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Benôıt Florent Sehba, Accra

Received October 27, 2016. First published February 8, 2018.

Abstract. We present a proof of the weighted estimate of the Bergman projection that
does not use extrapolation results. This estimate is extended to product domains using an
adapted definition of Békollé-Bonami weights in this setting. An application to bounded
Toeplitz products is also given.
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1. Introduction and statement of the results

The upper-half plane is the set H := {z = x + iy ∈ C : y > 0}. For α > −1 and

1 < p < ∞, the weighted Bergman space Ap
α(H) consists of all analytic functions f

on H such that

(1.1) ‖f‖pp,α :=

∫

H

|f(x+ iy)|pyα dxdy < ∞.

The Bergman space A2
α(H) (−1 < α < ∞) is a reproducing kernel Hilbert space

with kernel Kα
w(z) = Kα(z, w) = (z − w)−(2+α). That is, for any f ∈ A2

α(H), the

following representation holds:

(1.2) f(w) = Pαf(w) = 〈f,Kα
w〉α =

∫

H

f(z)Kα(w, z) dVα(z),

where for simplicity, we write dVα(x+iy) = yα dxdy. The positive Bergman operator

P+
α is defined by replacing Kα

w by |Kα
w| in the definition of Pα. Note that the

boundedness of P+
α implies the boundedness of Pα.
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Let I be an interval in R, we denote by QI the set

QI = {z = x+ iy ∈ C : x ∈ I, 0 < y < |I|}.

Let ω be a positive locally integrable function defined on H and α > −1. We say

ω is a Békollé-Bonami weight (or ω belongs to the class Bp,α(H)) if

[ω]Bp,α
:= sup

I⊂R

I interval

(

1

|I|2+α

∫

QI

ω(z) dVα(z)

)(

1

|I|2+α

∫

QI

ω(z)1−q dVα(z)

)p−1

< ∞,

pq = p+ q.

In [2], [3], Békollé and Bonami proved that the Bergman projection Pα is bounded

on Lp(H, ω dVα) if and only if the weight ω is in the class Bp,α(H). Pretty recently,

Pott and Reguera in [13] have been able to obtain the weighted norm estimate of

this operator in terms of the characteristic [ω]Bp,α
. More precisely, they proved the

following.

Theorem 1.1 (Pott and Reguera [13]). Let 1 < p, q < ∞, p = q(p − 1) and

−1 < α < ∞. Suppose that ω ∈ Bp,α(H). Then Pα is bounded on Lp(ω dVα).

Moreover,

(1.3) ‖Pα‖Lp(ω dVα)→Lp(ω dVα) 6 C(p)[ω]
max{1,q/p}
Bp,α

.

The proof of the above theorem as presented in [13] is as follows: first, the authors

proved that the estimate (1.3) holds for p = 2 and for all weights ω in the class

B2,α(H); secondly, they stated and proved a sharp extrapolation result from which

they were able to extend the former estimate to the full range 1 < p < ∞ and for all

ω ∈ Bp,α(H).

Our main aim in this note is to revisit the proof of the estimate (1.3), provide

a kind of simplification by avoiding the use of extrapolation. This kind of direct

proof has been already obtained for Calderón-Zygmund operators [11] and it seems

natural to also provide a direct proof for the weighted estimate of the Bergman

projection.

Let n > 2, the first octant is the set

(0,∞)n := {(y1, . . . , yn) ∈ R
n : yj > 0, j = 1, . . . , n}

and the tube domain over the first octant is

Hn := R
n + i(0,∞)n = {z = (z1, . . . , zn) ∈ C

n : ℑzj > 0, j = 1, . . . , n}.
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Given α = (α1, . . . , αn) ∈ R
n and β = (β1, . . . , βn) ∈ R

n, the notation α < β or

α = β means respectively that αj < βj or αj = βj , j = 1, . . . , n. The notation α > β

is equivalent to β < α and α 6 β is equivalent to α < β or α = β. We also use the

notation 0 = (0, . . . , 0), −1 = (−1, . . . ,−1), and ∞ = (∞, . . . ,∞).

For α > −1 and 1 < p < ∞, the weighted Bergman space Ap
α(H

n) consists of all

analytic functions f on Hn such that

(1.4) ‖f‖pp,α :=

∫

Hn

|f(z1, . . . , zn)|
p dVα1

(z1) . . . dVαn
(zn) < ∞.

We will be also using the notation

dVα(z) = dVα1
(z1) . . . dVαn

(zn) := yα1

1 . . . yαn
n dx1 . . . dxn dy1 . . . dyn.

The Bergman space A2
α(H

n), −1 < α < ∞, is a reproducing kernel Hilbert space

with kernel

Kα
w(z) = Kα1(z1, w1) . . .K

αn(zn, wn) =
1

(z1 − w1)2+α1
. . .

1

(zn − wn)2+αn
.

That is, for any f ∈ A2
α(H

n), the following representation holds:

(1.5) f(w) = Pαf(w) = 〈f,Kα
w〉α =

∫

Hn

f(z)Kα(w, z) dVα(z).

Let us introduce the class Bp,α(H
n), 1 < p < ∞, Rn ∋ α = (α1, . . . , αn) > −1.

We say a positive locally integrable function ω on Hn belongs to Bp,α(H
n) if there

is a constant C > 0 such that for any k ∈ {1, . . . , n},

(1.6) sup
ξ=(ξ1,...,ξk−1,ξk+1,...,ξn)∈Hn−1

[ω(ξ1, . . . , ξk−1, ·, ξk+1, . . . , ξn)]Bp,αk
(H) 6 C.

We denote by [ω]Bp,α(Hn) the infimum of the constants C in (1.6).

Note that the class Bp,α(H
n) is not empty; one easily checks that the weight

ω =
n
∏

j=1

ωj where ωj ∈ Bp,αj
(H) belongs to Bp,α(H

n).

From our definition of the class Bp,α(H
n) and the one parameter estimate (1.3),

we easily deduce the following result.

Proposition 1.2. Let 1 < p, q < ∞, p = q(p − 1) and −1 < α = (α1, . . . ,

αn) < ∞. Suppose that ω ∈ Bp,α(H
n). Then Pα is bounded on Lp(Hn, ω dVα(z)).

Moreover,

(1.7) ‖Pα‖Lp(Hn,ω dVα(z))→Lp(Hn,ω dVα(z)) 6 C(p)[ω]
n×max{1,q/p}
Bp,α(Hn) .
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In the next section, we provide some useful results needed later. The simplified

proof of Theorem 1.1 is given in Section 3. In the last section, we give an applica-

tion of the estimates (1.3) and (1.7) to the boundedness of the product of Toeplitz

operators.

As usual, given two positive quantities A and B, the notation A . B or A & B

means that A 6 CB or B 6 CA, respectively, for some absolute positive constant C.

The notation A ⋍ B means that A . B and B . A. We will use C(p) to say that

the constant C depends only on p.

2. Some useful tools

Given an interval I ⊂ R, the Carleson box associated with I is the subset QI of

H defined by

QI := {x+ iy ∈ H : x ∈ I and 0 < y < |I|}.

The center of QI is the point wI := xI+iyI such that xI is the center of the interval I

and yI = |I|/2. We have the following result.

Lemma 2.1. Let I be a subinterval of R and QI the associated Carleson box.

Then for any w ∈ QI ,

|wI − w| ⋍ yI

where wI is the center of QI .

P r o o f. Let w = x+ iy. On the one hand, we have

|wI − w|2 = (xI − x)2 + (yI + y)2 > y2I .

On the other hand, we have

|wI − w|2 = (xI − x)2 + (yI + y)2 6 13y2I .

�

We recall that the normalized reproducing kernel kαw, w = u + iv, of A2
α(H) is

given by

kαw(z) :=
Kα

w(z)

‖Kα
w‖2,α

=
v1+α/2

(z − w)2+α
.

The following lemma is easy to check.

Lemma 2.2. Let 1 < p < ∞, −1 < α < ∞. Then

‖kαw‖p,α ⋍ y(2+α)(2/p−1)/2, w = x+ iy ∈ H.
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We have the following estimate.

Lemma 2.3. Let 1 < p < ∞, −1 < α < ∞. Then there is a constant C > 0 such

that for any analytic function f on H,

(2.1) |f(z)|p 6 C‖kαz ‖
−p
p,α‖fk

α
z ‖

p
p,α, z ∈ H.

P r o o f. Let α > −1. If QI is centered at z = x+ iy, then using the mean value

property and the two previous lemmas we obtain that there exists a constant C > 0

such that

|f(z)|p 6
C

Vα(QI)

∫

QI

|f(w)|p dVα(w)

⋍
C

y2+α

∫

QI

|f(w)|p dVα(w)

= C
y(2+α)(p−2)/2

y(2+α)p/2

∫

QI

|f(w)|p dVα(w)

⋍ C‖kαz ‖
−p
p,α

∫

QI

|f(w)kαz |
p dVα(w)

6 C‖kαz ‖
−p
p,α‖fk

α
z ‖

p
p,α.

�

3. Weighted inequalities for the Bergman projection

Let us start by recalling some notions and notations. We consider the system of

dyadic grids

Dβ := {2j([0, 1) +m+ (−1)jβ) : m ∈ Z, j ∈ Z}, for β ∈ {0, 1/3}.

For more on this system of dyadic grids and its applications, we refer to [1], [6], [7],

[9], [13]. We also consider the following positive operators introduced by Pott and

Reguera in [13]:

(3.1) Qβ
αf :=

∑

I∈Dβ

〈

f,
1QI

|I|2+α

〉

α
1QI

.

By comparing the positive kernel

K+
α (z, w) =

1

|z − w|2+α
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and the box-type kernel

Kβ
α(z, w) :=

∑

I∈Dβ

1QI
(z)1QI

(w)

|I|2+α
,

one obtains the following result (see [13] for details).

Proposition 3.1. There is a constant C > 0 such that for any f ∈ L1
loc(H),

f > 0, and z ∈ H,

(3.2) P+
α f(z) 6 C

∑

β∈{0,1/3}

Qβ
αf(z).

We also observe that if we put σ = ω1−q and use the notation |QI |ω,α =
∫

QI
ω dVα

and |QI |α = |QI |1,α, then

[ω]Bp,α
= sup

I⊂R

|QI |ω,α|QI |
p−1
σ,α

|QI |
p
α

.

P r o o f of Theorem 1.1. Our proof is inspired by the same type of proof for

Calderón-Zygmund operators, (see [11]). We start by recalling that given a dyadic

grid Dβ and a positive weight ω, the dyadic maximal function Mβ
ω,α is defined for

any f ∈ L1
loc(H) by

Mβ
ω,αf = sup

I∈Dβ

1QI

|QI |ω,α

∫

QI

|f |ω dVα.

We observe that using for example the techniques in [5], one obtains the following

estimate for 1 < p < ∞:

(3.3) ‖Mβ
ω,αf‖Lp(ω dVα) 6 C(p)‖f‖Lp(ω dVα).

We recall that given QI , its upper-half is the set

TI :=
{

x+ iy ∈ H : x ∈ I, and
|I|

2
< y < |I|

}

.

It is clear that the family {TI}I∈D where D is a dyadic grid in R provides a tiling

of H.

Now observe that to prove Theorem 1.1, it is enough by Proposition 3.1 to prove

that the following boundedness holds (with the right estimate of the norm):

(3.4) Qβ
α : Lp(ω dVα) → Lp(ω dVα), β ∈ {0, 1/3}
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and also observe the usual fact that the latter is equivalent to

(3.5) Qβ
α(σ·) : Lp(σ dVα) → Lp(ωdVα), β ∈ {0, 1/3}, σ = ω1−q.

Let f ∈ Lp(σ dVα) and g ∈ Lq(ω dVα) with f, g > 0. We aim at estimating

〈Qβ
α(σf), gω〉α =

∫

H

Qβ
α(σf)gω dVα.

We start with the case p > 2. Clearly, using the notation

Bσ,α(f,QI) =
1

|QI |σ,α

∫

QI

fσ dVα

and

Bω,α(g,QI) =
1

|QI |ω,α

∫

QI

gω dVα,

we obtain

Π := 〈Qβ
α(σf), gω〉α

=
∑

I∈Dβ

〈σf, 1QI
〉α〈ωg, 1QI

〉α|QI |
−1−α/2

=
∑

I∈Dβ

Bσ,α(f,QI)Bω,α(g,QI)
|QI |σ,α|QI |ω,α

|QI |α

6 [ω]Bp,α

∑

I∈Dβ

Bσ,α(f,QI)Bω,α(g,QI)
|QI |σ,α|QI |ω,α

|QI |α
×

|QI |
p
α

|QI |
p−1
σ,α |QI |ω,α

= [ω]Bp,α

∑

I∈Dβ

|QI |
p−1
α |QI |

2−p
σ,α Bσ,α(f,QI)Bω,α(g,QI).

We observe that |QI |α ⋍ |TI |α and as TI ⊂ QI and p > 2, |QI |
2−p
σ,α . |TI |

2−p
σ,α . On

the other hand, it is easy to see that

|TI |α 6 |TI |
1/q
σ,α|TI |

1/p
ω,α.

Thus

|QI |
p−1
α |QI |

2−p
σ,α . |TI |

p−1
α |TI |

2−p
σ,α 6 |TI |

1/p
σ,α|TI |

1/q
ω,α.
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It follows that

Π := 〈Qβ
α(σf), gω〉α

. [ω]Bp,α

∑

I∈Dβ

|TI |
1/p
σ,α|TI |

1/q
ω,αBσ,α(f,QI)Bω,α(g,QI)

6 [ω]Bp,α

(

∑

I∈Dβ

|TI |σ,α(Bσ,α(f,QI))
p

)1/p(
∑

I∈Dβ

|TI |ω,α(Bω,α(g,QI))
q

)1/q

= [ω]Bp,α

(

∑

I∈Dβ

∫

TI

(Bσ,α(f,QI))
pσ dVα

)1/p(
∑

I∈Dβ

∫

TI

(Bω,α(g,QI))
qω dVα

)1/p′

6 [ω]Bp,α
‖Mβ

σ,αf‖Lp(σ dVα)‖M
β
ω,αg‖Lq(ω dVα)

6 C(p)[ω]Bp,α
‖f‖Lp(σ dVα)‖g‖Lq(ω dVα).

For the case 1 < p < 2, we use the previous inequalities and duality. We observe

that Qβ
α is self-adjoint with respect to the duality pairing 〈, 〉α. Hence

‖Qβ
α‖Lp(ω dVα)→Lp(ω dVα) = ‖Qβ

α‖Lq(σ dVα)→Lq(σ dVα) 6 C(q)[σ]Bq,α
6 C(p)[ω]

1/(p−1)
Bp,α

.

The proof is complete. �

P r o o f of Proposition 1.2. Observe that Pα = Pα1
. . . Pαn

where Pαj
is the one

parameter Bergman projection in the jth variable. It follows using the one parameter

estimate of these projections in Theorem 1.1 that for any f ∈ Lp(Hn, ω dVα(z)),

‖Pαf‖Lp(Hn,ω dVα(z)) = ‖Pα1
. . . Pαn

f‖Lp(Hn,ω dVα(z))

6 C[ω]
max{1,q/p}
Bp,α(Hn

α) ‖Pα2
. . . Pαn

f‖Lp(Hn,ω dVα(z))

6 C[ω]
2max{1,q/p}
Bp,α(Hn

α) ‖Pα3
. . . Pαn

f‖Lp(Hn,ω dVα(z)) . . .

6 C[ω]
nmax{1,q/p}
Bp,α(Hn

α) ‖f‖Lp(Hn,ω dVα(z)).

The proof is complete. �
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4. Applications

Before giving our applications, we recall a brief history of the so-called Sarason’s

conjecture. Let us denote by dν the normalized Lebesgue measure on the unit disc D

of C.

For α > −1, we denote by dνα the normalized Lebesgue measure dνα(z) =

cα(1−|z|2)α dν(z), cα being the normalizing constant. The weighted Bergman space

Ap
α(D) is the space of holomorphic functions f such that

‖f‖p
Ap

α
:=

∫

D

|f(z)|p dνα(z) < ∞.

The Bergman space A2
α(D) is a reproducing kernel Hilbert space with kernel

Kα
w(z) = Kα(w, z) = (1 − wz)−(2+α). That is, for any f ∈ A2

α(D), the following

representation holds:

(4.1) f(w) = Pαf(w) = 〈f,Kα
w〉α =

∫

D

f(z)Kα(w, z) dνα(z), w ∈ D.

For f ∈ L2(D, dνα), we can densely define the Toeplitz operator Tf with symbol f

on A2
α(D) as

(4.2) Tf (g) = Pα(Mf )(g) = Pα(fg)

whereMf is the multiplication operator by f . The Berezin transform is the operator

defined on L1(D, dνα) by

Bα(f)(w) =

∫

D

f(z)|kαw(z)|
2 dvα(z)

where kαw is the normalized reproducing kernel of A
2
α(D).

The so-called Sarason conjecture said that given two functions f, g ∈ A2
α(D), the

product TfTg is bounded on A2
α(D) if and only if the following relation holds:

(4.3) sup
w∈D

(Bα(|f |
2)(w))1/2(Bα(|g|

2)(w))1/2 = sup
w∈D

‖fkαw‖2,α‖gk
α
w‖2,α < ∞.

We call (4.3) the Sarason condition. For α = −1, that is in the case of the Hardy

spaceH2(D), Nazarov has proved that the conjecture fails (see [12]), although (4.3) is

necessary as proved by Treil (see [15]). For the usual Bergman spaces, α > −1, there

have been many works on the problem. It has been proved in [18] that condition (4.3)

is necessary but the authors did not manage to prove whether the same condition
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is sufficient or not (see also [8], [10], [14], [16], [17] for related discussions and other

domains). It is only two years ago that Aleman, Pott and Reguera exhibited in [1]

an example of f, g ∈ A2(D) = A2
0(D) such that (4.3) holds but the product TfTg is

not bounded on A2(D).

For f ∈ L2(H, dVα), we can densely define the Toeplitz operator Tf with symbol

f on A2
α(H) as in (4.2). We recall that the normalized reproducing kernel kαw,

w = u+ iv, of A2
α(H) is given by

kαw(z) :=
Kα

w(z)

‖Kα
w‖2,α

=
v1+α/2

(z − w)2+α
.

The following assertion can be observed as in [4]. It says that the boundedness of

a Toeplitz product is equivalent to a two-weight problem for the Bergman projection.

Proposition 4.1. Let 1 < p < ∞ and −1 < α < ∞. Then TfTg is bounded on

Ap
α(H) if and only if Pα is bounded from Lp(H, |g|−p dVα) to L

p(H, |f |p dVα).

The next result says that if one of the symbols satisfies an invariant condition,

then the Sarason condition is necessary and sufficient for the associated Toeplitz

product to be bounded.

Theorem 4.2. Let 1 < p, q < ∞, p = q(p−1), and −1 < α < ∞. Suppose that f

and g are analytic in H with

(4.4) [f ]p,α := sup
w∈H

‖fkαw‖p,α‖f
−1kαw‖q,α < ∞.

Then TfTg is bounded on Ap
α(H) if and only if

(4.5) [f, g]p,α := sup
w∈H

‖fkαw‖p,α‖gk
α
w‖q,α < ∞.

Moreover,

‖TfTg‖ 6 C(p)[f, g]p,α[f ]
max{p,q}
p,α

and

[f, g]p,α 6 C(p)‖TgTf‖[f ]p,α.

P r o o f. Let us start with the sufficient part. We first observe that the condition

on f provides in particular that the weight ω = |f |p is in Bp,α(H). Clearly, for the
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interval I ⊂ R, let QI be its associated Carleson box and w its center. Then

∞ > [f ]p,α >

(
∫

H

|f |p|kαw|
p dVα

)1/p(∫

H

|f |−q|kαw|
q dVα

)1/q

>

(
∫

QI

|f |p|kαw|
p dVα

)1/p(∫

QI

|f |−q|kαw|
q dVα

)1/q

⋍

(

1

|QI |
p/2
α

∫

QI

|f |p dVα

)1/p(
1

|QI |
q/2
α

∫

QI

|f |−q dVα

)1/q

=

(

1

|QI |α

∫

QI

ω dVα

(

1

|QI |α

∫

QI

ω1−q

)p−1)1/p

.

Hence if ω = |f |p, then

[ω]Bp,α
. [f ]pp,α.

Next, using Lemma 2.3, we obtain

|TfTgh(z)| = |f(z)||Pα(gh)(z)|

6 |f(z)|

∫

H

|g(w)||h(w)|

|z − w|2+α
dVα(w)

= |f(z)|

∫

H

|g(w)||f(w)||f(w)|−1 |h(w)|

|z − w|2+α
dVα(w)

6 [f, g]p,α|f(z)|

∫

H

|f(w)|−1|h(w)|

|z − w|2+α
dVα(w).

Hence to prove that TfTg is bounded on Ap
α(H), it is enough to prove that the

positive operator

h 7→ |f(z)|

∫

H

|f(w)|−1h(w)

|z − w|2+α
dVα(w), z ∈ H

is bounded on Lp(H, dVα). The boundedness of the latter is equivalent to the

boundedness of P+
α on L

p(H, |f |p dVα) which holds by Theorem 1.1 since the weight

ω = |f |p is in the class Bp,α(H), and with the right estimate. Thus

‖TfTg‖ 6 C(p)[ω]
max{1,q/p}
Bp,α

[f, g]p,α 6 C(p)[f, g]p,α[f ]
max{p,q}
p,α .

Let us now suppose that TfTg is bounded on Ap
α(H). Then in particular we have

‖kαw‖
−1
q,α|f(w)|‖gk

α
w‖q,α = ‖kαw‖

−1
q,α‖f(w)gk

α
w‖q,α = ‖kαw‖

−1
q,α‖TgTfk

α
w‖q,α 6 ‖TgTf‖.
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Using Lemma 2.3 again and the equivalence ‖kαw‖p,α‖k
α
w‖q,α ⋍ 1, we obtain

‖fkαw‖p,α‖gk
α
w‖q,α ⋍ ‖kαw‖

−1
p,α‖k

α
w‖

−1
q,α|f(w)||f(w)|

−1‖fkαw‖p,α‖gk
α
w‖q,α

6 C‖TgTf‖‖k
α
w‖

−1
p,α|f(w)|

−1‖fkαw‖p,α

6 C‖TgTf‖‖k
α
w‖

−1
p,α‖k

α
w‖

−1
q,α‖fk

α
w‖p,α‖f

−1kαw‖q,α

6 C‖TgTf‖[f ]p,α < ∞.

The proof is complete. �

Note that in the above theorem, we do not ask f and g to belong to Ap
α(H) and

Aq
α(H), respectively, giving ourselves the flexibility to recover the Bergman projection

by taking f = g = 1. This assumption is also motivated by the fact that constants

(except zero) are not in Ap
α(H). Thus in the case of the unit disc or the unit ball,

we can suppose that f ∈ Ap
α and g ∈ Aq

α.

Taking g = 1/f in the above theorem, we obtain that the invariant condition

[f ]p,α < ∞ is actually necessary and sufficient for the boundedness of TfT1/f on

Ap
α(H), and we can even deduce more.

Proposition 4.3. Let 1 < p, q < ∞, pq = p+ q and let f be analytic on H. Then

the following assertions are equivalent.

(i) TfT1/f is bounded on Ap
α(H).

(ii)

sup
w∈H

‖fkαw‖p,α‖f
−1kαw‖q,α < ∞.

(iii) If ω = |f |p and σ = ω1−q = |f |−q, then

sup
I

|QI |ω,α|QI |
p−1
σ,α

|QI,α|p
< ∞.

(iv) P+
α is bounded on Lp(H, |f |p dνα).

P r o o f. That (ii) ⇒ (iii) is the beginning of the proof of the above theorem

while (iii) ⇒ (iv) is Theorem 1.1. The implication (iv) ⇒ (i) is Proposition 4.1. To

finish, we only have to prove that (i) ⇒ (ii).

(i) ⇒ (ii): Assume that TfT1/f is bounded on Ap
α(H) so that T1/fTf is also

bounded on Aq
α(H). Put g = 1/f . Then we obtain

|f(w)|‖gkαw‖q,α = ‖f(w)gkαw‖q,α = ‖TgTfk
α
w‖q,α 6 ‖TgTf‖‖k

α
w‖q,α.

That is, for all w ∈ H,

(4.6) |f(w)|‖gkαw‖q,α 6 ‖TgTf‖‖k
α
w‖q,α.
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We also obtain

|g(w)|‖fkαw‖p,α = ‖g(w)fkαw‖p,α = ‖TfTgk
α
w‖p,α 6 ‖TfTg‖‖k

α
w‖p,α.

That is,

(4.7) |g(w)|‖fkαw‖p,α 6 ‖TfTg‖‖k
α
w‖p,α.

It follows from (4.6) and (4.7) that

|f(w)||g(w)|‖fkαw‖p,α‖gk
α
w‖q,α 6 ‖TgTf‖‖TfTg‖‖k

α
w‖p,α‖k

α
w‖q,α.

Recalling that g = 1/f and using that ‖kαw‖p,α‖k
α
w‖q,α ≃ 1 for all w ∈ H, we obtain

that

sup
w∈H

‖fkαw‖p,α‖f
−1kαw‖q,α < ∞.

The proof is complete. �

Let us also observe the following result.

Lemma 4.4. Let −1 < α < ∞. Assume that 1 < p < ∞ and put p = q(p − 1).

If f is analytic on Hn with

[f ]p,α := sup
w∈Hn

‖fkαw‖p,α‖f
−1kαw‖q,α < ∞,

then there is a constant C > 0 such that for any 1 6 k 6 n and any w =

(w1, . . . , wk−1, wk+1, . . . , wn−1) ∈ Hn−1,

sup
z∈H

‖fwk
αk
z ‖p,αk

‖f−1
w kαk

z ‖q,αk
6 C sup

ξ∈Hn

‖fkαξ ‖p,α‖f
−1kαξ ‖q,α,

where fw(z) = f(ζ1, . . . , ζn), ζj = wj for j 6= k and ζk = z.

P r o o f. We may suppose that k = 1. Let w = (w1, . . . , wn−1) ∈ Hn−1 be given.

For any given z ∈ H, we put ζ = (z, w1, . . . , wn−1) and α̃ = (α2, . . . , αn). Then

using Lemma 2.2 and Lemma 2.3, we obtain

‖fwk
α1

z ‖pp,α1
=

∫

H

|f(u+ iv, w)|p|kα1

z (u+ iv)|pvα1 dV (u+ iv)

=

∫

H

|fu+iv(w)|
p|kα1

z (u+ iv)|pvα1 dV (u + iv)

. ‖kα̃w‖
−p
p,α̃

∫

H

‖fu+ivk
α̃
w‖

p
p,α̃|k

α1

z (u+ iv)|pvα1 dV (u+ iv)

= ‖kα̃w‖
−p
p,α̃‖fk

α
ζ ‖

p
p,α.

509



In the same way, we obtain

‖f−1
w kα1

z ‖qq,α1
. ‖kα̃w‖

−q
q,α̃‖f

−1kαζ ‖
q
q,α.

Thus as ‖kα̃w‖p,α̃‖k
α̃
w‖q,α̃ ⋍ 1, we obtain for any k ∈ {1, 2, . . . , n},

‖fwk
αk
z ‖p,αk

‖f−1
w kαk

z ‖q,αk
. sup

ξ∈Hn

‖fkαξ ‖p,α‖f
−1kαξ ‖q,α.

The proof is complete. �

We have the following extension of Theorem 4.2 to the multi-parameter case.

Theorem 4.5. Let −1 < α < ∞. Assume that 1 < p < ∞ and put p = q(p− 1).

Suppose that f and g are analytic in Hn with

(4.8) [f ]p,α := sup
w∈Hn

‖fkαw‖p,α‖f
−1kαw‖q,α < ∞.

Then TfTg is bounded on Ap
α(H

n) if and only if

[f, g]p,α := sup
w∈Hn

‖fkαw‖p,α‖gk
α
w‖q,α < ∞.

Moreover,

‖TfTg‖ 6 C(p)[f, g]p,α[f ]
n×max{p,q}
p,α

and

[f, g]p,α 6 C(p)‖TgTf‖[f ]p,α.

P r o o f. From Lemma 4.4 and the beginning of the proof of Theorem 4.2, we

obtain that the condition (4.8) implies that the weight ω = |f |p belongs to Bp,α(H
n)

with

[ω]Bp,α(Hn) . [f ]pp,α.

Following the steps of the proof of Theorem 4.2 and using Proposition 1.2 we obtain

the result. �

To conclude, we remark that Proposition 4.3 also holds for the tube over the first

octant.
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