < C, g 4 +ala—1)... (a— LaJ)/ tomlel=le=t gy
1 a

oga loga

log® a log®~lel=1 g
<22 L aa—1).. . (a- LaJ)gT
<cC, log a7
a
where |« is the largest integer less then or equal to a. (I

Consequently, we get the following result.

Lemma 2.2. Let o € R and let n be a nonnegative integer. Then

1 (e%
2 1 2
/ r" log® dr < og”(n +2)
0 1—r n+1

)

where the corresponding constant is independent of n, i.e., there is a constant C.,
independent of n such that

1 log®(n+2)

log®(n + 2)
Co n+1 '

1

2
< "log® ——dr < C,
/07“ °8 1+ “ n+1

Proof. (1) Case a > 0. First, we find that

! 2 ! 2
/ r" log® dr > / " log® dr
0 L—r 1-1/(n+1) I—r

1

> log(’(n+2)/ r*dr
1-1/(n+1)
~ log™(n +2) (1 B (1 1 )"H)
 on+1 n+1
log™(n + 2)
- n+1l

On the other hand, by using Sublemma 2.1, we have that

! 2 ! 2
/ r" log® dr < / log® dr
1-1/(n+1) L—r 1-1/(n+1) L—r

oo
=2 / t*e~tdt
log(2n+2)

oo
<2 / tetdt
log(n+2)
log™(n +2)
n+1

< Ca

)
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and

1—1/(n+1) 9 1-1/(n+1)
/ r"log® —— dr < Cylog®(n + 2) / r’*dr
0 L—r 0

log®(n + 2) 1 \n+l
T
Y n+1 n+1
log™(n +2)

n+1

[e%

Therefore,
1 a
2 1 2
/ " log® dr < CQM.
0 1—7r n -+ 1
(2) Case a@ < 0. Let (r) = rlog®(2/r), 0 < r < 1. Then ¢ is a nonnegative,
increasing function on the interval (0, 1] and

172 0(r) < p(tr) < to(r)

for all 0 < t < 1. By using Lemma 4.1 in [5], we find that
1
e(l—r) 1
" dr = .
/0 " 1—7r " gp(n—i—l)

1 (e
2 1 2
/ r" log® ar = 28 (n+ )
0 1—7r n—|—1

Hence,

The following auxiliary result will be useful.

Theorem 2.3. (a) For every real «, the Taylor coefficients ﬁ(n) of the function

1 2
F(z)= log® ——
(Z) 1—20g 1—2

have the property
F(n) < log®(n +2),

where the corresponding constant is independent of n.
(b) For every real o, the Taylor coefficients G(n) of the function

o 2

have the property
~ log® ' (n+2)
Gn)x —-——2
(n) ]

where the corresponding constant is independent of n.

)
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This theorem is a consequence of Theorem 2.31 on page 192 of the classical mono-
graph [10], hence we omit its proof. Now, we are ready to prove our next result.

Lemma 2.4. Let o € R and let k be a nonnegative integer. Then

oo

Z log®(n + 2) - log® ™t (k +2)
m+1)(n+k+1) kE+1 ’

where the corresponding constant is independent of k, i.e., there is a constant C.,
independent of k such that

a+1 e8] a a+1
1 log™" (k +2) o Z log®(n +2) <C(ylog (k‘—i—2).
Ca kE+1 “(n+1)(n+k+1) kE+1

Proof. By using Lemma 2.2 and Theorem 2.3 (b), we find that

1 (X+1k 2 1 2
g wre) (k+ )x/ rFlog®t? dr
k+1 0 1—7"
1 oo a
1 2
X/rkz og (n—’_)ndr
0 ne0 n+1
_i’ilog“(n—km/1 ntk g
N n+1 0

> log®(n + 2)
Z n+1)(n+k+1)

where the corresponding constant is independent of k. ([

3. LIBERA AND HILBERT MATRIX OPERATOR ON
LOGARITHMICALLY WEIGHTED BERGMAN SPACES

For a € R we define the logarithmically weighted Bergman spaces A2 . as follows:

log

R = {1 € HO): 111y, = [ 1P 08" 1= 44() < oo .

o C A% for @ >0 and A2 , = A2

Note that A? g0
g

log
Let f(z) = Z f( )2 € A120g By using Parseval’s formula and Lemma 2.2, we
n=0
find that

) 1 [e%S)
-~ 2 -~ log®(n +2)
2 n (e} - 2
1. = 310 [ rmtog® 25 ar= S 702 2,
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where the corresponding constant is independent of function f, i.e., there is a con-
stant C independent of function f such that

o0

lo n—|—2
<Y IR P2 o2,

1 2
1713 -

log™

3.1. Libera operator on logarithmically weighted Bergman spaces. Our
next result describes the action of the Libera operator £ on the logarithmically

weighted Bergman space A2 . for a > 1.

log

Theorem 3.1. If o > 1, then the operator L is well defined on A?
this space into Alog(,_1

joge and maps

Proof. Let f(z) = if\( )2" € A2

joge- Then, by using the Cauchy-Schwarz

inequality, we find that
iu Zlf 2log”(n+2) )"
— n+ n+1

because o > 1. From this, we get that if f(z) = ) fn)z" € Af o, then 7 |f(n)| X
n=0 n=0

1 1/2
(n—|— 1) log® (n+2)> < 00,

||M8

(n+1)~! < co. Hence, the operator £ is well defined on A%Oga. Using inequality (59
from [6], we find that

PM2(r, L) < C(1 —r)_l/lMQQ(s £)ds

for all 0 < r < 1. Therefore,

CH)Plog? ™ — 2 dA —21M Lf)log®™!
L1er@R 00 =g a4ty =2 [ e 2 og?

1—r2

2
M3 ( log® ™"
C/ 1—r/ 5 (s, f)dslog® 1_r2dr

=C M;(s,f)/ log®™! T2 drds
0 o LT
<C iz QEEEEWEES drd
<o [ M [ o rds
0 o +t—T -
1
=C | M;(s,f) (loga —— —log” 2) ds
0
1
<C | Mi(s, f)log® . ds
0 —
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—C/ uM3(u?, f) log® T

< C/ uMQQ(u,f) log®
0

2
. 2 @
7C/D|f(2)| log TP dA(z) < o0
Hence, Lf € Alog° - O
3.2. Hilbert matrix operator on logarithmically weighted Bergman

spaces. In [4] it is shown that if f € A2 ., where a > 3, then Hf € A% Also, in [1]
it is shown that H: A2 . — A? for a > 2. Our next theorem improves this result.

log™»

log
Theorem 3.2. If « > 2 and 0 < € < « — 2, then H is well defined on Alogo and
maps this space into Alzogu,z,a.
oo
Proof. For a > 2, we have that if f(z) = Z (n)z" € Alogu, then we get

> |f( )|/(n+1) < co. Therefore, the operator H is well defined on A2 On
=0

log®

the other hand, if f(z) = Z f( )" € AR

joge» then by using the Cauchy-Schwarz

inequality and Lemma 2.4, We ﬁnd that

A UR)

H ()=

o A

2 o

f k)|? log® (k +2)
n+k+1

IH £11% =

logdx—2—¢

Mx

n=0
*log* 2% (n + 2)
n+1

tnqg

3
I
o

0k

OM8

3

y i log® %7 ¢(n 4 2)
kon—i—k—f—llog (k+2) n+1

~ log® (k + 2) >0 log® 2 (n 4+ 2)
2
£ (k) E+1 Zlog k—|—2 Z(n+1)(n+k+1)

N
I

=0

1 log® ' (k + 2)
< CIfI3 &
A2 o ];)bg k+2) k+l

oo

1
N CHfHA & z; (k + 1) log' ™ (k + 2)

< 0.

Therefore, Hf € Aloga I O
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We note that for o € (1, 2] the operator H is well defined on Afoga . We do not know
whether Theorem 3.2 holds in this case. A natural question is: Does Theorem 3.2

hold for e = 0?7

4. LIBERA AND HILBERT MATRIX OPERATOR ON
LOGARITHMICALLY WEIGHTED BLOCH SPACES

For oo € R we define the logarithmically weighted Bloch spaces Bioge as follows,

Bige = {1 € H(D): £ (2)|(1 - |2]) = O log" 1_2|Z|)}.

The norm in the space Bjoge is defined by

| £l Broge = [£(O)] +sup[f'(2)|(1 — |2]) log™® _2 :
zeD 1—z|

Note that By, is the Bloch space By™™ = B.

4.1. Libera operator on logarithmically weighted Bloch spaces. Now, we
have the following theorem.

Theorem 4.1. Let o € R. Then L is well defined on Biyg~ and maps this space

into Bioge .

F(n)z" € Bioge,

18

Proof. By Theorem 2.1 (a) in [8], we have that if f(z) =

n=0

then > |f(n)|/(n+1) < co. Therefore, the Libera operator £ is well defined on
n=0

Bioge -
By using Lemma 22 from [6], for ¥ = 1 and p = oo, we find that

1
Mao(r, (CF)) < (1= 1) 2 / (1 - 8)Maof(s, ) ds

T

for all 0 < r < 1. Then, by using Sublemma 2.1, we have that

1 1
(1= )M (L)) € T [ (1= )Mol [ ds
—r ),
I 2
<C log® ——d
1—r /T °8 1-s "
1 o0
=C / t*e " dt
L =7 Jiog(2/1-r)
2
< Clog® ——.
1—7r
Hence, we obtain Lf € Bigga. O
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4.2. Hilbert matrix operator on logarithmically weighted Bloch spaces.
Our next result describes the action of the Hilbert matrix operator H on the log-
aritmically weighted Bloch space Bioge for a € R. We improve results given in
Proposition 5.1 and Proposition 5.2 in [4].

Theorem 4.2. Let o € R. Then H is well defined on By~ and maps this space

thO Blogu+1 .
Proof. By Theorem 2.1 (a) in [8], we have that if f(z) = ) Fn)zm € Bioge s
n=0

o0
then > |f(n)]/(n+ 1) < co. Hence, the Hilbert matrix operator H is well defined
n=0

on Blogix.
Now, let f € Bioge, where without loss of generality, we can additionally assume
that f(0) = 0. Then, by Lemma 4.2.8 in [9], we can write

1—wz

for all z € D. Also, we have that

Zk|z|2n 1
/D Tz M@ =

for all nonnegative integers n and k. Therefore,

|2n .
/f =4 Zn+k+1 Hf(n).

Consequently,
()| = \ / f<z>% a(z)
L |w|2)/ 2> dA(2) dA(w )‘

w 1 —wz)%(1 - %)

( = |wl*) / 2n+1/ e (1 = dfdr dA(w)
. L= lof) [ 25,
= e )‘

|f (w 1— |w|)/ 2l
/ =P drdA(w)

log® 1 2n+1
<c/ = '“"/ ! dr dA(w)
o Jwl Sy 1 —rPwf?
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log®
—C/ 21 _Lo8" dA(w) dr

lel1 [w[[L = r2w|?

=C [ r* g 2_ (" . d6 dodr
Og 1_9 |1_7n2 10|2 e
C/ 2n+1/ OL 2 dgdr
1—7“2 1—op

P
= log® —— .
C’/ og® 1_9 1_mdrdg

On the other hand, we find that

1o %
/0 1—7“9 Zn—l—k—i—l'

Hence, by using Lemma 2.2 and Lemma 2.4, we obtain

o0

. 1 ! 2
H < _ Flog® ——d
H ) cZHkH/O o log” e
> log™(k + 2)
CZ (k+1)(n+k+1)

1oga+1(n +2)
n+1 '

<C

Therefore,

n)lz[*

Z g™ (4 2]

< C'z:logo‘Jr1 (n+3)z|"
n=0

(oo}
<CD log*t(n+2)[2".
n=0

By using Theorem 2.3 (a), we find that

oo

Z a+1 TL+2 |Z|n

log®*

1— 1z 1—|Z|

570



Finally,

(H[) (2)] < C Y log™H(n+2)|2]"
n=0

2
<C——1 atl 2
1=z % 1

Hence, H f € Bjgga+1.

5. LIBERA AND HILBERT MATRIX OPERATOR ON
LOGARITHMICALLY WEIGHTED HARDY-BLOCH SPACES

For a € R we define the logarithmically weighted Hardy-Bloch spaces Bloga in the

following way:
2

Bl = { £ €HO): Il =110+ [ 17GIog™ 2 a4(:) < oo
For a = 0, Blogo is the Hardy-Bloch space By' (notation from [7]). We note
that if @ > 0, then B!

Lee © By C HY and if f(z) = zof(n)z" € H!, then
Eolf(n)l/(w 1) < oo.

5.1. Libera operator on logarithmically weighted Hardy-Bloch spaces

Action of the Libera operator on the logarithmically weighted Hardy-Bloch spaces
has been considered in [8] and the following two theorems are proved

o~

Theorem 5.1 ([8]). Let a > —1 and let f(z) = (n)z™ € H(D), where

n
f(n) 10 asn — oco. Then

NgH)

0

< 00.

= 1og (n+2)
fe Blog if and only if zz: fln ni—l—l

Moreover, there is a constant C independent of the function f, such that

o0

log n+2
Ml <3 7o log"(n+2)

< Cllflls:

log®™
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Theorem 5.2 ([8]). Let a > 0.

(a) Then L is well defined on BL . and maps this space into Blloga,l.

log

(b) If f(2) = E f(n)z", where f(n) | 0 as n — oo and iof(n)/(n—l—l) < o0,
then £f < B )

(c) If a < 0, then L cannot be extended to a continuous operator from B

(D).

loga—1 implies f € Blog

joge tO

For (a) see Theorem 2.3 in [8]. Item (b) follows from Theorem 1.1 and Theorem 1.2
n [8]. For (c) see Theorem 2.1 (c) in [8].

5.2. Hilbert matrix operator on logarithmically weighted Hardy-Bloch
spaces. Now we are ready to state the main theorem of this section.

Theorem 5.3. Let o« > 0.
(a) Then H is well defined on Blloga and maps this space into Blloga,l.

(b) If f(=) = E f(n)z", where f(n) | 0 as n — oo and iO: Fn)/(n+1) < oo,
n=0
then HfEB

(c) The result in (a) is sharp in the sense that for any € > 0 there exists f € B
such that Hf ¢ B!

(d) If a <0, then H cannot be extended to a continuous operator from Bj,,. to

(D).

: 1
loga—1 implies f € Bj g -

log®

log"‘ 14e-

~

Proof. (a)By Theorem 2.1 (b)in [8], we havethatif f(z) = >  f(n)z" € Blogu,
n=0

then Z |f(n)|/(n+1) < co. Therefore, the operator H is well defined on B ..

Now let fe Blog(,, where without loss of generality, we can additionally assume
that f(0) = 0. Then, by Lemma 4.2.8 in [9], we have

1—wz

for all z € D. Let S = [, |(Hf) (2 Y log® 1 (2/(1 - |2]))d (z) Then by using the
integral representation of the Hilbert matrix operator H f(z fo /(1 —tz))dt,

572



we find that

1
FOF | a1 2

<

S\// |1—tz|210g P |dtdA(z)

2

[ (w)(1 = |w|?) N
// 1 —tz|2 / 1 —wt? dA(w)| log™™" 1— il At dA(z)
| (w)| (1 = Jw]) ot 1 g
/ ~/ﬂ]10g -z /0 TP —gwp 1A dAMW)
| (w 1 — |w)) 1 2
/ |w| /D|1_2w|310g -] dA(z) dA(w)

|f |/ 1 a—1 2

c/ m |1_zw|2 log —1_| |dA(z)dA(w)
|/ (w I//Q“ L2

C/ |w] |1 —7“elaw|2 1 _rdrdA(w)

|f | / a—1
< ] 2 drdA(w).
C’/D ol ; 1—r|w| og 1_rdrd (w)

On the other hand, by using Lemma 2.2 and Theorem 2.3 (b), we have that

| ) = ! L2
/ —log® " ——dr = E |w|”/ ™ log®™ dr
o 1—rwl 1—r 0 1—r
n=0

B L MR T
n+1

n=0

= log® .
e

Consequently,

/ | w log 2 dA(w)

<c/ If’(w)I log” 1= dA(w)
<

and we get that Hf € B}

a—1-

log
(b) We have Hf(z) = z Hf(n)2", where H f(n) =
n — oco. Then, by using Theorern 5.1, we find that

~

( )/(n+k+1)]0as

||M8

2~ log® Hn+2)
H H _—
1 f s -, = zzjo fn) ===
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where the corresponding constant is independent of f. On the other hand, by using
Lemma 2.4, we have that

g 0g T +2) e f(R) log®M(n+2)
T;)Hf(n)T*zszrkjtl nt1
B > > loga_l(n—i—Q)
*Zf(k)z::(n+1)(n+k+1)

_ 2 log®(k+2)
=2 W=

Therefore,

[ H fll5

1@1 ’

i log®(n + 2)
— n+1

o0
where the corresponding constant is independent of f. Then > f(n)log®(n +2) x
n=0

(n+1)~! < 0o and by using Theorem 5.1 we find that f € Blloga.

(c) Let £ > 0 and let f(n) = (log® **/2(n+2))~ for all n > 0. Then Y. f(n) x
n=0

(n+1)"! < oo and f(n) | 0 as n — co. Also, we find that

i f(n) loga (n + 2) < o and i f(n) logaJre (n + 2) -~

= n+1 n+1

Let f(2) = Zo f( )z™. Then f € Bloga by Theorem 5.1 and H f ¢ Blloga—ua: because
n=

o0

otherwise we would have > f(n)log®*¢(n 4+ 2)(n 4+ 1)~! < oo by part (b) of this
=0

theorem. A contradiction.n

(d) Since BL,. C Bllogﬁ for 8 < o, we may assume that —1 < a < 0. Let

log
oo Zn
2= T;) log(n +2)°
For every r € (0,1) the function f,(z) = f(rz) belongs to H(D) and by Theorem 5.1,
the set {f,: r € (0,1)} is bounded in Bj .. On the other hand,

o0 k
r
Hf.(0 Zk—i—l — o0 asrtl.

)log(k +2)

This contradicts the fact that if a set X C Bloga is bounded and H is bounded
on Bj .., then the set {Hf(0): f € X} is bounded, because the functional h — h(0)
is continuous on H(D). This completes the proof. O
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Remark 5.4. We note that the result stated in Theorem 5.2 (a) is sharp in the
sense that for any £ > 0 and « > 0 there exists f € BIO « such that £f ¢ B!
As above, we have that

logu 14e-

[e e} n

z
f zZ) = S Blo oy
( ) nz:% 1Oga+1+5/2(n + 2) log

while Lf ¢ Bloga 1te-

o0 _ ~
Corollary 5.5. Let a > 0 and let f(z) = > f(n)z", where f(n) > 0 for all
n=0

nonnegative integers n and > F(n)/(n+1) < 0. Then
n=0

! 2
... ifand only if Zf log"(n+2) _ .

H
fEB n+1

log™—

Moreover, there is a constant C independent of the function f, such that

o0

1 ~ log®(n+2
Sl < Z;)f(n)¥

< C|H
= <l Sy

loga—1 "

— oo
Proof. We have that Hf(n) = > f(k)/(n+k+1) | 0 as n — oo, because
k=0

f(k;) > 0 for all & > 0. Now the proof follows from the proof of part (b) of Theo-
rem 5.3. [l

~

f(n)z" € H(D), such that

18

Corollary 5.6. Let o > 0 and let f(z) =

n=0

1F(n)|log®(n + 2)(n +1)~' < co. Then Hf €

»—-,_.

r:vl'

S
gt

Proof. Let z, = Re f( ) and y, = Im f( ) for all nonnegative integers n.

Then, functions g(z Z xn2" and h(z
x

n=

) = ) =
disk D. Now, let z;} = (| n|—|—a:n)/2 and z;, (|a:n| z,)/2 for all n = 0,1,....
Then T >0, 2t |a:n| <|f(n)| and =} — z; = z,. Therefore, functions g*(z) =

Z zrz" and g~ (2) = Z x, z" are holomorphic in the unit disk D, and
n=0

n=0

o0
Z 2" are holomorphic in the unit

= log™(n +2) = log (n+2)
+ S
Zx" n+1 Z n+1

n=0 n=0

< 0.
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Hence, by using Corollary 5.5, we find that

Hg" € Blloga_l and Hg € Blloga_l.
Then, we have
_ 2 _ _ 2
[ ltgyGiog == da) = [ 1Y) = ()@ og™! {2 dAG)
D 1—|z| D 1—|z|
_ _ 2
< /[D (I(Hg") (2)] + |(Hg™)(2)]) log™™* 1_—|Z|dA(Z) < oo,
and we get Hg € Blloga_l. In the same way, we prove that Hh € Blloga_l. Then, we
have that Hf = Hg + iHh, because of f = g + ih. Consequently,
a— 2 . a— 2
[y @og™ = dae) = [ ((Ho) )+ iCHRY ()] log™! 1 dA(:)
D 1— 2] D 1— 2]
< /D(|(H9)'(Z)| +|(HR)'(2)]) log™ ™! =7 dA(z)
< o0.
Therefore, H f € Blloga,l. O
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