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Abstract. Let R be aring. A subclass T of left R-modules is called a weak torsion class if
it is closed under homomorphic images and extensions. Let 7 be a weak torsion class of left
R-modules and n a positive integer. Then a left R-module M is called T-finitely generated
if there exists a finitely generated submodule N such that M/N € T; a left R-module A is
called (7, n)-presented if there exists an exact sequence of left R-modules

0—Kp,1—F,1—...—F —>Fyp—M—0

such that Fp,..., F,,_1 are finitely generated free and K, _1 is 7-finitely generated; a left
R-module M is called (7, n)-injective, if Ext'z(A, M) = 0 for each (7,n + 1)-presented left
R-module A; aright R-module M is called (T, n)-flat, if Tor,lf(M, A) = 0 for each (T,n+1)-
presented left R-module A. A ring R is called (7, n)-coherent, if every (7, n+ 1)-presented
module is (n + 1)-presented. Some characterizations and properties of these modules and
rings are given.

Keywords: (T,n)-presented module; (7, n)-injective module; (7, n)-flat module; (7, n)-
coherent ring
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1. INTRODUCTION

Recall that a torsion theory, see [14], 7 = (T,F) for the category of all left R-
modules consists of two subclasses 7 and F such that:
(1) Hom(T,F)=0forall T € T and F € F.
(2) If Hom(T,F)=0for all F € F, then T € T.
(3) If Hom(T,F') =0 for all T € T, then F' € F.
In this case, T is called a torsion class.
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A torsion theory 7 = (T, F) is called hereditary if 7 is closed under submodules.
By [14], page 139, Proposition 2.1, a class T of left R-modules is a torsion class for
some torsion theory if and only if 7 is closed under quotient modules, direct sums
and extensions. Inspired by this result, in this paper we will call a nonempty subclass
T of left R-modules a weak torsion class if 7 is closed under homomorphic images
and extensions.

Let 7 = (T, F) be a hereditary torsion theory for the category of all left R-modules.
Then according to [8], a left R-module M is called 7-finitely generated (or 7-FG for
short) if there exists a finitely generated submodule N such that M/N € T; a left
R-module A is called 7-finitely presented (or 7-FP for short) if there exists an exact
sequence of left R-modules 0 — K — ' — A — 0 with F finitely generated
free and K t-finitely generated. In Section 2, we will give the concepts of T-finitely
generated modules and T -finitely presented modules by taking 7 to be a weak torsion
class of left R-modules, which extends the two concepts of Jones’s 7-finitely generated
modules and 7-finitely presented modules respectively. And then we will establish
some properties of 7-finitely generated modules and T -finitely presented modules.

Let n be a nonnegative integer. Then according to [4], a left R-module A is
called n-presented in case there exists an exact sequence of left R-modules F,, —
F,1—...—F, — Fy — M — 0 in which every F; is finitely generated free.
Motivated by the concepts of n-presented modules and T -finitely presented modules,
in Section 3 we will define and investigate (7, n)-presented modules.

Recall that a left R-module M is called FP-injective, see [13], or absolutely pure,
see [11], if Exth(A, M) = 0 for any finitely presented left R-module A; a right
R-module M is flat if and only if Torf*(M, A) = 0 for any finitely presented left
R-module A; a ring R is left coherent, see [1], if every finitely generated left ideal
of R is finitely presented, or equivalently, if every finitely generated submodule of
a projective left R-module is finitely presented. The FP-injective modules, flat mod-
ules, coherent rings and their generalizations have been studied extensively by many
authors (see, for example, [1], [3], [4], [8], [10], [13], [18], [17]).

In 1994, Costa introduced the concept of left n-coherent rings in [4]. According
to [4], a ring R is called left n-coherent in case every n-presented left R-module
is (n + 1)-presented. In 1996, Chen and Ding introduced the concepts of n-FP-
injective modules and n-flat modules, see [3]. According to [3], a left R-module M is
called n-FP-injective in case Ext?; (A, M) = 0 for any n-presented left R-module A,
a right R-module M is called n-flat in case Tor?(M, A) = 0 for any n-presented left
R-module A. By using the concepts of n-FP-injective and n-flat modules, they char-
acterized n-coherent rings. In 2012, Mao and Ding introduced the concepts of 7-f-
injective modules, T-flat modules and T-coherent rings, see [10]. According to [10], a
left R-module M is called 7- f-injective in case Extk(R/I, M) = 0 for any 7-finitely
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presented left ideal I; a right R-module M is called 7-flat in case Tor®(M, R/I) = 0
for any 7-finitely presented left ideal I; a ring R is called 7-coherent in case every
T-finitely presented left ideal is finitely presented. By using the concepts of 7-f-
injective and 7-flat modules, they characterized 7-coherent rings.

Motivated by the characterization of n-coherent rings and 7-coherent rings (where
7 is a hereditary torsion theory), in Section 5 we extend the concept of n-coherent
rings and introduce the concept of (7, n)-coherent rings (where 7 is a weak torsion
class). To characterize (7 ,n)-coherent rings, (7, n)-injective modules and (7, n)-
flat modules are introduced and studied in Section 4; some elementary properties of
(T, n)-injective modules and (7, n)-flat modules are obtained in that section.

In Section 5, a series of characterizations and properties of (7, n)-coherent rings are
given. For instance, we prove: (1) A ring R is (7, n)-coherent < any direct product
of (T,n)-flat right R-modules is (7, n)-flat < any direct limit of (7, n)-injective left
R-modules is (T, n)-injective < every right R-module has a (7, n)-flat preenvelope
< if N is a (T, n)-injective left R-module, N7 is an FP-injective submodule of N,
then N/Nj is (T, n)-injective. (2) If R is a (7, n)-coherent ring, then every left R-
module has a (7, n)-injective cover. (3) Every right R-module has a monic (7, n)-flat
preenvelope < R is (T,n)-coherent and g R is (T, n)-injective < R is (T, n)-coherent
and every left R-module has an epic (T, n)-injective cover < R is (T, n)-coherent and
every injective right R-module is (7, n)-flat < R is (T, n)-coherent and every flat left
R-module is (7, n)-injective. As corollaries, some interesting results on n-coherent
rings are obtained.

Throughout this paper, R is an associative ring with identity and all modules
considered are unitary, n is a positive integer, 7 is a weak torsion class of left R-
modules. R-Mod denotes the class of all left R-modules. For any R-module M,
M™* = Hom(M,Q/Z) will be the character module of M. Given a class £ of R-
modules, we denote by £+ = {M: Exth(L,M) =0, L € L} the right orthogonal
class of £, and by *£ = {M: Ext}%(M, L) =0, L € L} the left orthogonal class
of L.

2. T-FINITELY GENERATED AND 7 -FINITELY PRESENTED MODULES

We begin with the following definition.

Definition 2.1. A nonempty subclass 7 of left R-modules is called a weak tor-
sion class if T is closed under homomorphic images and extensions. If a class T of
left R-modules is a weak torsion class, then a left R-module M is called T-finitely
generated (or T-FG for short) if there exists a finitely generated submodule N such
that M/N € T. A left R-module A is called T-finitely presented (or T-FP for short)
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if there exists an exact sequence of left R-modules 0 — K — F — A — 0 with
F finitely generated free and K 7T-finitely generated.

Example 2.2.

(1) Let R be a non-left noetherian left hereditary ring and 7 the class of all injective
left R-modules. Then by [16], Section 39.16, T is a weak torsion class. But T
is not a torsion class.

(2) Let T be the class of all finitely generated left R-modules. Then by [16], Sec-
tion 13.9 (1), 7 is a weak torsion class. But 7 is not a torsion class.

(3) Let 7 be the class of all finitely generated semisimple left R-modules. Then T
is a weak torsion class but not a torsion class.

(4) Let T be the class of all finitely generated left R-modules. Then a left R-module
A is T-finitely generated if and only if it is finitely generated.

(5) Let 7 = R-Mod. Then a left R-module A is T-finitely presented if and only if
it is finitely generated.

(6) Let 7 = 0. Then a left R-module A is T-finitely presented if and only if it is
finitely presented.

Theorem 2.3. (1) Any homomorphic image of a T-FG module is T-FG.
(2) Any finite direct sum of T-FG modules is T-FG.
(3) Any sum of a finite number of T-FG submodules of a module M is T-FG.
(4) A direct summand of a T-FP module is T-FP.

Proof. (1) Let M be a 7-FG module and N a submodule of N. Since M is
T-FG, there exists a finitely generated submodule K of M such that M/K € T.
Since T is closed under homomorphic images, we have (M/K)/[(K + N)/K] € T,
so M/(K+ N) €T, and thus (M/N)/(K + N)/N € T. Observing that (K + N)/N
is finitely generated, we have that M /N is T-FG.

(2) Let N1, N2 be two T-FG modules. Then there exists a finitely generated
submodule K; of N; such that N;/K; € T,i=1,2. So, K1 ® K> is finitely generated
and (N1 @ Na)/(K1 @ K2) & Ni/K; @ No/Ks € T because T is closed under
extensions. And thus N1 @ Ns is T-FG.

(3) Let My, M3 be two T-FG submodules of M. Then by (2), My & M, is T-FG.
Note that M; + M; is a homomorphic image of My © My; by (1), M1 + M is T-FG.

(4) Suppose that M = F//K where F is finitely generated free and K is T-FG. If
F/K = (A+ K)/K @ (B+ K)/K, where A, B are finitely generated, then by (3),
B+ KisT-FG.But (A+ K)/K~F/(B+ K),so (A+ K)/K is T-FP. O

Corollary 2.4. A direct summand of a T-FG module is T-FG.
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Theorem 2.5. Let 0 — A — B 25 C — 0 be an exact sequence of left
R-modules.
(1) If both A and C are T-FG, then B is T-FG.
(2) If both A and C are T-FP, then B is T-FP.
(3) If B is FG and C is T-FP, then A is T-FG.
(4) If B is T-FP and A is T-FG, then C is T-FP.

Proof. (1) Suppose that A and C are T-FG. Then there exist a finitely generated
submodule A’ of A and a finitely generated submodule C’ of C such that A/A" € T
and C/C" € T. Choose a finitely generated submodule B’ of B such that p(B’) = C’,
let A” =AN(A'+B')=A"+ (AN DB’), and define

a: AJA" — B/(A" + B'); a+ A" —a+ (A +B)

and

p: B/(A'+B')— C/C; b+ (A" + B')—p(b) + C".
Then we get an exact sequence 0 — A/A"” %5 B/(A’ + B') RN C/C" — 0. Thus
AJ/A" = (AJA) /(A" JA") € T and C/C" € T, so B/(A'+ B’) € T, and hence B is
T-FG.

(2) Since A and C are T-FP, we have two exact sequences 0 — K’ - F’ N
A—0and 0 — K" -2 F” %5 C — 0, where F’, F" are finitely generated
free, K', K" are T-FG, 1, 12 are inclusion maps. Since I is projective, there exists
a homomorphism o: F”’ — B such that ¢ = po. And so we have the following

commutative diagram with exact rows and columns:

0_>F/_)‘>F/@F//_”>F//_>O
f h g

0 A———-p—L ¢ 0
0 0 0
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where A is the natural injection, ¢ is the inclusion map, 7 is the natural projection,

and
h: FFo F" = B; (2,2") —if(z") + o(z").

By (1), Ker(h) is T-FG, and hence B is T-FP.

(3) Suppose that B is FG and C' is T-FP. Let F -2+ B — 0 be exact with F FG
free, let K = Ker(py). Then 0 — K — F — C — 0 is exact. Since C'is T-FP,
there exists an exact sequence 0 — K’ — F' — C — 0 with F’ FG free and
K’ T-FG. By Schanuel’s lemma, we have K/ & F = K @ F’, and thus K is T-FG
because a finite direct sum and a direct summand of 7-FG modules are 7T-FG. Now
let ¢ = ga‘ - Observing that ¢ is epic, it is easy to see that ¢ is an epimorphism
from K to A. Hence, by Theorem 2.3 (1), A is T-FG.

(4) Since B is T-FP, there exists an exact sequence of left R-modules 0 — K —»
F — B — 0 such that F' is finitely generated free and K is 7-FG. Therefore, we
can now from the pullback of A — B and F' — B get the following commutative

diagram:
0 0
K p— K
0 P F C 0
0 A B C 0
0 0
with exact rows and columns. Since both K and A are T-FG, by (1), P is also T-FG,
and so C' is T-FP. O

3. (7,n)-PRESENTED MODULES

Definition 3.1. Let 7 be a weak torsion class and n a positive integer. Then
a left R-module A is said to be (7, n)-presented if there exists an exact sequence of
left R-modules

0—K, 1—F,1—...—F —F—M-—0

such that Fy, ..., F,_1 are finitely generated free and K, 1 is T -finitely generated.
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Clearly, a left R-module A is T-finitely presented if and only if it is (7,1)-
presented. It is easy to see that every (T, n)-presented module is (7, n—1)-presented.
We also call T-finitely generated modules (7, 0)-presented.

Example 3.2. (1) Let 7 = R-Mod. Then a left R-module A is (7, n)-presented
if and only if it is (n — 1)-presented.

(2) Let 7 = 0. Then a left R-module A is (7,n)-presented if and only if it is
n-presented.

Lemma 3.3. Let A, B be two left R-modules and n a positive integer. If both A
and B are (T, n)-presented, then A® B is also (T, n)-presented.

Proof. It is a consequence of Theorem 2.3 (2). O

Proposition 3.4. The following statements are equivalent for a left R-module A:
(1) A is (T,n)-presented.
(2) A is (n — 1)-presented, and if there exists an exact sequence of left R-modules

0—K, 1—F,1—...— FF—Fy—A—0

such that Fy, ..., F,_1 are finitely generated free, then K, _1 is T -finitely gen-
erated.

(3) There exists an exact sequence of left R-modules
0—K-—=F-—A—0

such that F is finitely generated free and K is (T,n — 1)-presented.
If n > 2, then the above conditions are also equivalent to:

(4) A is (n — 2)-presented, and if there exists an exact sequence of left R-modules
0— K, o—F, 9—...— F —Fy—A—0

such that Fy, ..., F,_o are finitely generated free, then K, _o is T-finitely pre-
sented.

Proof. (1) = (2) Since A is (T, n)-presented, there exists an exact sequence of
left R-modules

0—L,1—F _,—...—F —F —A—0

such that Fjj,..., F)_, are finitely generated free and L,_; is T-finitely generated,
so A is (n — 1)-presented. Now if there exists an exact sequence of left R-modules

0—K, 1—F,1—...— FF—Fy—A—0
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such that Fy,...,F, 1 are finitely generated free, then by the generalization of
Schanuel’s lemma [12], Exercise 3.37, and by Theorem 2.3 (2) and Corollary 2.4,
K,,_; is T-finitely generated.

(2) = (1); (1) & (3); and (2) < (4) are obvious. O

Proposition 3.5. Let 0 — A — B — C' — 0 be an exact sequence of left
R-modules. Then:
(1) If both A and C are (T,n)-presented, then so is B.
(2) If Bis(T,n)-presented and A is (T, n—1)-presented, then C' is (T ,n)-presented.

Proof. (1) Use induction on n. If n = 1, then (1) holds by Theorem 2.5 (2).
Suppose that (1) holds for n — 1. Let A and C be (7,n)-presented. Then by
Proposition 3.4, we have two exact sequences 0 — K’ -5 F’ i> A — 0 and
0— K" 2 F” 25 C — 0, where F', F" are finitely generated free, K’, K are
(T,n — 1)-presented, ¢1, to are inclusion maps. Using a method similar to the proof
of Theorem 2.5 (2), by induction hypothesis and Proposition 3.4 we can get that B
is also (7, n)-presented.

(2) Since B is (T, n)-presented, by Proposition 3.4 there exists an exact sequence
of left R-modules 0 — K — F' — B —— 0 such that F' is finitely generated
free and K is (T,n — 1)-presented. Now, using a method similar to the proof of
Theorem 2.5 (4), by (1) and Proposition 3.4, we can get that C' is (7, n)-presented.

(I

Corollary 3.6. A direct summand of a (T,n)-presented module is (T,n)-
presented.

Proof. Use induction on n. If n = 1, then the conclusion holds by Theo-
rem 2.3 (4). Suppose that the conclusion holds for n — 1. Let B be (T, n)-presented
and B =A@ C . Then by hypothesis, 4 is (T,n — 1)-presented , and so C (T, n)-
presented by Proposition 3.5 (2), as required. O

Corollary 3.7. The following statements are equivalent for a left R-module M :

(1) M is (T,n)-presented.
(2) M is finitely generated and, if the sequence of left R-modules 0 — K — F —
M — 0 is exact with F finitely generated free, then K is (T,n — 1)-presented.

Proof. (1) = (2). Since M is (7,n)-presented, by Proposition 3.4 (3) there
exists an exact sequence of left R-modules 0 — K’ — F’ — M — 0 such that
F' is finitely generated free and K’ is (7, n— 1)-presented. So, by Schanuel’s lemma,
we have K’ ¢ F =2 K @ F’, and thus K is (T,n — 1)-presented because finite direct
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sums and direct summands of (7, n — 1)-presented modules are (7, n — 1)-presented
by Lemma 3.3 and Corollary 3.6.
(2) = (1). It follows from Proposition 3.4 (3). O

Corollary 3.8. Let n > 1 and let 0 — A — B — C — 0 be an exact
sequence of left R-modules. If C' is (T,n)-presented and B is (T,n — 1)-presented,
then A is (T,n — 1)-presented.

Proof. Since n > 1 and B is (T,n — 1)-presented, we have the following com-
mutative diagram:

0 0
K=———K
0 P F C 0
|
0 A B C 0
0 0

with exact rows and columns, where F' is finitely generated free. Moreover, by
Corollary 3.7, K is (T, n—2)-presented. Since C'is (7, n)-presented, by Corollary 3.7,
Pis (T,n—1)-presented, and so A is (T, n— 1)-presented by Proposition 3.5 (2). O

4. (T,n)-INJECTIVE AND (7 ,7n)-FLAT MODULES

Definition 4.1. A left R-module M is called (T, n)-injective, if Exty(A, M) =0
for each (7, n + 1)-presented left R-module A. A right R-module M is called (7, n)-
flat, if To1rf‘(M7 A) =0 for each (T,n + 1)-presented left R-module A.

Clearly, n-FP-injective left R-modules are (7, n)-injective, n-flat right R-modules
are (7, n)-flat. By Proposition 3.4 (3), it is easy to see that a (7, n)-injective module
is (T,n + 1)-injective, a (T, n)-flat module is (7,n + 1)-flat. We denote by 7,7
the class of all (7, n)-injective left R-modules, and denote by 7,F the class of all
(T,n)-flat right R-modules. We recall that if n,d are nonnegative integers, then
according to [18], a right R-module M is called (n, d)-injective if Ext% (A, M)=0
for every n-presented right R-module A; a left R-module M is called (n,d)-flat if
Tor§+1(A, M)=0 for every n-presented right R-module A.
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Example 4.2. (1) Let 7 = R-Mod. Then a left R-module M is (T, n)-injective
if and only if M is n-FP-injective, a right R-module M is (7,n)-flat if and only if
M is n-flat. In particular, a left R-module M is (7, 1)-injective if and only if M is
FP-injective, a right R-module M is (7, 1)-flat if and only if M is flat.

(2) Let 7 = {0}. Then a left R-module M is (7, n)-injective if and only if M
is (n + 1,n — 1)-injective, a right R-module M is (7 ,n)-flat if and only if M is
(n+1,n — 1)-flat. In particular, a left R-module M is (7, 1)-injective if and only if
M is (2,0)-injective, a right R-module M is (T, 1)-flat if and only if M is (2,0)-flat.

Recall that an exact sequence of left R-modules 0 — M — M’ — M"” — 0
is said to be pure if every finitely presented left R-module is projective with respect
to this exact sequence.

Definition 4.3. Let 0 — M — M’ — M"” — 0 be an exact sequence of
left R-modules. Then it is said to be T-pure if every (T, 2)-presented left R-module
is projective with respect to it.

Example 4.4. (1) Let 7 = R-Mod. Then it is easy to see that an exact sequence
of left R-modules 0 — M — M’ — M" — 0 is pure if and only if it is T-pure.

(2) Let 7 = {0}. Then it is easy to see that an exact sequence of left R-modules
0 — M — M — M"”" — 0 is T-pure if and only if every 2-presented left
R-module is projective with respect to it.

Let ... — P, LN Py Dy 4 5 0bea projective resolution of a module A.
As usual, we will denote Ker(d;) by K;, and we will call K, an i-syzygy of A. If
n > 2, then it is easy to see that a left R-module A is (7, n+ 1)-presented if and only
if it is (n — 2)-presented; and if the sequence of right R-modules 0 — K, —
F,o—...—F, — Fy — A — 0 is exact, where Fy,..., F,_ o are finitely
generated free, then K,,_o is (T, 2)-presented.

Theorem 4.5. Let M be a left R-module and n > 2. Then the following state-
ments are equivalent:

(1) M is (T, n)-injective.

(2) If the sequence 0 — K,,_ o — F,,_ 0 — ... — F} — Fj — A — 0
is exact, where Fy,...,F,_o are finitely generated free and K,_o is (T,2)-
presented, then Ext}%(Kn_g, M) =0.

(3) For every (n—1)-presentation F,_y — ... — Fp — A — 0of a (T,n+1)-
presented module A with Fy, ..., F,_o, F,,_1 finitely generated free, every ho-
momorphism from the (n — 1)-syzygy K,_1 to M can be extended to a homo-
morphism from F,_1 to M.

(4) There exists a T-pure exact sequence 0 — M — M’ — M"” — 0 of left
R-modules with M’ (T ,n)-injective.

464



Proof. (1) < (2). By the isomorphism Ext’}(A, M) = Extp(K, o, M).
(2) & (3). By the exact sequence

Hom(F,_1, M) — Hom(K, 1, M) — Exth(K,_2, M) — ExthL(F,_1, M) =0.

(1) = (4). It is obvious.

(4) = (2). Since 0 — M — M’ — M"” — 0 is T-pure and K,,_ is (T, 2)-
presented, we have that the map Hom(K,_ o, M') — Hom(K,,_2, M") is epic. So
from the exact sequence

Hom(K,,_o, M') — Hom(K,,_9, M") — Exth(K, o, M) — 0
we have Ext (K, _o, M) = 0. O

Proposition 4.6. Let {M;: i € I} be a family of left R-modules. Then the
following statements are equivalent:
(1) Each M; is (T, n)-injective.
(2) II M; is (T,n)-injective.
icl
(3) @ M, is (T, n)-injective.
el

Proof. (1) & (2). By the isomorphism Ext (A, I1 Mz) ~ J] Exti (A4, M;).
icl el
(2) = (3). For every (n — 1)-presentation F,,_1 — ... — Fp — A — 0 of
a (T,n + 1)-presented module A with Fy,..., F,_2, F,,_1 finitely generated free, by
Proposition 3.4 (4), the (n—1)-syzygy K,—1 is T-finitely presented and hence finitely
generated. Let f be any homomorphism from K,_; to @ M;. Then there exists
il
a finite subset Iy of I such that Im(f) C @ M;. By (2), @ M, is (T, n)-injective.
i€lo i€y
So, by Theorem 4.5 (3), f can be extended to a homomorphism from F,,_; to @ M;,
i€lo
and then f can be extended to a homomorphism from F,,_; to @ M;. Therefore
i€l
P M; is (T, n)-injective by Theorem 4.5 (3) again.
iel
(3) = (1). It is trivial. O

Proposition 4.7. Let {M;: i € I} be a family of right R-modules. Then the
following conditions are equivalent:
(1) Every M; is (T, n)-flat.
(2) @ M; is (T,n)-flat.

icl

Proof. By the isomorphism Tor® (@ M;, A) >~ @ Tor(M;, A). O
el i€l
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Theorem 4.8. Let M be a right R-module. Then M is (T,n)-flat if and only if
M™ is (T, n)-injective.

Proof. It follows from the isomorphism Torf(M, A)t 2 Ext}(A, MT). O

Proposition 4.9.
(1) Pure submodules of (T,n)-injective modules are (T, n)-injective.
(2) Pure submodules of (T,n)-flat modules are (T, n)-flat.

Proof. (1) Let N be a pure submodule of a (7, n)-injective module M. Then
N is T-pure in M, and so, by Theorem 4.5 (4), N is (T, n)-injective.

(2) Let M be a (7,n)-flat module and N a pure submodule of M. Then the
pure exact sequence 0 — N — M — M /N — 0 induces a split exact sequence
0 — (M/N)" — M+t — Nt — 0. By Theorem 4.8, M+ is (T, n)-injective, so
N7 is (T, n)-injective by Proposition 4.6, and hence N is (7, n)-flat by Theorem 4.8
again. O

Remark 4.10. From Theorem 4.8, the (7, n)-flatness of Mg can be character-
ized by the (7 ,n)-injectivity of MT. On the other hand, by [3], Lemma 2.7 (1),
the sequence Torﬁ(M*,A) — Exth (4, M)" — 0 is exact for any n-presented
left R-module A and any left R-module M. So, for any left R-module M, if M ™ is
(T,n)-flat, then M is (T, n)-injective.

Let F be a class of R-modules and M an R-module. Following [6], we say that
a homomorphism ¢: M — F where F' € F is an F-preenvelope of M if for any
morphism f: M — F’ with F’ € F there is a g: ' — F” such that gp = f.
An F-preenvelope ¢: M — F' is said to be an F-envelope if every endomorphism
g: FF— F such that gp = ¢ is an isomorphism. Dually, we have the definitions of
an F-precover and an F-cover. The F-envelopes (F-covers) may not exist in general,
but if they exist, they are unique up to isomorphism.

A pair (A, B) of classes of R-modules is called a cotorsion theory, see [6], if A~ = B
and B = A. A cotorsion theory (A, B) is called perfect, see [7], if every R-module
has a B-envelope and an A-cover. A cotorsion theory (A, B) is called complete
(see [6], Definition 7.1.6, and [15], Lemma 1.13) if for any R-module M there are
exact sequences 0 — M — B — A — 0 with A € A and B € B, and
0—B — A — M-—0with A € Aand B’ € 5.

For a class F of R-modules, we put F© = {FT: F € F}. We recall that a left
R-module M is said to be pure injective if it is injective with respect to all pure
exact sequences of left R-modules. Following [15], we denote by PZ the class of pure
injective left R-modules.

Theorem 4.11. Let R be a ring. Then:
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(1) (*(T.Z),T.I) is a complete cotorsion theory.
(2) (ToF, (ToF)1) is a perfect cotorsion theory.

Proof. (1) Let X be the set of representatives of all K,,_3’s in Theorem 4.5 (2).
Then by Theorem 4.5, 7,Z = X+, and so (*(7,Z), T,T) = (+(X+),X?1) is a com-
plete cotorsion theory by [15], Theorem 2.2 (2).

(2) Write A = 7, F and let X be the class of all K,,_5’s in Theorem 4.5 (2). Then
by dimension shifting one shows that A € 7, F if and only if Torf'(A4, X) = 0 for
each X € X. Thus, by the isomorphism Torf (4, B)* = ExthL(A, BT), we have A =
L(xt), and so (T, F, (ToF)*) = (L(x7F), ((x1))1) is a cotorsion theory generated
by XT. Since every character module is pure injective by [6], Proposition 5.3.7, we
have X C PZ, and so it is a perfect cotorsion theory by [15], Theorem 2.8. ]

Following [6], Definition 5.3.22, a right R-module M is said to be cotorsion if
ExthL(F, M) = 0 for all flat right R-modules F. We call a right R-module M (T ,n)-
cotorsion if Exth(F, M) = 0 for all (T, n)-flat right R-modules F. By Theorem 4.11,
we have the following results.

Corollary 4.12. Let R be a ring. Then:
(1) Every right R-module has a (T ,n)-flat cover.
(2) Every right R-module has a (T, n)-cotorsion envelope.

5. (T,n)-COHERENT RINGS

We begin this section with the concepts of (T, n)-coherent rings and 7 -coherent
rings.

Definition 5.1. A ring R is called (T, n)-coherent, if every (T ,n + 1)-presented
module is (n + 1)-presented. A ring R is called T-coherent if it is (7, 1)-coherent.

It is easy to see that a ring R is (T, n)-coherent if and only if every (T, n)-presented
submodule of a finitely generated free left R-module is n-presented, and a ring R is
T-coherent if and only if every 7 -finite presented submodule of a finitely generated
free left R-module is finitely presented.

Example 5.2. (1) Let 7 = R-Mod. Then R is (7, n)-coherent if and only if R
is left n-coherent. In particular, R is (7, 1)-coherent if and only if R is left coherent.
(2) Let 7 = {0}. Then R is (T, n)-coherent for any positive integer n.

Next we will characterize (7, n)-coherent rings in terms of, among others, (7, n)-
injective modules and (7, n)-flat modules. These results extend the theory of coher-
ence of rings.
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Theorem 5.3. The following statements are equivalent for the ring R:

(1) R is (T,n)-coherent.

(2) liglExt%(A, M;) = Exti (4, lim M;) for any (T,n + 1)-presented module A and
direct system (M;);er of left R-modules.

(3) Tor®(T] Ny, A) = [ Tor®(N;, A) for any family {N;} of right R-modules and
any (T,n + 1)-presented module A.

(4) Any direct product of copies of Rg is (T ,n)-flat.

(5) Any direct product of (T,n)-flat right R-modules is (T ,n)-flat.

(6) Any direct limit of (T, n)-injective left R-modules is (T, n)-injective.

(7) Any direct limit of injective left R-modules is (T, n)-injective.

(8) A left R-module M is (T, n)-injective if and only if M is (T, n)-flat.

(9) A left R-module M is (T,n)-injective if and only if M is (T, n)-injective.

(10) A right R-module M is (T,n)-flat if and only if Mt is (T, n)-flat.

(11) For any ring S, Tor®(Homg(B, E), A) = Homg (Extk(A, B), E) for the situation

(rRA,rBs, Es) with A (T,n + 1)-presented and Eg injective.
(12) Every right R-module has a (T,n)-flat preenvelope.

Proof. (1) = (2). follows from [3], Lemma 2.9 (2).

(1) = (3). follows from [3], Lemma 2.10 (2).

(2) = (6) = (7) and (3) = (5) = (4) are trivial.

(7) = (1). Let A be (T,n + 1)-presented with a finite n-presentation F, n,
F,_4q d7L>1 oo — Iy N n R Iy oy 4 5 0. Write K,_1 = Ker(d,—1) and

~

K, o = Ker(d,—2). Then K,,_ is finitely generated, and we get an exact sequence
of left R-modules 0 — K,,_1 — F,,_1 — K,,_o — 0. Let (E;);e; be any direct
system of injective left R-modules (with I directed). Then lim £ is (T, n)-injective
by (7), so Ext%(A,liEEi) = 0 and then Ext}%(Kn_g,liEEi) = 0. Thus, we have

a commutative diagram

lig HOIII(Kn,Q, El) _ hﬂHOIn(anl, El) _ ligHom(Kn,l, El) —(

I lg [

HOIII([(n_Q7 h_I)nE,L) E—— I‘IOH?[(F‘n_l7 hg’lEz) E— HOIII([(n_l7 hg’lEz) —(

with exact rows. Since f and g are isomorphisms by [16], 25.4(d), h is an isomorphism
by the Five lemma. Now, let (M;);e; be any direct system of left R-modules (with
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I directed). Then we have a commutative diagram with exact rows

00— ligHom(Kn,l, Ml) — ligHom(Kn,l, E(Ml)) — ligHom(Kn,l, E(Ml)/Ml)

- - :

00— HOIII([(n_l7 hg’le) — HOIII([(n_l7 hg’lE(Mz)) — HOIII([(n_l7 hg’lE(Mz)/Mz)

where E(M;) is the injective hull of M;. Since K,,_; is finitely generated, by [16], Sec-
tion 24.9, the maps ¢,, ¢, and ¢, are monic. By the above proof, ¢, is an isomor-
phism. Hence ¢, is also an isomorphism by the Five lemma again, so K, _1 is finitely
presented by [16], Section 25.4 (d), again, and thus A is (n+ 1)-presented. Therefore
R is (T, n)-coherent.

(4) = (1). It follows similarly to (7) = (1).

(5) = (12). Let N be any left R-module. By [6], Lemma 5.3.12, there is a cardinal
number R, dependent on Card(N) and Card(R) such that for any homomorphism
f: N — F with F (T, n)-flat, there is a pure submodule S of F such that f(N) C S
and Card S < R,. Thus f has a factorization N — S — F with S (7,n)-flat
by Proposition 4.9 (2). Now let (¢3)gep be all such homomorphisms ¢g: N —
Sp with Card S < N, and Sg (7,n)-flat. Then any homomorphism N — F
with F' (7,n)-flat has a factorization N — S; — F' for some ¢ € B. Thus the

homomorphism N — [] Sp induced by all ¢z is a (7, n)-flat preenvelope since
BeB
11 S is (T,n)-flat by (5).
BeB
(12) = (5). For any family {F;};er of (T,n)-flat left R-modules, by hypothesis,

I1 Fi has a (T,n)-flat preenvelope ¢: [[ F; — F. Let p;: [[ F; — F; be the
iel iel iel
projection. Then there exists f;: ' — F; such that p; = f;p. Define ¢: F —
I1 Fi by ©(x) = (fi(z)) for every z € F, then it is easy to check that ¢ = 1. Hence
i€l
I1 F; is isomorphic to a direct summand of F, and so [] F; is (7, n)-flat.
iel iel

(1) = (11). For any (7,n + 1)-presented module A, since R is (7, n)-coherent,
Ais (n + 1)-presented. And so (11) follows from [3], Lemma 2.7 (2).

(11) = (8). Let S = 7, E = Q/Z and B = M. Then Tor(M*, A) =
Ext}(A, M)™ for any (7,n + 1)-presented module A by (11), and hence (8) holds.

(8) = (9). Let M be a left R-module. If M is (T, n)-injective, then M is (T, n)-
flat by (8), and so M** is (T,n)-injective by Theorem 4.8. Conversely, if M*++
is (T, n)-injective, then M, being a pure submodule of M1 (see [14], Exercise 41,
page 48), is (T, n)-injective by Proposition 4.9 (1).

(9) = (10). If M is a (T,n)-flat right R-module, then M™% is a (7, n)-injective
left R-module by Theorem 4.8, and so M+++ is (T, n)-injective by (9). Thus M+

469



is (T,n)-flat by Theorem 4.8 again. Conversely, if M+ is (T,n)-flat, then M is
(T,n)-flat by Proposition 4.9 (2) as M is a pure submodule of M.
(10) = (5). Let {N;}ier be a family of (7,n)-flat right R-modules. Then by
+ ++
Proposition 4.7, @ N; is (T,n)-flat, and so (H N;‘) o~ (@ Ni) is (T,n)-
iel i€l i€l
flat by (10). Since @ N; is a pure submodule of [[ N;© by [2], Lemma 1 (1),
N el N i€l N
(H N:r) — (@ N:r) — 0 splits, and hence (@ N;r) is (T, n)-flat. Thus
el N i€l
[IN T = (@ Nf‘) is (T,n)-flat. Since [] N; is a pure submodule of [] N;**
i€l i€l iel i€l
by [2], Lemma 1 (2), [] N; is (T, n)-flat by Proposition 4.9 (2). O
iel
Corollary 5.4. The following statements are equivalent for a ring R:
(1) R is left n-coherent.
(2) ligExt%(C, M,) = Exty(C, hﬂMQ) for any n-presented left R-module C' and
direct system (My)aca of left R-modules.
(3) Tor®(T] Nu, C) = [] Tor®(N,, C) for any family {N,} of right R-modules and
any n-presented left R-module C.
4
5
6

) Any direct product of copies of Rg is n-flat.
) Any direct product of n-flat right R-modules is n-flat.
) Any direct limit of n-FP-injective left R-modules is n-FP-injective.
7) Any direct limit of injective left R-modules is n-FP-injective.
8) A left R-module M is n-FP-injective if and only if M ™ is n-flat.
9) A left R-module M is n-FP-injective if and only if M is n-FP-injective.
(10) A right R-module M is n-flat if and only if M is n-flat.
(11) For any ring S, Tor®(Homg (B, E), C) = Homg (Ext(C, B), E) for the situation
(rC, rBs, Es) with C n-presented and Eg injective.

(
(
(
(
(
(
1

(12) Every right R-module has an n-flat preenvelope.

We note that the equivalences of (1)—(6), (8)—(11) in Corollary 5.4 appeared in [3],
Theorem 3.1.

Lemma 5.5. Let A be an (n—1)-presented left R-module. Then A is n-presented
if and only if Exty(A, M) = 0 for any FP-injective module M.

Proof. Let A have a finite (n — 1)-presentation F,,_1 d7L>1 oo — Iy a2, n Ay
Fy =5 A — 0. Write K,,_o = Ker(d,—2). Then K,,_o is finitely generated. By
the isomorphism Ext’h(A, M) = Exty (K, _2, M), we have that Exts(A, M) = 0 for
any FP-injective module M if and only if Ext}%(Kn_g, M) = 0 for any FP-injective
module M. So, by [5], we have that Exts (A4, M) = 0 for any FP-injective module M
if and only if K, _» is finitely presented, that is, A is n-presented. O
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Theorem 5.6. The following statements are equivalent for a ring R.

(1) R is (T,n)-coherent.

(2) Exti (A, N) = 0 for any (T,n + 1)-presented left R-module A and any FP-
injective left R-module N.

(3) If N is a (T, n)-injective left R-module, N; is an FP-injective submodule of N,
then N/Ny is (T, n)-injective.

(4) For any FP-injective left R-module N, E(N)/N is (T, n)-injective, where E(N)
is the injective hull of N.

Proof. (1) = (2). For any (7,n + 1)-presented left R-module A, there exists
an exact sequence of left R-modules 0 — K — F — A — 0, where F is
finitely generated free and K is (7,n)-presented. Since R is (7, n)-coherent, K is
n-presented, and so from the exact sequence

0 = Ext(F, N) — Ext(K, N) — BExt®%™ (A, N) — Ext};H (F,N) =0

we have Exts"! (A, N) = Ext, (K, N) = 0 by Lemma 5.5 since N is FP-injective.
(2) = (3). For any (7,n + 1)-presented left R-module A, the exact sequence
0 — Ny — N — N/N; — 0 induces the exactness of the sequence

0 = Ext}(A, N) — BExth(A4, N/N;) — Ext);T (A, Ny) = 0.

Therefore Exti (A, N/N1) = 0, as required.

(3) = (4) is obvious.

(4) = (1). Let A be a (T,n + 1)-presented left R-module. Then there exists an
exact sequence of left R-modules 0 — K — F — A — 0, where F' is finitely
generated free and K is (n — 1)-presented. For any FP-injective module N, E(N)/N
is (7, n)-injective by (4). From the exactness of the two sequences

0 = Ext(F, N) — Ext’(K, N) — Ext%™ (A, N) — Ext}}"(F,N) =0
and
0 =Ext}(A, BE(N)) — Exth(A, E(N)/N) — Ext% (A, N) — Ext};H (A, E(N)) =0
we have Ext (K, N) = Extp (A, N) = Exth(A, E(N)/N) = 0. Thus, K is n-

presented by Lemma 5.5, and so A is (n + 1)-presented. Therefore, R is (T, n)-
coherent. (]
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Corollary 5.7. The following statements are equivalent for a ring R:
(1) R is left n-coherent.
(2) EXtT}L;rl(A, N) = 0 for any n-presented left R-module A and any FP-injective
left R-module N.
(3) If N is an n-FP-injective left R-module, Ny is an FP-injective submodule of N,
then N/N; is n-FP-injective.
(4) For any FP-injective left R-module N, E(N)/N is n-FP-injective.

Corollary 5.8. Let R be a (T, n)-coherent ring. Then every left R-module has
a (T, n)-injective cover.

Proof. Let 0 — A — B — C — 0 be a pure exact sequence of left R-
modules with B (T, n)-injective. Then 0 — C* — Bt — AT — 0 is split
exact. Since R is (T,n)-coherent, B* is (7,n)-flat by Theorem 5.3 (8), so C'*
is (T,n)-flat, and hence C is (7, n)-injective by Remark 4.10. Thus, the class of
(T, n)-injective modules is closed under pure quotients. By [9], Theorem 2.5, and
Proposition 4.6, every left R-module has a (7, n)-injective cover. ([

Corollary 5.9. Let R be a left n-coherent ring. Then every left R-module has
an n-FP-injective cover.

Corollary 5.10. The following statements are equivalent for a (T,n)-coherent
ring R:
(1) Every (T,n)-flat right R-module is n-flat.
(2) Every (T,n)-injective left R-module is n-FP-injective.
In this case, R is left n-coherent.

Proof. (1) = (2). Let M be any (T,n)-injective left R-module. Then M is
a (T,n)-flat right R-module by Theorem 5.3 (8) since R is (7, n)-coherent, and so
M is n-flat by (1). Thus M7 is n-FP-injective. Since M is a pure submodule of
M™* | and a pure submodule of an n-FP-injective module is n-FP-injective, so M
is n-FP-injective.

(2) = (1). Let M be any (7,n)-flat right R-module. Then M is a (T ,n)-
injective left R-module by Theorem 4.8, and so M is n-FP-injective by (2). Thus
M is n-flat.

In this case, any direct product of n-flat right R-modules is n-flat by Theo-
rem 5.3 (5), and so R is left n-coherent by Corollary 5.4 (5). O

Proposition 5.11. The following statements are equivalent for a ring R:
(1) Every right R-module has a monic (T, n)-flat preenvelope.
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(2) R is (T,n)-coherent and rR is (T, n)-injective.

(3) R is (T,n)-coherent and every left R-module has an epic (T, n)-injective cover.
(4) R is (T, n)-coherent and every injective right R-module is (T, n)-flat.

(5) R is (T,n)-coherent and every flat left R-module is (T, n)-injective.

Proof. (1) = (4). Assume (1). Then it is clear that R is a (7,n)-coherent
ring by Theorem 5.3 (12). Let E be any injective right R-module. E has a monic
(T, n)-flat preenvelope F, so FE is isomorphic to a direct summand of F, and thus F
is (T, n)-flat.

(4) = (5). Let M be a flat left R-module. Then M™ is injective, and so M* is
(T,n)-flat by (4). Hence M is (T, n)-injective by Theorem 5.3 (8).

(5) = (2). It is obvious.

(2) = (1). Let M be any right R-module. Then M has a (T, n)-flat preenvelope
f: M — F by Theorem 5.3 (12). Since (rR)" is a cogenerator, there exists an
exact sequence 0 —» M —Z» [I(rR)*. Since rR is (T, n)-injective, by Theorem 5.3,
[1(rR)™" is (T,n)-flat, and so there exists a right R-homomorphism h: F — [[(rR)™
such that g = hf, which shows that f is monic.

(2) = (3). Let M be a left R-module. Then M has a (7, n)-injective cover
@: C — M by Corollary 5.8. On the other hand, there is an exact sequence F —
M — 0 with F free. Since F' is (T,n)-injective by (2) and Proposition 4.6, there
exists a homomorphism S: F' — C such that a = ¢f. It follows that ¢ is epic.

(3) = (2). Let f: N — rR be an epic (T, n)-injective cover. Then the projec-
tivity of g R implies that r R is isomorphic to a direct summand of N, and so gR is
(T, n)-injective. O

Corollary 5.12. The following statements are equivalent for a ring R:
1
2

(1) Every right R-module has a monic n-flat preenvelope.

(2)

(3) R is left n-coherent and every left R-module has an epic n-FP-injective cover.
(4)

()

R is left n-coherent and r R is n-FP-injective.

4
)

R is left n-coherent and every injective right R-module is n-flat.

R is left n-coherent and every flat left R-module is n-FP-injective.
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