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Abstract. A group G is said to be a C-group if for every divisor d of the order of G, there
exists a subgroup H of G of order d such that H is normal or abnormal in G. We give
a complete classification of those groups which are not C-groups but all of whose proper
subgroups are C-groups.
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1. Introduction

In this paper, only finite groups are considered and our notation is standard.

Let F be a class of groups. A group G is called a minimal non-F-group or F-

critical group if G does not belong to F, but all proper subgroups belong to F.

It seems clear that a detailed knowledge of minimal non-F-groups can give some

insight into what makes a group belong to F. Moreover, arguments by induction or

a minimal counterexample where one wants to prove that a group belongs to F can

benefit from a detailed description of the minimal non-F-groups. Many scholars have

introduced in the past finite groups with this property for some particular classes.

For example, Miller and Moreno in [7] considered the minimal non-abelian groups,
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Schmidt in [9] analysed the minimal non-nilpotent groups and Doerk in [3] studied

the minimal non-supersolvable groups. Some related topics can be found in [1], [2].

Recall that a subgroup H of a group G is said to be abnormal in G if g ∈ 〈H,Hg〉

for all g in G. Recently, Liu, Li and He in [6] called a group G a C-group if for

each divisor d of the order of G, G contains a subgroup H of order d such that H

is either normal or abnormal in G, and gave the structure of this kind of groups. In

this paper, we will give the classification of minimal non-C-groups.

2. Preliminaries

In this section we show some lemmas which are required in Section 3.

Lemma 2.1. Let H be a subgroup of a group G. Then the following statements

are true:

(a) Suppose that H 6 K 6 G. If H is abnormal in G, then H is abnormal in K

and K is abnormal in G.

(b) If H is abnormal in G, then H is self-normalizing in G.

(c) Let N E G and N 6 H . Then H is abnormal in G if and only if H/N is

abnormal in G/N .

P r o o f. Statements (a) and (b) hold by [4], Chapter 1, 6.20. We can obtain

that Statement (c) follows by a routine check. �

Lemma 2.2 ([6], Theorem 3.1). The following statements for a group G are

equivalent:

(a) G is a C-group.

(b) Either G is nilpotent or G satisfies the following three conditions:

(b1) G is supersolvable,

(b2) G/F (G) is cyclic of order p, where p is the smallest prime divisor of the

order of G, and

(b3) G/Op(G) is a Frobenius group whose Frobenius complement P/Op(G) is

cyclic of order p, where P is a Sylow p-subgroup of G.

Lemma 2.3 ([8], 13.4.3). Let α be a power automorphism of an abelian group A.

If A is a p-group of finite exponent, then there is a positive integer l such that aα = al

for all a in A. If α is nontrivial and has order prime to p, then α is fixed-point-free.

Lemma 2.4 ([3]). Let G be a minimal non-supersolvable group. Then:

(1) G is solvable.

(2) G has a unique normal Sylow p-subgroup P .
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(3) P/Φ(P ) is a minimal normal subgroup of G/Φ(P ), and P/Φ(P ) is non-cyclic.

(4) If p 6= 2, then the exponent of P is p.

(5) If P is non-abelian and p = 2, then the exponent of P is 4.

(6) If P is abelian, then the exponent of P is p.

Lemma 2.5. If G is a minimal non-C-group, then G is solvable and |π(G)| ∈

{2, 3}.

P r o o f. Since every proper subgroup of G is a C-group, G is supersolvable

or minimal non-supersolvable by Lemma 2.2, which implies that G is solvable by

Lemma 2.4.

Let {P1, P2, . . . , Pn} be a Sylow system of G with p1 < p2 < . . . < pn, where pi is

a prime dividing |Pi|. If n = 1, then G is nilpotent and Lemma 2.2 means that G is

a C-group, and this contradiction forces n > 2. Suppose that n > 4. We can see that

P2P3P4 . . . Pn, P1P3P4 . . . Pn, P1P2P4 . . . Pn and P1P2P3P5 . . . Pn are C-groups, and

so they are supersolvable by Lemma 2.2 again. This implies that G contains four

supersolvable subgroups. Applying a theorem of Doerk (see [3], Satz 4) we can see

that G is supersolvable.

By hypothesis, P2P3P4 . . . Pn, P1P2P4 . . . Pn and P1P2P3 are C-groups, so P2×P3×

P4 × . . . × Pn is a nilpotent normal subgroup of G by Lemma 2.2. Hence F (G) =

Op1
(G)P2P3P4 . . . Pn and G/F (G) is cyclic of order p1. Set G = G/Op1

(G). Then

G = P1 ⋉ F (G). By hypothesis and Lemma 2.2, we have that G is not a Frobenius

group and so there exists a p′1-element x in F (G) such that CG(x) 6⊆ F (G), then

G = CG(x)F (G) and thus CG(x) contains a Sylow p1-subgroup P1 of G. Thus

[P1, x] = 1. By hypothesis, P1Pi is a C-group for 2 6 i 6 n. Suppose that P1 is

normal in P1Pi for all i ∈ {2, . . . , n}. Then P1Pi is nilpotent for all i ∈ {2, . . . , n} and

so P1 is normal in G. This would imply that G is nilpotent, against the hypothesis.

Therefore there exists an i ∈ {2, . . . , n} such that P1 is abnormal in P1Pi. Hence

P1 is abnormal in H for every Hall subgroup H of G such that P1Pi 6 H < G by

Lemma 2.1. Consequently, P1 is abnormal in G. On the other hand, by Lemma 2.1

and the above argument, we can see that P 1 is abnormal in G, a contradiction.

Hence |π(G)| ∈ {2, 3}. �

Lemma 2.6 ([5]). Suppose that a p′-group H acts on a p-group G. Let

Ω(G) =

{

Ω1(G), p > 2,

Ω2(G), p = 2.

If H acts trivially on Ω(G), then H acts trivially on G as well.
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3. Main results

In this section, we classify all minimal non-C-groups. Our first result is about

|π(G)| = 2.

Theorem 3.1. Let G be a minimal non-C-group with |π(G)| = 2. Then G is

exactly of one of the following types:

(I) G = 〈x, y : xp = yq
n

= 1, y−1xy = xi〉, where n > 2, iq 6≡ 1 (mod p) and

iq
2

≡ 1 (mod p) with 1 < i < p.

(II) G = P ⋊ Q, where P = 〈a, b〉 is an elementary abelian p-group of order p2,

Q = 〈y〉 is cyclic of order qn > 1. Define [a, y] = 1, by = bi, where i is a primitive

qth root of unity modulo p with 1 < i < p.

(III) G = P ⋊Q, where Q = 〈y〉 is cyclic of order qn > 1, with q ∤ p− 1, and P is

an irreducible Q-module over the field of p elements with kernel 〈yq〉 in Q. (In this

type, the restriction p > q is not necessary.)

(IV) G = P ⋊Q, where P is a non-abelian special p-group of rank 2m, the order of

pmodulo q being 2m, Q = 〈y〉 is cyclic of order qn > 1, y induces an automorphism in

P such that P/Φ(P ) is a faithful and irreducible Q-module, and y centralizes Φ(P ).

Furthermore, |P/Φ(P )| = p2m and |P ′| 6 pm. (In this type, the restriction p > q is

not necessary.)

(V) G = P ⋊Q, where P = 〈a0, a1, . . . , aq−1〉 is an elementary abelian p-group of

order pq, Q = 〈y〉 is cyclic of order qn, q is the highest power of q dividing p− 1 and

n > 1. Define ayj = aj+1 for 0 6 j < q − 1 and ayq−1 = ai0, where i is a primitive qth

root of unity modulo p.

P r o o f. Let G = PQ, where P ∈ Sylp(G), Q ∈ Sylq(G). We can distinguish

two cases:

Case 1. G is supersolvable and p > q.

(1.1 ) Assume that P and Q are cyclic.

Let P = 〈x〉 and Q = 〈y〉 with |x| = pm and |y| = qn. Applying a result

in [8], 10.1.10, we conclude that y−1xy = xi with iq
n

≡ 1 (mod pm), 1 < i < pm and

(pm, qn(i−1)) = 1. If 〈yq〉 is normal in G, then F (G) = P ×〈yq〉. Set G = G/Oq(G),

then G = P ⋊Q. It follows that Q induces a power automorphism α of order q in P .

By Lemma 2.3, α is fixed-point-free, and so G/Oq(G) is a Frobenius group. Thus,

G is a C-group, a contradiction. Hence 〈yq〉 is not normal in G. By hypothesis,

P 〈yq〉 is a C-group. We can see that 〈yq
2

〉 is normal in P 〈yq〉 due to Lemma 2.2.

Thus (yq)−1xyq = xiq 6= x, (yq
2

)−1xyq
2

= xiq
2

= x, so that iq 6≡ 1 (mod pm),

iq
2

≡ 1 (mod pm). Surely, yq induces a power automorphism of order q in P , and

every proper subgroup of 〈yq〉 is normal in G. If xp 6= 1, then by Lemma 2.3,
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〈xp〉〈yq〉 6= 〈xp〉× 〈yq〉. By hypothesis and Lemma 2.2, 〈yq〉 is normal in 〈xp〉〈y〉 and

so 〈xp〉〈yq〉 = 〈xp〉 × 〈yq〉, a contradiction. Therefore, G is of type (I).

(1.2 ) Assume that P is non-cyclic and Q is cyclic.

Since P E G, there exists a chief series

1 E . . . E R E P E . . . E G

of G. By Maschke’s theorem [8], Theorem 8.1.2, there exists a subgroup N of P such

that P/Φ(P ) = R/Φ(P ) × N/Φ(P ), where |N/Φ(P )| = p and N/Φ(P ) E G/Φ(P ).

Thus, N E G, N � R and 1 E N E P E G is a normal series of G. Applying

Schreier’s refinement theorem (see [8], Theorem 3.1.2) we obtain that P has another

maximal subgroup K such that K is normal in G, and so P has at least two maximal

subgroups R and K which are normal in G. Let Q = 〈y〉. Then both R〈y〉 and K〈y〉

are C-groups. If [R, y] = [K, y] = 1, then G is nilpotent, a contradiction. If 〈y〉 is

abnormal in both R〈y〉 and K〈y〉, hence 〈y〉 is abnormal in G and we can conclude

that G is a C-group by Lemma 2.2, a contradiction. We may assume without loss of

generality that [R, y] = 1 and 〈y〉 is abnormal in K〈y〉. This implies that R ∩K = 1

and so P is an elementary abelian p-group of order p2. Set R = 〈a〉 and K = 〈b〉.

Then P = 〈a, b〉, [a, y] = 1, by = bi and by
q

= b. Hence G is of type (II).

(1.3 ) Assume that P is cyclic and Q is non-cyclic.

Let P = 〈a〉 and |a| = pm. For two arbitrarily chosen maximal subgroups Q1

and Q2 of Q, PQ1 and PQ2 are C-groups by hypothesis. It is clear that Oq(PQ1)

charPQ1 E G and Oq(PQ2) charPQ2 E G, so Oq(PQ1) E G and Oq(PQ2) E G.

Suppose that Oq(PQ1) 6= Oq(PQ2), then Oq(G) = Oq(PQ1)Oq(PQ2). If m = 1,

then G/Oq(G) is a Frobenius group whose Frobenius complement Q/Oq(G) is cyclic

of order q. By Lemma 2.2, G is a C-group, a contradiction. So we may assume that

m > 2. By hypothesis, G/Oq(G) is not a Frobenius group but 〈ap
m−1

〉Q is a C-group.

Hence 〈ap
m−1

〉Oq(G)/Oq(G) · 〈y〉Oq(G)/Oq(G) is nilpotent for some y ∈ Q \Oq(G).

Furthermore, [ap
m−1

, y] = 1. Applying Lemma 2.6, we see that G is nilpotent,

a contradiction. This means that Oq(PQ1) = Oq(PQ2) and it is contained in every

maximal subgroup of Q. Thus, Oq(G) = Φ(Q) is the 2-maximal subgroup of Q, and

let Q = 〈x, y,Φ(Q)〉. If ap 6= 1, then 〈ap
m−1

〉Q is a C-group, and Q has a maximal

subgroup, say 〈x,Φ(Q)〉, such that 〈x,Φ(Q)〉 E 〈P,Q〉 = G by Lemma 2.2 and

Lemma 2.6. This contradiction implies ap = 1. If CG(P ) = P×Φ(Q), then G/CG(P )

is an elementary abelian q-group of order q2. However, G/CG(P ) . Aut(P ), and

Aut(P ) is cyclic, a contradiction. Therefore, Q has an element, say x, which is

contained in CG(P ), and Q has a maximal subgroup 〈x,Φ(Q)〉 which is normal in G,

a contradiction.
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(1.4 ) Assume that both P and Q are non-cyclic.

We can argue as in (1.2) and (1.3), to conclude easily that P has at least two maxi-

mal subgroupsR andK which are normal inG, andOq(PQ1) E G andOq(PQ2) E G

for two arbitrarily chosen maximal subgroups Q1 and Q2 of Q.

If Oq(PQ1) 6= Oq(PQ2), then Oq(G) = Oq(PQ1)Oq(PQ2) ⋖ Q and G/F (G) is

cyclic of order q. Since G is not a C-group, G/Oq(G) is not a Frobenius group by

Lemma 2.2. Hence there exist an element a of P and an element y of Q \ Oq(G)

such that [a, y] = 1, and so [a, y] = 1, where a = aOq(G), y = yOq(G). Furthermore,

〈a〉Q is nilpotent and we may assume 〈a〉 6 R. If R∩K > 1, then we have that both

RQ and KQ are nilpotent by Lemma 2.2. Hence G is nilpotent. This contradiction

implies that P = 〈a, b〉 is an elementary abelian p-group of order p2, and Q =

〈y,Oq(G)〉, where q | p− 1 and 1 < Oq(G) ⋖ Q. Define [a, y] = 1, by = bi, where i is

a primitive qth root of unity modulo p with 1 < i < p. Clearly, P 〈y〉 is not a C-group

by Lemma 2.2, this possibility does not occur.

We consider the case thatOq(G) = Oq(PQ1) = Oq(PQ2) = Φ(Q) is the 2-maximal

subgroup of Q, and let Q = 〈x, y,Φ(Q)〉. If RQ is nilpotent, then [K,Q] 6= 1 as G

is not nilpotent. Since KQ is a C-group, there is a maximal subgroup Q∗ of Q such

that [Q∗,K] = 1 by Lemma 2.2, which implies Q∗ E G, a contradiction. Similarly,

KQ is not nilpotent either. Hence Q is abnormal in both RQ and KQ. Since RQ

is a C-group, Oq(RQ) is a maximal subgroup of Q by Lemma 2.2. We may assume

without loss of generality that Oq(RQ) = 〈y,Oq(G)〉. If R ∩ K 6= 1, then there is

at least a nontrivial element g in R ∩ K such that [g,Oq(RQ)] = 1. Furthermore,

our hypothesis and Lemma 2.2 can be combined to give that KOq(RQ) is nilpotent.

This means that Oq(RQ) is normal in G, a contradiction. Hence P is an elementary

abelian p-group of order p2. Let P = 〈a〉 × 〈b〉. Define [a, x] = 1, [b, y] = 1, ay = ai,

bx = bj, q | p − 1, where i, j are two primitive qth roots of unity modulo p with

1 < i, j < p. Clearly, G contains a subgroup P 〈x,Oq(G)〉 which is not a C-group by

Lemma 2.2, a contradiction.

Case 2. G is not supersolvable.

In this case, G is a minimal non-supersolvable group and we can assume that

G = PQ and P E G, where P ∈ Sylp(G), Q ∈ Sylq(G) by Lemma 2.4.

Suppose that M is a maximal subgroup of G containing Q. Set M = P3Q,

where P3 is a Sylow p-subgroup of M . By [P3, Q] 6 P ∩ P3Q = P3, we have

NG(P3) > P3Q = M . Since NP (P3) > P3, P3 is normal in G. By Lemma 2.4 and

the maximality of M , P3 = Φ(P ) is the Sylow p-subgroup of M .

(2.1 ) Assume that Q = 〈y〉 is cyclic.

If G is also a minimal non-nilpotent group, then by [2], Theorem 3, G is either of

type (III) or of type (IV).
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If G is not a minimal non-nilpotent group and P is abelian, applying [1], The-

orems 9 and 10, we assume that G = PQ, where P = 〈a0, a1, . . . , aq−1〉 is an ele-

mentary abelian p-group of order pq, Q = 〈y〉 is cyclic of order qn, qf is the highest

power of q dividing p − 1 and n > f > 1. Define ayj = aj+1 for 0 6 j < q − 1

and ayq−1 = ai0, where i is a primitive q
f th root of unity modulo p. Since P 〈yq〉 is

a C-group, yq induces a fixed-point-free automorphism of order q in P by Lemma 2.2.

Hence ai
q

0 = ay
q
2

0 = a0. Thus i
q ≡ 1 (mod p) and f = 1, so that G is of type (V).

If G is not a minimal non-nilpotent group and P is non-abelian, by [1], Theorems

9 and 10, we may assume that G = PQ is such that P = 〈a0, a1〉 is an extraspecial

group of order p3 with exponent p, Q = 〈y〉 is a cyclic group of order 2n with 2f

the largest power of 2 dividing p − 1 and n > f > 1, and ay0 = a1 and ay1 = ai0x,

where x ∈ 〈[a0, a1]〉 and i is a primitive 2fth root of unity modulo p. Since ay
2

0 =

ay1 = ai0x /∈ 〈a0〉, P 〈y2〉 is a non-nilpotent C-group and Φ(P )〈y〉 is also a C-group.

By calculation, G is not a minimal non-C-group.

(2.2 ) Assume that Q is non-cyclic.

Applying [1], Theorems 9 and 10, p > q. For two arbitrarily chosen maximal sub-

groups Q1 and Q2 of Q, PQ1 and PQ2 are C-groups. By Lemma 2.2, Oq(PQ1) E G

and Oq(PQ2) E G. If Oq(PQ1) 6= Oq(PQ2), then Oq(G) = Oq(PQ1)Oq(PQ2) ⋖ Q.

Examining the types 6–10 in [1], Theorems 9 and 10, and their proofs, we find none of

them is a minimal non-C-group. This implies that Oq(PQ1) = Oq(PQ2) is contained

in an arbitrary maximal subgroup of Q. Thus, Oq(G) = Φ(Q) is the 2-maximal sub-

group of Q, and let Q = 〈x, y,Φ(Q)〉. It is clear that Φ(G)q 6 Φ(Q), where Φ(G)q is

the Sylow q-subgroup of Φ(G). Examining the types 6–10 in [1], Theorems 9 and 10,

and their proofs again, we find none of them coincides with a minimal non-C-group.

Conversely, it is clear that the groups of types (I) to (V) are minimal non-C-groups.

�

The following result classifies all minimal non-C-groups with |π(G)| = 3.

Theorem 3.2. Let G be a minimal non-C-group with |π(G)| = 3. Then G is

exactly of one of the following types:

(I) G = 〈a, b : ap = bqr
m

= 1, b−1ab = ai〉 with r | p − 1, p > q > r and m > 1,

where iq 6≡ 1 (mod p) and ir ≡ 1 (mod p) with 1 < i < p.

(II) G = 〈a, b : ap = bq
mr = 1, b−1ab = ai〉 with q | p− 1, q > r and m > 1, where

iq ≡ 1 (mod p) and ir 6≡ 1 (mod p) with 1 < i < p.

(III) G = 〈a, b : ap = bqr = 1, b−1ab = ai〉 with q > r, where ir 6≡ 1 (mod p),

iq 6≡ 1 (mod p), and iqr ≡ 1 (mod p) with 1 < i < p.

(IV) G = (P ⋊ Q) ⋊ R, where R is a cyclic subgroup of order r, normalizing

a Sylow q-subgroup Q = 〈x〉 of G, Q/Φ(Q) is an irreducible R-module over the field
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of q elements, and P is an irreducible QR-module over the field of p elements, where

q | p− 1, r | p− 1 and r | q − 1. In this case, Φ(G)p′ , the Hall p′-subgroup of Φ(G),

coincides with 〈xq〉 and centralizes P .

P r o o f. Let G = PQR, where P ∈ Sylp(G), Q ∈ Sylq(G), R ∈ Sylr(G) with

p > q > r.

We first consider the case that G is supersolvable. In this case, we have that P

is normal in G. If P is non-cyclic, then due to our hypothesis P1QR and P2QR are

C-groups for distinct maximal subgroups P1, P2 of P which are normal in G, which

implies that Q is normal in G as QR is a C-group. It is clear that R is not normal

in G. If R is abnormal in both PR and QR, then R is abnormal in G and so G is

a C-group, a contradiction. If [P,R] = 1 or [Q,R] = 1, then P1QR and P2QR are

nilpotent by Lemma 2.2; this means that G is nilpotent. This contradiction forces

that P is cyclic. Moreover, if |P | > p, then Φ(P )QR is nilpotent by Lemma 2.2 and

so G is nilpotent by Lemma 2.6, a contradiction. Hence |P | = p.

Assume that [P,Q] = 1. Then Q is normal in G. If [Q,R] = 1 and [P,R] 6= 1,

then G is a metacyclic group. In fact, if |Q| > q, then PQ1R is a C-group for no

maximal subgroup Q1 of Q by Lemma 2.2, a contradiction. Thus |Q| = q. If R is

not cyclic, then Lemma 2.2 and our hypothesis can be combined to give that both

PQR1 and PQR2 are nilpotent for distinct maximal subgroups R1 and R2 of R. This

implies that G is nilpotent, our Lemma 2.2 provides a contradiction. Therefore, G is

a metacyclic group. Applying a result in [8], 10.1.10, we assume

G = 〈a, b : ap = bqr
m

= 1, b−1ab = ai〉

where r | p− 1, iqr
m

≡ 1 (mod p) and (p, qrm(i − 1)) = 1 with 1 < i < p. Since

ab
r

= a and ab
q

6= a, we have ir ≡ 1 (mod p) and iq 6≡ 1 (mod p). This is a group of

type (I). Similarly, we can see that G is of type (I) if [P,R] = 1 and [Q,R] 6= 1. If R

is abnormal in both PR and QR, then R is abnormal in G. We can show that G is

a C-group, a contradiction.

Assume that [P,Q] 6= 1. If Q is not cyclic, then there exist distinct maximal

subgroups Q1 and Q2 of Q such that they are normal in QR. It is clear that PQ1R

and PQ2R are C-groups by hypothesis. It follows from Lemma 2.2 that [P,Q1] = 1 =

[P,Q2] and hence [P,Q] = 1, a contradiction. Hence Q is cyclic and let |Q| = qm.

If |R| > r, then by Lemma 2.2, PQR1 is a C-group for any maximal subgroup R1

of R, and so PQ = P × Q, a contradiction. Thus, |R| = r. Combining the above

arguments we obtain that G is also a metacyclic group. If [P,R] = 1 = [Q,R], then

we have that this is a group of type (II). If R commutes with one of P and Q, then

it follows that m = 1 and hence G is of type (III). If [P,R] 6= 1 and [Q,R] 6= 1, then

we can see that G is a C-group, a contradiction.
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Now we consider the case that G is minimal non-supersolvable.

Applying [1], Theorems 9, 10, we may first assume that P E G, R is a cyclic

subgroup of order rs+t, with r a prime number and s and t integers such that s > 1

and t > 0, normalizing Q, Q/Φ(Q) is an irreducible R-module over the field of q

elements, whose kernel is the subgroup D of order rt of R, and P is an irreducible

QR-module over the field of p elements, where q | p − 1, rs | p − 1 and r | q − 1.

In this case, Φ(G)p′ , the Hall p′-subgroup of Φ(G), coincides with Φ(Q) × D and

centralizes P . If |R| > r, then there exists a maximal subgroup R1 of R such that

PQR1 is a C-group, and so PQ = P × Q by Lemma 2.2, a contradiction. Hence

|R| = r. On the other hand, if Q is non-cyclic, then there exist two maximal

subgroups Q1 and Q2 of Q such that PQ1R and PQ2R are C-groups. This induces

that Q1 and Q2 centralize P by Lemma 2.2, and so PQ is nilpotent, a contradiction.

It makes Q cyclic, so G is of type (IV).

We may next assume that R is a cyclic subgroup of order 2s+t, with s and t integers

such that s > 1 and t > 0, normalizing a Sylow q-subgroup Q of G, Q/Φ(Q) is an

irreducible R-module over the field of q elements whose kernel is the subgroup D of

order 2t of R, and P is an extraspecial group of order p3 and exponent p such that

P/Φ(P ) is an irreducible QR-module over the field of p elements, where q | p−1 and

2s | p− 1. In this case, Φ(G)p′ , the Hall p′-subgroup of Φ(G), is equal to Φ(Q)×D

and centralizes P . Arguing as above, we easily obtain that Q is cyclic and |R| = r.

Examining the subgroups PQ and Φ(P )QR of G, we conclude that at least one of

them is not a C-group, a contradiction.

Conversely, it is clear that the groups of types (I) to (IV) are minimal non-C-

groups. �
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