COHERENCE RELATIVE TO A WEAK TORSION CLASS

ZHANMIN ZHU, Jiaxing

Received September 22, 2016. First published February 10, 2018.

Abstract. Let R be a ring. A subclass \mathcal{T} of left R-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let \mathcal{T} be a weak torsion class of left R-modules and n a positive integer. Then a left R-module M is called \mathcal{T} -finitely generated if there exists a finitely generated submodule N such that $M/N \in \mathcal{T}$; a left R-module A is called (\mathcal{T}, n) -presented if there exists an exact sequence of left R-modules

$$0 \longrightarrow K_{n-1} \longrightarrow F_{n-1} \longrightarrow \ldots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

such that F_0, \ldots, F_{n-1} are finitely generated free and K_{n-1} is \mathcal{T} -finitely generated; a left R-module M is called (\mathcal{T}, n) -injective, if $\operatorname{Ext}_R^n(A, M) = 0$ for each $(\mathcal{T}, n+1)$ -presented left R-module A; a right R-module M is called (\mathcal{T}, n) -flat, if $\operatorname{Tor}_n^R(M, A) = 0$ for each $(\mathcal{T}, n+1)$ -presented left R-module A. A ring R is called (\mathcal{T}, n) -coherent, if every $(\mathcal{T}, n+1)$ -presented module is (n+1)-presented. Some characterizations and properties of these modules and rings are given.

Keywords: (\mathcal{T}, n) -presented module; (\mathcal{T}, n) -injective module; (\mathcal{T}, n) -flat module; (\mathcal{T}, n) -coherent ring

MSC 2010: 16D40, 16D50, 16P70

1. INTRODUCTION

Recall that a *torsion theory*, see [14], $\tau = (\mathcal{T}, \mathcal{F})$ for the category of all left *R*-modules consists of two subclasses \mathcal{T} and \mathcal{F} such that:

- (1) $\operatorname{Hom}(T, F) = 0$ for all $T \in \mathcal{T}$ and $F \in \mathcal{F}$.
- (2) If $\operatorname{Hom}(T, F) = 0$ for all $F \in \mathcal{F}$, then $T \in \mathcal{T}$.
- (3) If $\operatorname{Hom}(T, F) = 0$ for all $T \in \mathcal{T}$, then $F \in \mathcal{F}$.

In this case, \mathcal{T} is called a torsion class.

DOI: 10.21136/CMJ.2018.0494-16

This research was supported by the Natural Science Foundation of Zhejiang Province, China (LY18A010018).

A torsion theory $\tau = (\mathcal{T}, \mathcal{F})$ is called hereditary if \mathcal{T} is closed under submodules. By [14], page 139, Proposition 2.1, a class \mathcal{T} of left *R*-modules is a torsion class for some torsion theory if and only if \mathcal{T} is closed under quotient modules, direct sums and extensions. Inspired by this result, in this paper we will call a nonempty subclass \mathcal{T} of left *R*-modules a weak torsion class if \mathcal{T} is closed under homomorphic images and extensions.

Let $\tau = (\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory for the category of all left *R*-modules. Then according to [8], a left *R*-module *M* is called τ -finitely generated (or τ -FG for short) if there exists a finitely generated submodule *N* such that $M/N \in \mathcal{T}$; a left *R*-module *A* is called τ -finitely presented (or τ -FP for short) if there exists an exact sequence of left *R*-modules $0 \longrightarrow K \longrightarrow F \longrightarrow A \longrightarrow 0$ with *F* finitely generated free and $K \tau$ -finitely generated. In Section 2, we will give the concepts of \mathcal{T} -finitely generated modules and \mathcal{T} -finitely presented modules by taking \mathcal{T} to be a weak torsion class of left *R*-modules, which extends the two concepts of Jones's τ -finitely generated modules and τ -finitely presented modules respectively. And then we will establish some properties of \mathcal{T} -finitely generated modules and \mathcal{T} -finitely presented modules.

Let *n* be a nonnegative integer. Then according to [4], a left *R*-module *A* is called *n*-presented in case there exists an exact sequence of left *R*-modules $F_n \longrightarrow F_{n-1} \longrightarrow \ldots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$ in which every F_i is finitely generated free. Motivated by the concepts of *n*-presented modules and \mathcal{T} -finitely presented modules, in Section 3 we will define and investigate (\mathcal{T}, n) -presented modules.

Recall that a left *R*-module *M* is called *FP-injective*, see [13], or absolutely pure, see [11], if $\operatorname{Ext}_{R}^{1}(A, M) = 0$ for any finitely presented left *R*-module *A*; a right *R*-module *M* is flat if and only if $\operatorname{Tor}_{1}^{R}(M, A) = 0$ for any finitely presented left *R*-module *A*; a ring *R* is *left coherent*, see [1], if every finitely generated left ideal of *R* is finitely presented, or equivalently, if every finitely generated submodule of a projective left *R*-module is finitely presented. The FP-injective modules, flat modules, coherent rings and their generalizations have been studied extensively by many authors (see, for example, [1], [3], [4], [8], [10], [13], [18], [17]).

In 1994, Costa introduced the concept of left n-coherent rings in [4]. According to [4], a ring R is called left n-coherent in case every n-presented left R-module is (n + 1)-presented. In 1996, Chen and Ding introduced the concepts of n-FPinjective modules and n-flat modules, see [3]. According to [3], a left R-module M is called n-FP-injective in case $\operatorname{Ext}_{R}^{n}(A, M) = 0$ for any n-presented left R-module A, a right R-module M is called n-flat in case $\operatorname{Tor}_{n}^{R}(M, A) = 0$ for any n-presented left R-module A. By using the concepts of n-FP-injective and n-flat modules, they characterized n-coherent rings. In 2012, Mao and Ding introduced the concepts of τ -finjective modules, τ -flat modules and τ -coherent rings, see [10]. According to [10], a left R-module M is called τ -f-injective in case $\operatorname{Ext}_{R}^{1}(R/I, M) = 0$ for any τ -finitely presented left ideal I; a right R-module M is called τ -flat in case $\operatorname{Tor}_1^R(M, R/I) = 0$ for any τ -finitely presented left ideal I; a ring R is called τ -coherent in case every τ -finitely presented left ideal is finitely presented. By using the concepts of τ -finjective and τ -flat modules, they characterized τ -coherent rings.

Motivated by the characterization of *n*-coherent rings and τ -coherent rings (where τ is a hereditary torsion theory), in Section 5 we extend the concept of *n*-coherent rings and introduce the concept of (\mathcal{T}, n) -coherent rings (where \mathcal{T} is a weak torsion class). To characterize (\mathcal{T}, n) -coherent rings, (\mathcal{T}, n) -injective modules and (\mathcal{T}, n) -flat modules are introduced and studied in Section 4; some elementary properties of (\mathcal{T}, n) -injective modules and (\mathcal{T}, n) -flat modules are obtained in that section.

In Section 5, a series of characterizations and properties of (\mathcal{T}, n) -coherent rings are given. For instance, we prove: (1) A ring R is (\mathcal{T}, n) -coherent \Leftrightarrow any direct product of (\mathcal{T}, n) -flat right R-modules is (\mathcal{T}, n) -flat \Leftrightarrow any direct limit of (\mathcal{T}, n) -injective left R-modules is (\mathcal{T}, n) -injective \Leftrightarrow every right R-module has a (\mathcal{T}, n) -flat preenvelope \Leftrightarrow if N is a (\mathcal{T}, n) -injective left R-module, N_1 is an FP-injective submodule of N, then N/N_1 is (\mathcal{T}, n) -injective. (2) If R is a (\mathcal{T}, n) -coherent ring, then every left Rmodule has a (\mathcal{T}, n) -injective cover. (3) Every right R-module has a monic (\mathcal{T}, n) -flat preenvelope $\Leftrightarrow R$ is (\mathcal{T}, n) -coherent and $_RR$ is (\mathcal{T}, n) -injective $\Leftrightarrow R$ is (\mathcal{T}, n) -coherent and every left R-module has an epic (\mathcal{T}, n) -flat $\Leftrightarrow R$ is (\mathcal{T}, n) -coherent and every injective right R-module is (\mathcal{T}, n) -flat $\Leftrightarrow R$ is (\mathcal{T}, n) -coherent and every flat left R-module is (\mathcal{T}, n) -injective. As corollaries, some interesting results on n-coherent rings are obtained.

Throughout this paper, R is an associative ring with identity and all modules considered are unitary, n is a positive integer, \mathcal{T} is a weak torsion class of left Rmodules. R-Mod denotes the class of all left R-modules. For any R-module M, $M^+ = \operatorname{Hom}(M, \mathbb{Q}/\mathbb{Z})$ will be the character module of M. Given a class \mathcal{L} of Rmodules, we denote by $\mathcal{L}^{\perp} = \{M : \operatorname{Ext}^1_R(L, M) = 0, \ L \in \mathcal{L}\}$ the right orthogonal class of \mathcal{L} , and by ${}^{\perp}\mathcal{L} = \{M : \operatorname{Ext}^1_R(M, L) = 0, \ L \in \mathcal{L}\}$ the left orthogonal class of \mathcal{L} .

2. \mathcal{T} -finitely generated and \mathcal{T} -finitely presented modules

We begin with the following definition.

Definition 2.1. A nonempty subclass \mathcal{T} of left *R*-modules is called a *weak torsion class* if \mathcal{T} is closed under homomorphic images and extensions. If a class \mathcal{T} of left *R*-modules is a weak torsion class, then a left *R*-module *M* is called \mathcal{T} -finitely generated (or \mathcal{T} -FG for short) if there exists a finitely generated submodule *N* such that $M/N \in \mathcal{T}$. A left *R*-module *A* is called \mathcal{T} -finitely presented (or \mathcal{T} -FP for short)

if there exists an exact sequence of left *R*-modules $0 \longrightarrow K \longrightarrow F \longrightarrow A \longrightarrow 0$ with *F* finitely generated free and *K* \mathcal{T} -finitely generated.

Example 2.2.

- (1) Let R be a non-left noetherian left hereditary ring and \mathcal{T} the class of all injective left R-modules. Then by [16], Section 39.16, \mathcal{T} is a weak torsion class. But \mathcal{T} is not a torsion class.
- (2) Let \mathcal{T} be the class of all finitely generated left *R*-modules. Then by [16], Section 13.9 (1), \mathcal{T} is a weak torsion class. But \mathcal{T} is not a torsion class.
- (3) Let \mathcal{T} be the class of all finitely generated semisimple left *R*-modules. Then \mathcal{T} is a weak torsion class but not a torsion class.
- (4) Let \mathcal{T} be the class of all finitely generated left *R*-modules. Then a left *R*-module A is \mathcal{T} -finitely generated if and only if it is finitely generated.
- (5) Let $\mathcal{T} = R$ -Mod. Then a left *R*-module *A* is \mathcal{T} -finitely presented if and only if it is finitely generated.
- (6) Let $\mathcal{T} = 0$. Then a left *R*-module *A* is \mathcal{T} -finitely presented if and only if it is finitely presented.

Theorem 2.3. (1) Any homomorphic image of a \mathcal{T} -FG module is \mathcal{T} -FG.

- (2) Any finite direct sum of \mathcal{T} -FG modules is \mathcal{T} -FG.
- (3) Any sum of a finite number of \mathcal{T} -FG submodules of a module M is \mathcal{T} -FG.
- (4) A direct summand of a \mathcal{T} -FP module is \mathcal{T} -FP.

Proof. (1) Let M be a \mathcal{T} -FG module and N a submodule of N. Since M is \mathcal{T} -FG, there exists a finitely generated submodule K of M such that $M/K \in \mathcal{T}$. Since \mathcal{T} is closed under homomorphic images, we have $(M/K)/[(K+N)/K] \in \mathcal{T}$, so $M/(K+N) \in \mathcal{T}$, and thus $(M/N)/(K+N)/N \in \mathcal{T}$. Observing that (K+N)/N is finitely generated, we have that M/N is \mathcal{T} -FG.

(2) Let N_1, N_2 be two \mathcal{T} -FG modules. Then there exists a finitely generated submodule K_i of N_i such that $N_i/K_i \in \mathcal{T}$, i = 1, 2. So, $K_1 \oplus K_2$ is finitely generated and $(N_1 \oplus N_2)/(K_1 \oplus K_2) \cong N_1/K_1 \oplus N_2/K_2 \in \mathcal{T}$ because \mathcal{T} is closed under extensions. And thus $N_1 \oplus N_2$ is \mathcal{T} -FG.

(3) Let M_1, M_2 be two \mathcal{T} -FG submodules of M. Then by (2), $M_1 \oplus M_2$ is \mathcal{T} -FG. Note that $M_1 + M_2$ is a homomorphic image of $M_1 \oplus M_2$; by (1), $M_1 + M_2$ is \mathcal{T} -FG.

(4) Suppose that $M \cong F/K$ where F is finitely generated free and K is \mathcal{T} -FG. If $F/K = (A + K)/K \oplus (B + K)/K$, where A, B are finitely generated, then by (3), B + K is \mathcal{T} -FG. But $(A + K)/K \cong F/(B + K)$, so (A + K)/K is \mathcal{T} -FP. \Box

Corollary 2.4. A direct summand of a \mathcal{T} -FG module is \mathcal{T} -FG.

Theorem 2.5. Let $0 \longrightarrow A \xrightarrow{i} B \xrightarrow{p} C \longrightarrow 0$ be an exact sequence of left *R*-modules.

- (1) If both A and C are \mathcal{T} -FG, then B is \mathcal{T} -FG.
- (2) If both A and C are \mathcal{T} -FP, then B is \mathcal{T} -FP.
- (3) If B is FG and C is \mathcal{T} -FP, then A is \mathcal{T} -FG.
- (4) If B is \mathcal{T} -FP and A is \mathcal{T} -FG, then C is \mathcal{T} -FP.

Proof. (1) Suppose that A and C are \mathcal{T} -FG. Then there exist a finitely generated submodule A' of A and a finitely generated submodule C' of C such that $A/A' \in \mathcal{T}$ and $C/C' \in \mathcal{T}$. Choose a finitely generated submodule B' of B such that p(B') = C', let $A'' = A \cap (A' + B') = A' + (A \cap B')$, and define

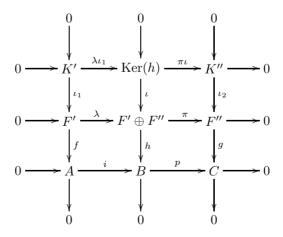
$$\alpha \colon A/A'' \longrightarrow B/(A'+B'); \qquad a+A'' \mapsto a+(A'+B')$$

and

$$\overline{p} \colon B/(A'+B') \longrightarrow C/C'; \qquad b+(A'+B') \mapsto p(b)+C'.$$

Then we get an exact sequence $0 \longrightarrow A/A'' \xrightarrow{\alpha} B/(A'+B') \xrightarrow{\overline{p}} C/C' \longrightarrow 0$. Thus $A/A'' \cong (A/A')/(A''/A') \in \mathcal{T}$ and $C/C' \in \mathcal{T}$, so $B/(A'+B') \in \mathcal{T}$, and hence B is \mathcal{T} -FG.

(2) Since A and C are \mathcal{T} -FP, we have two exact sequences $0 \longrightarrow K' \xrightarrow{\iota_1} F' \xrightarrow{f} A \longrightarrow 0$ and $0 \longrightarrow K'' \xrightarrow{\iota_2} F'' \xrightarrow{g} C \longrightarrow 0$, where F', F'' are finitely generated free, K', K'' are \mathcal{T} -FG, ι_1 , ι_2 are inclusion maps. Since F'' is projective, there exists a homomorphism $\sigma: F'' \to B$ such that $g = p\sigma$. And so we have the following commutative diagram with exact rows and columns:



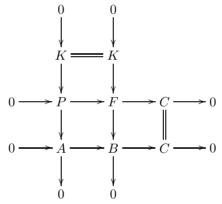
where λ is the natural injection, ι is the inclusion map, π is the natural projection, and

$$h\colon F'\oplus F''\to B; \quad (x',x'')\mapsto if(x')+\sigma(x'').$$

By (1), Ker(h) is \mathcal{T} -FG, and hence B is \mathcal{T} -FP.

(3) Suppose that B is FG and C is \mathcal{T} -FP. Let $F \xrightarrow{\varphi} B \longrightarrow 0$ be exact with F FG free, let $K = \operatorname{Ker}(p\varphi)$. Then $0 \longrightarrow K \longrightarrow F \longrightarrow C \longrightarrow 0$ is exact. Since C is \mathcal{T} -FP, there exists an exact sequence $0 \longrightarrow K' \longrightarrow F' \longrightarrow C \longrightarrow 0$ with F' FG free and K' \mathcal{T} -FG. By Schanuel's lemma, we have $K' \oplus F \cong K \oplus F'$, and thus K is \mathcal{T} -FG because a finite direct sum and a direct summand of \mathcal{T} -FG modules are \mathcal{T} -FG. Now let $\psi = \varphi|_{K}$. Observing that φ is epic, it is easy to see that ψ is an epimorphism from K to A. Hence, by Theorem 2.3 (1), A is \mathcal{T} -FG.

(4) Since B is \mathcal{T} -FP, there exists an exact sequence of left R-modules $0 \longrightarrow K \longrightarrow F \longrightarrow B \longrightarrow 0$ such that F is finitely generated free and K is \mathcal{T} -FG. Therefore, we can now from the pullback of $A \longrightarrow B$ and $F \longrightarrow B$ get the following commutative diagram:



with exact rows and columns. Since both K and A are \mathcal{T} -FG, by (1), P is also \mathcal{T} -FG, and so C is \mathcal{T} -FP.

3. (\mathcal{T}, n) -presented modules

Definition 3.1. Let \mathcal{T} be a weak torsion class and n a positive integer. Then a left *R*-module *A* is said to be (\mathcal{T}, n) -presented if there exists an exact sequence of left *R*-modules

$$0 \longrightarrow K_{n-1} \longrightarrow F_{n-1} \longrightarrow \ldots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

such that F_0, \ldots, F_{n-1} are finitely generated free and K_{n-1} is \mathcal{T} -finitely generated.

Clearly, a left *R*-module *A* is \mathcal{T} -finitely presented if and only if it is $(\mathcal{T}, 1)$ presented. It is easy to see that every (\mathcal{T}, n) -presented module is $(\mathcal{T}, n-1)$ -presented. We also call \mathcal{T} -finitely generated modules $(\mathcal{T}, 0)$ -presented.

Example 3.2. (1) Let $\mathcal{T} = R$ -Mod. Then a left R-module A is (\mathcal{T}, n) -presented if and only if it is (n-1)-presented.

(2) Let $\mathcal{T} = 0$. Then a left *R*-module *A* is (\mathcal{T}, n) -presented if and only if it is *n*-presented.

Lemma 3.3. Let A, B be two left R-modules and n a positive integer. If both A and B are (\mathcal{T}, n) -presented, then $A \oplus B$ is also (\mathcal{T}, n) -presented.

Proof. It is a consequence of Theorem 2.3 (2).

Proposition 3.4. The following statements are equivalent for a left *R*-module *A*: (1) *A* is (\mathcal{T}, n) -presented.

(2) A is (n-1)-presented, and if there exists an exact sequence of left R-modules

$$0 \longrightarrow K_{n-1} \longrightarrow F_{n-1} \longrightarrow \ldots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow A \longrightarrow 0$$

such that F_0, \ldots, F_{n-1} are finitely generated free, then K_{n-1} is \mathcal{T} -finitely generated.

(3) There exists an exact sequence of left *R*-modules

$$0 \longrightarrow K \longrightarrow F \longrightarrow A \longrightarrow 0$$

such that F is finitely generated free and K is $(\mathcal{T}, n-1)$ -presented.

- If $n \ge 2$, then the above conditions are also equivalent to:
- (4) A is (n-2)-presented, and if there exists an exact sequence of left R-modules

$$0 \longrightarrow K_{n-2} \longrightarrow F_{n-2} \longrightarrow \ldots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow A \longrightarrow 0$$

such that F_0, \ldots, F_{n-2} are finitely generated free, then K_{n-2} is \mathcal{T} -finitely presented.

Proof. (1) \Rightarrow (2) Since A is (\mathcal{T}, n) -presented, there exists an exact sequence of left R-modules

$$0 \longrightarrow L_{n-1} \longrightarrow F'_{n-1} \longrightarrow \ldots \longrightarrow F'_1 \longrightarrow F'_0 \longrightarrow A \longrightarrow 0$$

such that F'_0, \ldots, F'_{n-1} are finitely generated free and L_{n-1} is \mathcal{T} -finitely generated, so A is (n-1)-presented. Now if there exists an exact sequence of left R-modules

 $0 \longrightarrow K_{n-1} \longrightarrow F_{n-1} \longrightarrow \ldots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow A \longrightarrow 0$

such that F_0, \ldots, F_{n-1} are finitely generated free, then by the generalization of Schanuel's lemma [12], Exercise 3.37, and by Theorem 2.3 (2) and Corollary 2.4, K_{n-1} is \mathcal{T} -finitely generated.

 $(2) \Rightarrow (1); (1) \Leftrightarrow (3); \text{ and } (2) \Leftrightarrow (4) \text{ are obvious.}$

Proposition 3.5. Let $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ be an exact sequence of left *R*-modules. Then:

(1) If both A and C are (\mathcal{T}, n) -presented, then so is B.

(2) If B is (\mathcal{T}, n) -presented and A is $(\mathcal{T}, n-1)$ -presented, then C is (\mathcal{T}, n) -presented.

Proof. (1) Use induction on *n*. If n = 1, then (1) holds by Theorem 2.5 (2). Suppose that (1) holds for n - 1. Let *A* and *C* be (\mathcal{T}, n) -presented. Then by Proposition 3.4, we have two exact sequences $0 \longrightarrow K' \xrightarrow{\iota_1} F' \xrightarrow{f} A \longrightarrow 0$ and $0 \longrightarrow K'' \xrightarrow{\iota_2} F'' \xrightarrow{g} C \longrightarrow 0$, where F', F'' are finitely generated free, K', K'' are $(\mathcal{T}, n - 1)$ -presented, ι_1, ι_2 are inclusion maps. Using a method similar to the proof of Theorem 2.5 (2), by induction hypothesis and Proposition 3.4 we can get that *B* is also (\mathcal{T}, n) -presented.

(2) Since B is (\mathcal{T}, n) -presented, by Proposition 3.4 there exists an exact sequence of left R-modules $0 \longrightarrow K \longrightarrow F \longrightarrow B \longrightarrow 0$ such that F is finitely generated free and K is $(\mathcal{T}, n - 1)$ -presented. Now, using a method similar to the proof of Theorem 2.5 (4), by (1) and Proposition 3.4, we can get that C is (\mathcal{T}, n) -presented.

Corollary 3.6. A direct summand of a (\mathcal{T}, n) -presented module is (\mathcal{T}, n) -presented.

Proof. Use induction on n. If n = 1, then the conclusion holds by Theorem 2.3 (4). Suppose that the conclusion holds for n-1. Let B be (\mathcal{T}, n) -presented and $B = A \oplus C$. Then by hypothesis, A is $(\mathcal{T}, n-1)$ -presented, and so C (\mathcal{T}, n) presented by Proposition 3.5 (2), as required.

Corollary 3.7. The following statements are equivalent for a left *R*-module M: (1) M is (\mathcal{T}, n) -presented.

(2) M is finitely generated and, if the sequence of left R-modules $0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0$ is exact with F finitely generated free, then K is $(\mathcal{T}, n-1)$ -presented.

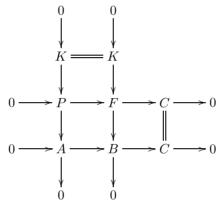
Proof. (1) \Rightarrow (2). Since M is (\mathcal{T}, n) -presented, by Proposition 3.4 (3) there exists an exact sequence of left R-modules $0 \longrightarrow K' \longrightarrow F' \longrightarrow M \longrightarrow 0$ such that F' is finitely generated free and K' is $(\mathcal{T}, n-1)$ -presented. So, by Schanuel's lemma, we have $K' \oplus F \cong K \oplus F'$, and thus K is $(\mathcal{T}, n-1)$ -presented because finite direct

sums and direct summands of $(\mathcal{T}, n-1)$ -presented modules are $(\mathcal{T}, n-1)$ -presented by Lemma 3.3 and Corollary 3.6.

 $(2) \Rightarrow (1)$. It follows from Proposition 3.4 (3).

Corollary 3.8. Let n > 1 and let $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ be an exact sequence of left *R*-modules. If *C* is (\mathcal{T}, n) -presented and *B* is $(\mathcal{T}, n-1)$ -presented, then *A* is $(\mathcal{T}, n-1)$ -presented.

Proof. Since n > 1 and B is $(\mathcal{T}, n-1)$ -presented, we have the following commutative diagram:



with exact rows and columns, where F is finitely generated free. Moreover, by Corollary 3.7, K is $(\mathcal{T}, n-2)$ -presented. Since C is (\mathcal{T}, n) -presented, by Corollary 3.7, P is $(\mathcal{T}, n-1)$ -presented, and so A is $(\mathcal{T}, n-1)$ -presented by Proposition 3.5 (2). \Box

4. (\mathcal{T}, n) -injective and (\mathcal{T}, n) -flat modules

Definition 4.1. A left *R*-module *M* is called (\mathcal{T}, n) -*injective*, if $\operatorname{Ext}_{R}^{n}(A, M) = 0$ for each $(\mathcal{T}, n+1)$ -presented left *R*-module *A*. A right *R*-module *M* is called (\mathcal{T}, n) -*flat*, if $\operatorname{Tor}_{n}^{R}(M, A) = 0$ for each $(\mathcal{T}, n+1)$ -presented left *R*-module *A*.

Clearly, n-FP-injective left R-modules are (\mathcal{T}, n) -injective, n-flat right R-modules are (\mathcal{T}, n) -flat. By Proposition 3.4 (3), it is easy to see that a (\mathcal{T}, n) -injective module is $(\mathcal{T}, n + 1)$ -injective, a (\mathcal{T}, n) -flat module is $(\mathcal{T}, n + 1)$ -flat. We denote by $\mathcal{T}_n \mathcal{I}$ the class of all (\mathcal{T}, n) -injective left R-modules, and denote by $\mathcal{T}_n \mathcal{F}$ the class of all (\mathcal{T}, n) -flat right R-modules. We recall that if n, d are nonnegative integers, then according to [18], a right R-module M is called (n, d)-injective if $\operatorname{Ext}_R^{d+1}(A, M)=0$ for every n-presented right R-module A; a left R-module M is called (n, d)-flat if $\operatorname{Tor}_{d+1}^R(A, M)=0$ for every n-presented right R-module A.

 \square

Example 4.2. (1) Let $\mathcal{T} = R$ -Mod. Then a left R-module M is (\mathcal{T}, n) -injective if and only if M is n-FP-injective, a right R-module M is (\mathcal{T}, n) -flat if and only if M is n-flat. In particular, a left R-module M is $(\mathcal{T}, 1)$ -injective if and only if M is FP-injective, a right R-module M is $(\mathcal{T}, 1)$ -flat if and only if M is flat.

(2) Let $\mathcal{T} = \{0\}$. Then a left *R*-module *M* is (\mathcal{T}, n) -injective if and only if *M* is (n + 1, n - 1)-injective, a right *R*-module *M* is (\mathcal{T}, n) -flat if and only if *M* is (n + 1, n - 1)-flat. In particular, a left *R*-module *M* is $(\mathcal{T}, 1)$ -injective if and only if *M* is (2, 0)-injective, a right *R*-module *M* is $(\mathcal{T}, 1)$ -flat if and only if *M* is (2, 0)-flat.

Recall that an exact sequence of left R-modules $0 \longrightarrow M \longrightarrow M' \longrightarrow M'' \longrightarrow 0$ is said to be pure if every finitely presented left R-module is projective with respect to this exact sequence.

Definition 4.3. Let $0 \longrightarrow M \longrightarrow M' \longrightarrow M'' \longrightarrow 0$ be an exact sequence of left *R*-modules. Then it is said to be \mathcal{T} -pure if every $(\mathcal{T}, 2)$ -presented left *R*-module is projective with respect to it.

Example 4.4. (1) Let $\mathcal{T} = R$ -Mod. Then it is easy to see that an exact sequence of left *R*-modules $0 \longrightarrow M \longrightarrow M' \longrightarrow M'' \longrightarrow 0$ is pure if and only if it is \mathcal{T} -pure.

(2) Let $\mathcal{T} = \{0\}$. Then it is easy to see that an exact sequence of left *R*-modules $0 \longrightarrow M \longrightarrow M' \longrightarrow M'' \longrightarrow 0$ is \mathcal{T} -pure if and only if every 2-presented left *R*-module is projective with respect to it.

Let $\ldots \longrightarrow P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} A \longrightarrow 0$ be a projective resolution of a module A. As usual, we will denote $\operatorname{Ker}(d_i)$ by K_i , and we will call K_i an *i*-syzygy of A. If $n \ge 2$, then it is easy to see that a left R-module A is $(\mathcal{T}, n+1)$ -presented if and only if it is (n-2)-presented; and if the sequence of right R-modules $0 \longrightarrow K_{n-2} \longrightarrow F_{n-2} \longrightarrow \cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow A \longrightarrow 0$ is exact, where F_0, \ldots, F_{n-2} are finitely generated free, then K_{n-2} is $(\mathcal{T}, 2)$ -presented.

Theorem 4.5. Let M be a left R-module and $n \ge 2$. Then the following statements are equivalent:

- (1) M is (\mathcal{T}, n) -injective.
- (2) If the sequence $0 \longrightarrow K_{n-2} \longrightarrow F_{n-2} \longrightarrow \ldots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow A \longrightarrow 0$ is exact, where F_0, \ldots, F_{n-2} are finitely generated free and K_{n-2} is $(\mathcal{T}, 2)$ presented, then $\operatorname{Ext}^1_B(K_{n-2}, M) = 0$.
- (3) For every (n-1)-presentation $F_{n-1} \longrightarrow \ldots \longrightarrow F_0 \longrightarrow A \longrightarrow 0$ of a $(\mathcal{T}, n+1)$ presented module A with $F_0, \ldots, F_{n-2}, F_{n-1}$ finitely generated free, every homomorphism from the (n-1)-syzygy K_{n-1} to M can be extended to a homomorphism from F_{n-1} to M.
- (4) There exists a \mathcal{T} -pure exact sequence $0 \longrightarrow M \longrightarrow M' \longrightarrow M'' \longrightarrow 0$ of left *R*-modules with $M'(\mathcal{T}, n)$ -injective.

Proof. (1) \Leftrightarrow (2). By the isomorphism $\operatorname{Ext}_{R}^{n}(A, M) \cong \operatorname{Ext}_{R}^{1}(K_{n-2}, M)$. $(2) \Leftrightarrow (3)$. By the exact sequence

$$\operatorname{Hom}(F_{n-1}, M) \longrightarrow \operatorname{Hom}(K_{n-1}, M) \longrightarrow \operatorname{Ext}^{1}_{R}(K_{n-2}, M) \longrightarrow \operatorname{Ext}^{1}_{R}(F_{n-1}, M) = 0.$$

 $(1) \Rightarrow (4)$. It is obvious.

 $(4) \Rightarrow (2)$. Since $0 \longrightarrow M \longrightarrow M' \longrightarrow M'' \longrightarrow 0$ is \mathcal{T} -pure and K_{n-2} is $(\mathcal{T}, 2)$ presented, we have that the map $\operatorname{Hom}(K_{n-2}, M') \longrightarrow \operatorname{Hom}(K_{n-2}, M'')$ is epic. So from the exact sequence

$$\operatorname{Hom}(K_{n-2}, M') \longrightarrow \operatorname{Hom}(K_{n-2}, M'') \longrightarrow \operatorname{Ext}^{1}_{R}(K_{n-2}, M) \longrightarrow 0$$

we have $\operatorname{Ext}_{R}^{1}(K_{n-2}, M) = 0.$

Proposition 4.6. Let $\{M_i: i \in I\}$ be a family of left *R*-modules. Then the following statements are equivalent:

- (1) Each M_i is (\mathcal{T}, n) -injective.
- (2) $\prod_{i \in I} M_i$ is (\mathcal{T}, n) -injective.
- (3) $\bigoplus_{i \in I} M_i$ is (\mathcal{T}, n) -injective.

Proof. (1) \Leftrightarrow (2). By the isomorphism $\operatorname{Ext}_{R}^{n}\left(A, \prod_{i \in I} M_{i}\right) \cong \prod_{i \in I} \operatorname{Ext}_{R}^{n}(A, M_{i}).$ (2) \Rightarrow (3). For every (n-1)-presentation $F_{n-1} \longrightarrow \ldots \longrightarrow F_{0} \longrightarrow A \longrightarrow 0$ of a $(\mathcal{T}, n+1)$ -presented module A with $F_0, \ldots, F_{n-2}, F_{n-1}$ finitely generated free, by Proposition 3.4 (4), the (n-1)-syzygy K_{n-1} is \mathcal{T} -finitely presented and hence finitely generated. Let f be any homomorphism from K_{n-1} to $\bigoplus_{i \in I} M_i$. Then there exists a finite subset I_0 of I such that $\operatorname{Im}(f) \subseteq \bigoplus_{i \in I_0} M_i$. By (2), $\bigoplus_{i \in I_0} M_i$ is (\mathcal{T}, n) -injective. So, by Theorem 4.5 (3), f can be extended to a homomorphism from F_{n-1} to $\bigoplus M_i$, and then f can be extended to a homomorphism from F_{n-1} to $\bigoplus_{i \in I} M_i$. Therefore $\bigoplus_{i \in I} M_i \text{ is } (\mathcal{T}, n) \text{-injective by Theorem 4.5 (3) again.}$ $(3) \Rightarrow (1)$. It is trivial.

Proposition 4.7. Let $\{M_i: i \in I\}$ be a family of right *R*-modules. Then the following conditions are equivalent:

- (1) Every M_i is (\mathcal{T}, n) -flat.
- (2) $\bigoplus_{i \in I} M_i$ is (\mathcal{T}, n) -flat.

Proof. By the isomorphism $\operatorname{Tor}_n^R\left(\bigoplus_{i \in I} M_i, A\right) \cong \bigoplus_{i \in I} \operatorname{Tor}_n^R(M_i, A).$

465

Theorem 4.8. Let M be a right R-module. Then M is (\mathcal{T}, n) -flat if and only if M^+ is (\mathcal{T}, n) -injective.

Proof. It follows from the isomorphism $\operatorname{Tor}_n^R(M, A)^+ \cong \operatorname{Ext}_R^n(A, M^+)$.

Proposition 4.9.

(1) Pure submodules of (\mathcal{T}, n) -injective modules are (\mathcal{T}, n) -injective.

(2) Pure submodules of (\mathcal{T}, n) -flat modules are (\mathcal{T}, n) -flat.

Proof. (1) Let N be a pure submodule of a (\mathcal{T}, n) -injective module M. Then N is \mathcal{T} -pure in M, and so, by Theorem 4.5 (4), N is (\mathcal{T}, n) -injective.

(2) Let M be a (\mathcal{T}, n) -flat module and N a pure submodule of M. Then the pure exact sequence $0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0$ induces a split exact sequence $0 \longrightarrow (M/N)^+ \longrightarrow M^+ \longrightarrow N^+ \longrightarrow 0$. By Theorem 4.8, M^+ is (\mathcal{T}, n) -injective, so N^+ is (\mathcal{T}, n) -injective by Proposition 4.6, and hence N is (\mathcal{T}, n) -flat by Theorem 4.8 again.

Remark 4.10. From Theorem 4.8, the (\mathcal{T}, n) -flatness of M_R can be characterized by the (\mathcal{T}, n) -injectivity of M^+ . On the other hand, by [3], Lemma 2.7 (1), the sequence $\operatorname{Tor}_n^R(M^+, A) \longrightarrow \operatorname{Ext}_R^n(A, M)^+ \longrightarrow 0$ is exact for any *n*-presented left *R*-module *A* and any left *R*-module *M*. So, for any left *R*-module *M*, if M^+ is (\mathcal{T}, n) -flat, then *M* is (\mathcal{T}, n) -injective.

Let \mathcal{F} be a class of R-modules and M an R-module. Following [6], we say that a homomorphism $\varphi \colon M \longrightarrow F$ where $F \in \mathcal{F}$ is an \mathcal{F} -preenvelope of M if for any morphism $f \colon M \longrightarrow F'$ with $F' \in \mathcal{F}$ there is a $g \colon F \longrightarrow F'$ such that $g\varphi = f$. An \mathcal{F} -preenvelope $\varphi \colon M \longrightarrow F$ is said to be an \mathcal{F} -envelope if every endomorphism $g \colon F \longrightarrow F$ such that $g\varphi = \varphi$ is an isomorphism. Dually, we have the definitions of an \mathcal{F} -precover and an \mathcal{F} -cover. The \mathcal{F} -envelopes (\mathcal{F} -covers) may not exist in general, but if they exist, they are unique up to isomorphism.

A pair $(\mathcal{A}, \mathcal{B})$ of classes of *R*-modules is called a cotorsion theory, see [6], if $\mathcal{A}^{\perp} = \mathcal{B}$ and $^{\perp}\mathcal{B} = \mathcal{A}$. A cotorsion theory $(\mathcal{A}, \mathcal{B})$ is called perfect, see [7], if every *R*-module has a \mathcal{B} -envelope and an \mathcal{A} -cover. A cotorsion theory $(\mathcal{A}, \mathcal{B})$ is called complete (see [6], Definition 7.1.6, and [15], Lemma 1.13) if for any *R*-module *M* there are exact sequences $0 \longrightarrow M \longrightarrow B \longrightarrow A \longrightarrow 0$ with $A \in \mathcal{A}$ and $B \in \mathcal{B}$, and $0 \longrightarrow B' \longrightarrow A' \longrightarrow M \longrightarrow 0$ with $A' \in \mathcal{A}$ and $B' \in \mathcal{B}$.

For a class \mathcal{F} of R-modules, we put $\mathcal{F}^+ = \{F^+: F \in \mathcal{F}\}$. We recall that a left R-module M is said to be *pure injective* if it is injective with respect to all pure exact sequences of left R-modules. Following [15], we denote by \mathcal{PI} the class of pure injective left R-modules.

Theorem 4.11. Let R be a ring. Then:

- (1) $(^{\perp}(\mathcal{T}_n\mathcal{I}), \mathcal{T}_n\mathcal{I})$ is a complete cotorsion theory.
- (2) $(\mathcal{T}_n \mathcal{F}, (\mathcal{T}_n \mathcal{F})^{\perp})$ is a perfect cotorsion theory.

Proof. (1) Let X be the set of representatives of all K_{n-2} 's in Theorem 4.5 (2). Then by Theorem 4.5, $\mathcal{T}_n\mathcal{I} = X^{\perp}$, and so $(^{\perp}(\mathcal{T}_n\mathcal{I}), \mathcal{T}_n\mathcal{I}) = (^{\perp}(X^{\perp}), X^{\perp})$ is a complete cotorsion theory by [15], Theorem 2.2 (2).

(2) Write $\mathcal{A} = \mathcal{T}_n \mathcal{F}$ and let \mathcal{X} be the class of all K_{n-2} 's in Theorem 4.5 (2). Then by dimension shifting one shows that $A \in \mathcal{T}_n \mathcal{F}$ if and only if $\operatorname{Tor}_1^R(A, X) = 0$ for each $X \in \mathcal{X}$. Thus, by the isomorphism $\operatorname{Tor}_1^R(A, B)^+ \cong \operatorname{Ext}_R^1(A, B^+)$, we have $\mathcal{A} = ^{\perp}(\mathcal{X}^+)$, and so $(\mathcal{T}_n \mathcal{F}, (\mathcal{T}_n \mathcal{F})^{\perp}) = (^{\perp}(\mathcal{X}^+), (^{\perp}(\mathcal{X}^+))^{\perp})$ is a cotorsion theory generated by \mathcal{X}^+ . Since every character module is pure injective by [6], Proposition 5.3.7, we have $\mathcal{X}^+ \subseteq \mathcal{PI}$, and so it is a perfect cotorsion theory by [15], Theorem 2.8.

Following [6], Definition 5.3.22, a right *R*-module *M* is said to be *cotorsion* if $\operatorname{Ext}^{1}_{R}(F, M) = 0$ for all flat right *R*-modules *F*. We call a right *R*-module *M* (\mathcal{T}, n)-*cotorsion* if $\operatorname{Ext}^{1}_{R}(F, M) = 0$ for all (\mathcal{T}, n)-flat right *R*-modules *F*. By Theorem 4.11, we have the following results.

Corollary 4.12. Let R be a ring. Then:

- (1) Every right *R*-module has a (\mathcal{T}, n) -flat cover.
- (2) Every right R-module has a (\mathcal{T}, n) -cotorsion envelope.

5. (\mathcal{T}, n) -coherent rings

We begin this section with the concepts of (\mathcal{T}, n) -coherent rings and \mathcal{T} -coherent rings.

Definition 5.1. A ring R is called (\mathcal{T}, n) -coherent, if every $(\mathcal{T}, n+1)$ -presented module is (n + 1)-presented. A ring R is called \mathcal{T} -coherent if it is $(\mathcal{T}, 1)$ -coherent.

It is easy to see that a ring R is (\mathcal{T}, n) -coherent if and only if every (\mathcal{T}, n) -presented submodule of a finitely generated free left R-module is n-presented, and a ring R is \mathcal{T} -coherent if and only if every \mathcal{T} -finite presented submodule of a finitely generated free left R-module is finitely presented.

Example 5.2. (1) Let $\mathcal{T} = R$ -Mod. Then R is (\mathcal{T}, n) -coherent if and only if R is left *n*-coherent. In particular, R is $(\mathcal{T}, 1)$ -coherent if and only if R is left coherent. (2) Let $\mathcal{T} = \{0\}$. Then R is (\mathcal{T}, n) -coherent for any positive integer n.

Next we will characterize (\mathcal{T}, n) -coherent rings in terms of, among others, (\mathcal{T}, n) -injective modules and (\mathcal{T}, n) -flat modules. These results extend the theory of coherence of rings.

Theorem 5.3. The following statements are equivalent for the ring R:

- (1) R is (\mathcal{T}, n) -coherent.
- (2) $\varinjlim \operatorname{Ext}_{R}^{n}(A, M_{i}) \cong \operatorname{Ext}_{R}^{n}(A, \varinjlim M_{i})$ for any $(\mathcal{T}, n+1)$ -presented module A and direct system $(M_{i})_{i \in I}$ of left *R*-modules.
- (3) $\operatorname{Tor}_{n}^{R}(\prod N_{i}, A) \cong \prod \operatorname{Tor}_{n}^{R}(N_{i}, A)$ for any family $\{N_{i}\}$ of right *R*-modules and any $(\mathcal{T}, n+1)$ -presented module *A*.
- (4) Any direct product of copies of R_R is (\mathcal{T}, n) -flat.
- (5) Any direct product of (\mathcal{T}, n) -flat right R-modules is (\mathcal{T}, n) -flat.
- (6) Any direct limit of (\mathcal{T}, n) -injective left R-modules is (\mathcal{T}, n) -injective.
- (7) Any direct limit of injective left R-modules is (\mathcal{T}, n) -injective.
- (8) A left R-module M is (\mathcal{T}, n) -injective if and only if M^+ is (\mathcal{T}, n) -flat.
- (9) A left R-module M is (\mathcal{T}, n) -injective if and only if M^{++} is (\mathcal{T}, n) -injective.
- (10) A right R-module M is (\mathcal{T}, n) -flat if and only if M^{++} is (\mathcal{T}, n) -flat.
- (11) For any ring S, $\operatorname{Tor}_{n}^{R}(\operatorname{Hom}_{S}(B, E), A) \cong \operatorname{Hom}_{S}(\operatorname{Ext}_{R}^{n}(A, B), E)$ for the situation $({}_{R}A, {}_{R}B_{S}, E_{S})$ with A $(\mathcal{T}, n+1)$ -presented and E_{S} injective.
- (12) Every right R-module has a (\mathcal{T}, n) -flat preenvelope.
 - Proof. (1) \Rightarrow (2). follows from [3], Lemma 2.9 (2).
 - $(1) \Rightarrow (3)$. follows from [3], Lemma 2.10 (2).
 - $(2) \Rightarrow (6) \Rightarrow (7)$ and $(3) \Rightarrow (5) \Rightarrow (4)$ are trivial.

 $(7) \Rightarrow (1)$. Let A be $(\mathcal{T}, n+1)$ -presented with a finite n-presentation $F_n \xrightarrow{d_n} F_{n-1} \xrightarrow{d_{n-1}} \dots \longrightarrow F_2 \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{d_0} A \longrightarrow 0$. Write $K_{n-1} = \operatorname{Ker}(d_{n-1})$ and $K_{n-2} = \operatorname{Ker}(d_{n-2})$. Then K_{n-1} is finitely generated, and we get an exact sequence of left R-modules $0 \longrightarrow K_{n-1} \longrightarrow F_{n-1} \longrightarrow K_{n-2} \longrightarrow 0$. Let $(E_i)_{i \in I}$ be any direct system of injective left R-modules (with I directed). Then $\varinjlim E_i$ is (\mathcal{T}, n) -injective by (7), so $\operatorname{Ext}_R^n(A, \varinjlim E_i) = 0$ and then $\operatorname{Ext}_R^1(K_{n-2}, \varinjlim E_i) = 0$. Thus, we have a commutative diagram

with exact rows. Since f and g are isomorphisms by [16], 25.4(d), h is an isomorphism by the Five lemma. Now, let $(M_i)_{i \in I}$ be any direct system of left R-modules (with I directed). Then we have a commutative diagram with exact rows

where $E(M_i)$ is the injective hull of M_i . Since K_{n-1} is finitely generated, by [16], Section 24.9, the maps φ_1 , φ_2 and φ_3 are monic. By the above proof, φ_2 is an isomorphism. Hence φ_1 is also an isomorphism by the Five lemma again, so K_{n-1} is finitely presented by [16], Section 25.4 (d), again, and thus A is (n+1)-presented. Therefore R is (\mathcal{T}, n) -coherent.

 $(4) \Rightarrow (1)$. It follows similarly to $(7) \Rightarrow (1)$.

 $(5) \Rightarrow (12).$ Let N be any left R-module. By [6], Lemma 5.3.12, there is a cardinal number \aleph_{α} dependent on Card(N) and Card(R) such that for any homomorphism $f: N \longrightarrow F$ with $F(\mathcal{T}, n)$ -flat, there is a pure submodule S of F such that $f(N) \subseteq S$ and Card $S \leqslant \aleph_{\alpha}$. Thus f has a factorization $N \longrightarrow S \longrightarrow F$ with $S(\mathcal{T}, n)$ -flat by Proposition 4.9 (2). Now let $(\varphi_{\beta})_{\beta \in B}$ be all such homomorphisms $\varphi_{\beta}: N \longrightarrow$ S_{β} with Card $S_{\beta} \leqslant \aleph_{\alpha}$ and $S_{\beta}(\mathcal{T}, n)$ -flat. Then any homomorphism $N \longrightarrow F$ with $F(\mathcal{T}, n)$ -flat has a factorization $N \longrightarrow S_i \longrightarrow F$ for some $i \in B$. Thus the homomorphism $N \longrightarrow \prod_{\beta \in B} S_{\beta}$ induced by all φ_{β} is a (\mathcal{T}, n) -flat preenvelope since $\prod_{\beta \in B} S_{\beta}$ is (\mathcal{T}, n) -flat by (5).

 $(12) \Rightarrow (5).$ For any family $\{F_i\}_{i \in I}$ of (\mathcal{T}, n) -flat left *R*-modules, by hypothesis, $\prod_{i \in I} F_i$ has a (\mathcal{T}, n) -flat preenvelope $\varphi \colon \prod_{i \in I} F_i \longrightarrow F$. Let $p_i \colon \prod_{i \in I} F_i \longrightarrow F_i$ be the projection. Then there exists $f_i \colon F \longrightarrow F_i$ such that $p_i = f_i \varphi$. Define $\psi \colon F \longrightarrow \prod_{i \in I} F_i$ by $\psi(x) = (f_i(x))$ for every $x \in F$, then it is easy to check that $\psi \varphi = 1$. Hence $\prod_{i \in I} F_i$ is isomorphic to a direct summand of F, and so $\prod_{i \in I} F_i$ is (\mathcal{T}, n) -flat.

 $(1) \Rightarrow (11)$. For any $(\mathcal{T}, n+1)$ -presented module A, since R is (\mathcal{T}, n) -coherent, A is (n+1)-presented. And so (11) follows from [3], Lemma 2.7 (2).

 $(11) \Rightarrow (8).$ Let $S = \mathbb{Z}$, $E = \mathbb{Q}/\mathbb{Z}$ and B = M. Then $\operatorname{Tor}_n^R(M^+, A) \cong \operatorname{Ext}_R^n(A, M)^+$ for any $(\mathcal{T}, n+1)$ -presented module A by (11), and hence (8) holds.

 $(8) \Rightarrow (9)$. Let M be a left R-module. If M is (\mathcal{T}, n) -injective, then M^+ is (\mathcal{T}, n) -flat by (8), and so M^{++} is (\mathcal{T}, n) -injective by Theorem 4.8. Conversely, if M^{++} is (\mathcal{T}, n) -injective, then M, being a pure submodule of M^{++} (see [14], Exercise 41, page 48), is (\mathcal{T}, n) -injective by Proposition 4.9 (1).

(9) \Rightarrow (10). If M is a (\mathcal{T}, n) -flat right R-module, then M^+ is a (\mathcal{T}, n) -injective left R-module by Theorem 4.8, and so M^{+++} is (\mathcal{T}, n) -injective by (9). Thus M^{++}

is (\mathcal{T}, n) -flat by Theorem 4.8 again. Conversely, if M^{++} is (\mathcal{T}, n) -flat, then M is (\mathcal{T}, n) -flat by Proposition 4.9 (2) as M is a pure submodule of M^{++} .

 $(10) \Rightarrow (5). \text{ Let } \{N_i\}_{i \in I} \text{ be a family of } (\mathcal{T}, n)\text{-flat right } R\text{-modules. Then by} \\ \text{Proposition 4.7, } \bigoplus_{i \in I} N_i \text{ is } (\mathcal{T}, n)\text{-flat, and so } \left(\prod_{i \in I} N_i^+\right)^+ \cong \left(\bigoplus_{i \in I} N_i\right)^{++} \text{ is } (\mathcal{T}, n)\text{-} \\ \text{flat by (10). Since } \bigoplus_{i \in I} N_i^+ \text{ is a pure submodule of } \prod_{i \in I} N_i^+ \text{ by [2], Lemma 1 (1),} \\ \left(\prod_{i \in I} N_i^+\right)^+ \longrightarrow \left(\bigoplus_{i \in I} N_i^+\right)^+ \longrightarrow 0 \text{ splits, and hence } \left(\bigoplus_{i \in I} N_i^+\right)^+ \text{ is } (\mathcal{T}, n)\text{-flat. Thus} \\ \prod_{i \in I} N_i^{++} \cong \left(\bigoplus_{i \in I} N_i^+\right)^+ \text{ is } (\mathcal{T}, n)\text{-flat. Since } \prod_{i \in I} N_i \text{ is a pure submodule of } \prod_{i \in I} N_i^{++} \\ \text{ by [2], Lemma 1 (2), } \prod_{i \in I} N_i \text{ is } (\mathcal{T}, n)\text{-flat by Proposition 4.9 (2).} \\ \Box$

Corollary 5.4. The following statements are equivalent for a ring R:

- (1) R is left *n*-coherent.
- (2) $\varinjlim \operatorname{Ext}_{R}^{n}(C, M_{\alpha}) \cong \operatorname{Ext}_{R}^{n}(C, \varinjlim M_{\alpha})$ for any *n*-presented left *R*-module *C* and direct system $(M_{\alpha})_{\alpha \in A}$ of left *R*-modules.
- (3) $\operatorname{Tor}_{n}^{R}(\prod N_{\alpha}, C) \cong \prod \operatorname{Tor}_{n}^{R}(N_{\alpha}, C)$ for any family $\{N_{\alpha}\}$ of right *R*-modules and any *n*-presented left *R*-module *C*.
- (4) Any direct product of copies of R_R is *n*-flat.
- (5) Any direct product of *n*-flat right *R*-modules is *n*-flat.
- (6) Any direct limit of n-FP-injective left R-modules is n-FP-injective.
- (7) Any direct limit of injective left *R*-modules is *n*-FP-injective.
- (8) A left R-module M is n-FP-injective if and only if M^+ is n-flat.
- (9) A left R-module M is n-FP-injective if and only if M^{++} is n-FP-injective.
- (10) A right R-module M is n-flat if and only if M^{++} is n-flat.
- (11) For any ring S, $\operatorname{Tor}_{n}^{R}(\operatorname{Hom}_{S}(B, E), C) \cong \operatorname{Hom}_{S}(\operatorname{Ext}_{R}^{n}(C, B), E)$ for the situation $({}_{R}C, {}_{R}B_{S}, E_{S})$ with C n-presented and E_{S} injective.
- (12) Every right R-module has an n-flat preenvelope.

We note that the equivalences of (1)-(6), (8)-(11) in Corollary 5.4 appeared in [3], Theorem 3.1.

Lemma 5.5. Let A be an (n-1)-presented left R-module. Then A is n-presented if and only if $\operatorname{Ext}_{R}^{n}(A, M) = 0$ for any FP-injective module M.

Proof. Let A have a finite (n-1)-presentation $F_{n-1} \xrightarrow{d_{n-1}} \dots \longrightarrow F_2 \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{\varepsilon} A \longrightarrow 0$. Write $K_{n-2} = \operatorname{Ker}(d_{n-2})$. Then K_{n-2} is finitely generated. By the isomorphism $\operatorname{Ext}_R^n(A, M) \cong \operatorname{Ext}_R^1(K_{n-2}, M)$, we have that $\operatorname{Ext}_R^n(A, M) = 0$ for any FP-injective module M if and only if $\operatorname{Ext}_R^n(K_{n-2}, M) = 0$ for any FP-injective module M if and only if $\operatorname{Ext}_R^n(A, M) = 0$ for any FP-injective module M if and only if $\operatorname{Ext}_R^n(A, M) = 0$ for any FP-injective module M if and only if K_{n-2} is finitely presented, that is, A is n-presented. \Box

Theorem 5.6. The following statements are equivalent for a ring R.

- (1) R is (\mathcal{T}, n) -coherent.
- (2) $\operatorname{Ext}_{R}^{n+1}(A, N) = 0$ for any $(\mathcal{T}, n+1)$ -presented left *R*-module *A* and any *FP*-injective left *R*-module *N*.
- (3) If N is a (\mathcal{T}, n) -injective left R-module, N_1 is an FP-injective submodule of N, then N/N_1 is (\mathcal{T}, n) -injective.
- (4) For any FP-injective left R-module N, E(N)/N is (T, n)-injective, where E(N) is the injective hull of N.

Proof. (1) \Rightarrow (2). For any $(\mathcal{T}, n+1)$ -presented left *R*-module *A*, there exists an exact sequence of left *R*-modules $0 \longrightarrow K \longrightarrow F \longrightarrow A \longrightarrow 0$, where *F* is finitely generated free and *K* is (\mathcal{T}, n) -presented. Since *R* is (\mathcal{T}, n) -coherent, *K* is *n*-presented, and so from the exact sequence

$$0 = \operatorname{Ext}_{R}^{n}(F, N) \longrightarrow \operatorname{Ext}_{R}^{n}(K, N) \longrightarrow \operatorname{Ext}_{R}^{n+1}(A, N) \longrightarrow \operatorname{Ext}_{R}^{n+1}(F, N) = 0$$

we have $\operatorname{Ext}_{R}^{n+1}(A, N) \cong \operatorname{Ext}_{R}^{n}(K, N) = 0$ by Lemma 5.5 since N is FP-injective.

(2) \Rightarrow (3). For any $(\mathcal{T}, n+1)$ -presented left *R*-module *A*, the exact sequence $0 \longrightarrow N_1 \longrightarrow N \longrightarrow N/N_1 \longrightarrow 0$ induces the exactness of the sequence

$$0 = \operatorname{Ext}_{R}^{n}(A, N) \longrightarrow \operatorname{Ext}_{R}^{n}(A, N/N_{1}) \longrightarrow \operatorname{Ext}_{R}^{n+1}(A, N_{1}) = 0.$$

Therefore $\operatorname{Ext}_{R}^{n}(A, N/N_{1}) = 0$, as required.

 $(3) \Rightarrow (4)$ is obvious.

 $(4) \Rightarrow (1)$. Let A be a $(\mathcal{T}, n+1)$ -presented left R-module. Then there exists an exact sequence of left R-modules $0 \longrightarrow K \longrightarrow F \longrightarrow A \longrightarrow 0$, where F is finitely generated free and K is (n-1)-presented. For any FP-injective module N, E(N)/N is (\mathcal{T}, n) -injective by (4). From the exactness of the two sequences

$$0 = \operatorname{Ext}_{R}^{n}(F, N) \longrightarrow \operatorname{Ext}_{R}^{n}(K, N) \longrightarrow \operatorname{Ext}_{R}^{n+1}(A, N) \longrightarrow \operatorname{Ext}_{R}^{n+1}(F, N) = 0$$

and

$$0 = \operatorname{Ext}_{R}^{n}(A, E(N)) \to \operatorname{Ext}_{R}^{n}(A, E(N)/N) \to \operatorname{Ext}_{R}^{n+1}(A, N) \to \operatorname{Ext}_{R}^{n+1}(A, E(N)) = 0$$

we have $\operatorname{Ext}_{R}^{n}(K, N) \cong \operatorname{Ext}_{R}^{n+1}(A, N) \cong \operatorname{Ext}_{R}^{n}(A, E(N)/N) = 0$. Thus, K is n-presented by Lemma 5.5, and so A is (n + 1)-presented. Therefore, R is (\mathcal{T}, n) -coherent.

Corollary 5.7. The following statements are equivalent for a ring R:

- (1) R is left *n*-coherent.
- (2) $\operatorname{Ext}_{R}^{n+1}(A, N) = 0$ for any *n*-presented left *R*-module *A* and any *FP*-injective left *R*-module *N*.
- (3) If N is an n-FP-injective left R-module, N₁ is an FP-injective submodule of N, then N/N₁ is n-FP-injective.
- (4) For any FP-injective left R-module N, E(N)/N is n-FP-injective.

Corollary 5.8. Let R be a (\mathcal{T}, n) -coherent ring. Then every left R-module has a (\mathcal{T}, n) -injective cover.

Proof. Let $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ be a pure exact sequence of left R-modules with $B(\mathcal{T}, n)$ -injective. Then $0 \longrightarrow C^+ \longrightarrow B^+ \longrightarrow A^+ \longrightarrow 0$ is split exact. Since R is (\mathcal{T}, n) -coherent, B^+ is (\mathcal{T}, n) -flat by Theorem 5.3 (8), so C^+ is (\mathcal{T}, n) -flat, and hence C is (\mathcal{T}, n) -injective by Remark 4.10. Thus, the class of (\mathcal{T}, n) -injective modules is closed under pure quotients. By [9], Theorem 2.5, and Proposition 4.6, every left R-module has a (\mathcal{T}, n) -injective cover.

Corollary 5.9. Let R be a left n-coherent ring. Then every left R-module has an n-FP-injective cover.

Corollary 5.10. The following statements are equivalent for a (\mathcal{T}, n) -coherent ring R:

(1) Every (\mathcal{T}, n) -flat right *R*-module is *n*-flat.

(2) Every (\mathcal{T}, n) -injective left *R*-module is *n*-FP-injective.

In this case, R is left n-coherent.

Proof. (1) \Rightarrow (2). Let M be any (\mathcal{T}, n) -injective left R-module. Then M^+ is a (\mathcal{T}, n) -flat right R-module by Theorem 5.3 (8) since R is (\mathcal{T}, n) -coherent, and so M^+ is n-flat by (1). Thus M^{++} is n-FP-injective. Since M is a pure submodule of M^{++} , and a pure submodule of an n-FP-injective module is n-FP-injective, so M is n-FP-injective.

 $(2) \Rightarrow (1)$. Let M be any (\mathcal{T}, n) -flat right R-module. Then M^+ is a (\mathcal{T}, n) -injective left R-module by Theorem 4.8, and so M^+ is n-FP-injective by (2). Thus M is n-flat.

In this case, any direct product of *n*-flat right *R*-modules is *n*-flat by Theorem 5.3 (5), and so *R* is left *n*-coherent by Corollary 5.4 (5). \Box

Proposition 5.11. The following statements are equivalent for a ring R:

(1) Every right *R*-module has a monic (\mathcal{T}, n) -flat preenvelope.

- (2) R is (\mathcal{T}, n) -coherent and $_{R}R$ is (\mathcal{T}, n) -injective.
- (3) R is (\mathcal{T}, n) -coherent and every left R-module has an epic (\mathcal{T}, n) -injective cover.
- (4) R is (\mathcal{T}, n) -coherent and every injective right R-module is (\mathcal{T}, n) -flat.
- (5) R is (\mathcal{T}, n) -coherent and every flat left R-module is (\mathcal{T}, n) -injective.

Proof. (1) \Rightarrow (4). Assume (1). Then it is clear that R is a (\mathcal{T}, n) -coherent ring by Theorem 5.3 (12). Let E be any injective right R-module. E has a monic (\mathcal{T}, n) -flat preenvelope F, so E is isomorphic to a direct summand of F, and thus E is (\mathcal{T}, n) -flat.

 $(4) \Rightarrow (5)$. Let M be a flat left R-module. Then M^+ is injective, and so M^+ is (\mathcal{T}, n) -flat by (4). Hence M is (\mathcal{T}, n) -injective by Theorem 5.3 (8).

 $(5) \Rightarrow (2)$. It is obvious.

(2) \Rightarrow (1). Let M be any right R-module. Then M has a (\mathcal{T}, n) -flat preenvelope $f: M \to F$ by Theorem 5.3 (12). Since $(_RR)^+$ is a cogenerator, there exists an exact sequence $0 \longrightarrow M \xrightarrow{g} \prod(_RR)^+$. Since $_RR$ is (\mathcal{T}, n) -injective, by Theorem 5.3, $\prod(_RR)^+$ is (\mathcal{T}, n) -flat, and so there exists a right R-homomorphism $h: F \to \prod(_RR)^+$ such that g = hf, which shows that f is monic.

(2) \Rightarrow (3). Let M be a left R-module. Then M has a (\mathcal{T}, n) -injective cover $\varphi \colon C \to M$ by Corollary 5.8. On the other hand, there is an exact sequence $F \xrightarrow{\alpha} M \longrightarrow 0$ with F free. Since F is (\mathcal{T}, n) -injective by (2) and Proposition 4.6, there exists a homomorphism $\beta \colon F \to C$ such that $\alpha = \varphi \beta$. It follows that φ is epic.

(3) \Rightarrow (2). Let $f: N \longrightarrow {}_{R}R$ be an epic (\mathcal{T}, n) -injective cover. Then the projectivity of ${}_{R}R$ implies that ${}_{R}R$ is isomorphic to a direct summand of N, and so ${}_{R}R$ is (\mathcal{T}, n) -injective.

Corollary 5.12. The following statements are equivalent for a ring R:

- (1) Every right *R*-module has a monic *n*-flat preenvelope.
- (2) R is left *n*-coherent and $_{R}R$ is *n*-FP-injective.
- (3) R is left *n*-coherent and every left R-module has an epic *n*-FP-injective cover.
- (4) R is left *n*-coherent and every injective right R-module is *n*-flat.
- (5) R is left *n*-coherent and every flat left *R*-module is *n*-FP-injective.

Acknowledgment. The author wishes to thank the referee for careful reading of the paper and giving a detailed and helpful report.

References

[1] [2]	S. U. Chase: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457–473. Zbl MR doi T. J. Cheatham, D. R. Stone: Flat and projective character modules. Proc. Am. Math.
	Soc. 81 (1981), 175–177. zbl MR doi
[3]	J. Chen, N. Ding: On n-coherent rings. Commun. Algebra 24 (1996), 3211–3216. zbl MR doi
[4]	D. L. Costa: Parameterizing families of non-Noetherian rings. Commun. Algebra 22
	(1994), 3997–4011. zbl MR doi
[5]	E. Enochs: A note on absolutely pure modules. Canad. Math. Bull. 19 (1976), 361–362. zbl MR doi
[6]	E. E. Enochs, O. M. G. Jenda: Relative Homological Algebra. De Gruyter Expositions in
	Mathematics 30, Walter de Gruyter, Berlin, 2000. Zbl MR doi
[7]	E. E. Enochs, O. M. G. Jenda, J. A. Lopez-Ramos: The existence of Gorenstein flat cov-
	ers. Math. Scand. 94 (2004), 46–62. Zbl MR doi
[8]	M. Finkel Jones: Coherence relative to an hereditary torsion theory. Commun. Algebra
	10 (1982), 719–739. zbl MR doi
[9]	H. Holm, P. Jørgensen: Covers, precovers, and purity. Illinois J. Math. 52 (2008),
	691–703. zbl MR
[10]	L. Mao, N. Ding: Relative coherence of rings. J. Algebra Appl. 11 (2012), 1250047,
	16 pages. zbl MR doi
	C. Megibben: Absolutely pure modules. Proc. Am. Math. Soc. 26 (1970), 561–566. zbl MR doi
[12]	J. J. Rotman: An Introduction to Homological Algebra. Pure and Applied Mathemat-
r 1	ics 85, Academic Press, Harcourt Brace Jovanovich Publishers, New York-London, 1979. zbl MR
[13]	B. Stenström: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2
[4,4]	(1970), 323–329. <u>zbl MR doi</u>
[14]	
[1]	Grundlehren der mathematischen Wissenschaften, Band 217, Springer, New York, 1975. zbl MR doi
[15]	J. Trlifaj: Cover, Envelopes, and Cotorsion Theories. Lecture notes for the workshop.
[1.0]	Homological Methods in Module Theory, Cortona, 2000.
[10]	<i>R. Wisbauer</i> : Foundations of Module and Ring Theory. A Handbook for Study and
	Research. Algebra, Logic and Applications 3, Gordon and Breach Science Publishers,
[17]	Philadelphia, 1991. Zbl MR
[17]	X. Yang, Z. Liu: n-flat and n-FP-injective modules. Czech. Math. J. 61 (2011), 359–369. zbl MR doi
[10]	D. Zhou: On n-coherent rings and (n, d) -rings. Commun. Algebra 32 (2004), 2425–2441. zbl MR doi

Author's address: Zhanmin Zhu, Department of Mathematics, Jiaxing University, 118 Jiahang Rd, Nanhu, 314001 Jiaxing, Zhejiang, P.R. China e-mail: zhuzhanminzjxu@hotmail.com.