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Abstract. Let R be a ring. A subclass T of left R-modules is called a weak torsion class if
it is closed under homomorphic images and extensions. Let T be a weak torsion class of left
R-modules and n a positive integer. Then a left R-module M is called T -finitely generated
if there exists a finitely generated submodule N such that M/N ∈ T ; a left R-module A is
called (T , n)-presented if there exists an exact sequence of left R-modules

0 −→ Kn−1 −→ Fn−1 −→ . . . −→ F1 −→ F0 −→ M −→ 0

such that F0, . . . , Fn−1 are finitely generated free and Kn−1 is T -finitely generated; a left
R-module M is called (T , n)-injective, if ExtnR(A,M) = 0 for each (T , n+1)-presented left

R-module A; a right R-moduleM is called (T , n)-flat, if TorRn (M,A) = 0 for each (T , n+1)-
presented left R-module A. A ring R is called (T , n)-coherent, if every (T , n+1)-presented
module is (n + 1)-presented. Some characterizations and properties of these modules and
rings are given.

Keywords: (T , n)-presented module; (T , n)-injective module; (T , n)-flat module; (T , n)-
coherent ring

MSC 2010 : 16D40, 16D50, 16P70

1. Introduction

Recall that a torsion theory, see [14], τ = (T ,F) for the category of all left R-

modules consists of two subclasses T and F such that:

(1) Hom(T, F ) = 0 for all T ∈ T and F ∈ F .

(2) If Hom(T, F ) = 0 for all F ∈ F , then T ∈ T .

(3) If Hom(T, F ) = 0 for all T ∈ T , then F ∈ F .

In this case, T is called a torsion class.
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A torsion theory τ = (T ,F) is called hereditary if T is closed under submodules.

By [14], page 139, Proposition 2.1, a class T of left R-modules is a torsion class for

some torsion theory if and only if T is closed under quotient modules, direct sums

and extensions. Inspired by this result, in this paper we will call a nonempty subclass

T of left R-modules a weak torsion class if T is closed under homomorphic images

and extensions.

Let τ = (T ,F) be a hereditary torsion theory for the category of all left R-modules.

Then according to [8], a left R-module M is called τ-finitely generated (or τ -FG for

short) if there exists a finitely generated submodule N such that M/N ∈ T ; a left

R-module A is called τ-finitely presented (or τ -FP for short) if there exists an exact

sequence of left R-modules 0 −→ K −→ F −→ A −→ 0 with F finitely generated

free and K τ -finitely generated. In Section 2, we will give the concepts of T -finitely

generated modules and T -finitely presented modules by taking T to be a weak torsion

class of left R-modules, which extends the two concepts of Jones’s τ -finitely generated

modules and τ -finitely presented modules respectively. And then we will establish

some properties of T -finitely generated modules and T -finitely presented modules.

Let n be a nonnegative integer. Then according to [4], a left R-module A is

called n-presented in case there exists an exact sequence of left R-modules Fn −→

Fn−1−→ . . . −→F1 −→ F0 −→M −→ 0 in which every Fi is finitely generated free.

Motivated by the concepts of n-presented modules and T -finitely presented modules,

in Section 3 we will define and investigate (T , n)-presented modules.

Recall that a left R-module M is called FP-injective, see [13], or absolutely pure,

see [11], if Ext1R(A,M) = 0 for any finitely presented left R-module A; a right

R-module M is flat if and only if TorR1 (M,A) = 0 for any finitely presented left

R-module A; a ring R is left coherent, see [1], if every finitely generated left ideal

of R is finitely presented, or equivalently, if every finitely generated submodule of

a projective left R-module is finitely presented. The FP-injective modules, flat mod-

ules, coherent rings and their generalizations have been studied extensively by many

authors (see, for example, [1], [3], [4], [8], [10], [13], [18], [17]).

In 1994, Costa introduced the concept of left n-coherent rings in [4]. According

to [4], a ring R is called left n-coherent in case every n-presented left R-module

is (n + 1)-presented. In 1996, Chen and Ding introduced the concepts of n-FP-

injective modules and n-flat modules, see [3]. According to [3], a left R-module M is

called n-FP-injective in case ExtnR(A,M) = 0 for any n-presented left R-module A,

a right R-module M is called n-flat in case TorRn (M,A) = 0 for any n-presented left

R-module A. By using the concepts of n-FP-injective and n-flat modules, they char-

acterized n-coherent rings. In 2012, Mao and Ding introduced the concepts of τ -f -

injective modules, τ-flat modules and τ-coherent rings, see [10]. According to [10], a

left R-module M is called τ -f -injective in case Ext1R(R/I,M) = 0 for any τ -finitely
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presented left ideal I; a right R-module M is called τ -flat in case TorR1 (M,R/I) = 0

for any τ -finitely presented left ideal I; a ring R is called τ -coherent in case every

τ -finitely presented left ideal is finitely presented. By using the concepts of τ -f -

injective and τ -flat modules, they characterized τ -coherent rings.

Motivated by the characterization of n-coherent rings and τ -coherent rings (where

τ is a hereditary torsion theory), in Section 5 we extend the concept of n-coherent

rings and introduce the concept of (T , n)-coherent rings (where T is a weak torsion

class). To characterize (T , n)-coherent rings, (T , n)-injective modules and (T , n)-

flat modules are introduced and studied in Section 4; some elementary properties of

(T , n)-injective modules and (T , n)-flat modules are obtained in that section.

In Section 5, a series of characterizations and properties of (T , n)-coherent rings are

given. For instance, we prove: (1) A ring R is (T , n)-coherent⇔ any direct product

of (T , n)-flat right R-modules is (T , n)-flat⇔ any direct limit of (T , n)-injective left

R-modules is (T , n)-injective ⇔ every right R-module has a (T , n)-flat preenvelope

⇔ if N is a (T , n)-injective left R-module, N1 is an FP-injective submodule of N ,

then N/N1 is (T , n)-injective. (2) If R is a (T , n)-coherent ring, then every left R-

module has a (T , n)-injective cover. (3) Every right R-module has a monic (T , n)-flat

preenvelope⇔ R is (T , n)-coherent and RR is (T , n)-injective⇔ R is (T , n)-coherent

and every left R-module has an epic (T , n)-injective cover⇔ R is (T , n)-coherent and

every injective right R-module is (T , n)-flat⇔ R is (T , n)-coherent and every flat left

R-module is (T , n)-injective. As corollaries, some interesting results on n-coherent

rings are obtained.

Throughout this paper, R is an associative ring with identity and all modules

considered are unitary, n is a positive integer, T is a weak torsion class of left R-

modules. R-Mod denotes the class of all left R-modules. For any R-module M ,

M+ = Hom(M,Q/Z) will be the character module of M . Given a class L of R-

modules, we denote by L⊥ = {M : Ext1R(L,M) = 0, L ∈ L} the right orthogonal

class of L, and by ⊥L = {M : Ext1R(M,L) = 0, L ∈ L} the left orthogonal class

of L.

2. T -finitely generated and T -finitely presented modules

We begin with the following definition.

Definition 2.1. A nonempty subclass T of left R-modules is called a weak tor-

sion class if T is closed under homomorphic images and extensions. If a class T of

left R-modules is a weak torsion class, then a left R-module M is called T -finitely

generated (or T -FG for short) if there exists a finitely generated submodule N such

thatM/N ∈ T . A left R-module A is called T -finitely presented (or T -FP for short)
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if there exists an exact sequence of left R-modules 0 −→ K −→ F −→ A −→ 0 with

F finitely generated free and K T -finitely generated.

Example 2.2.

(1) Let R be a non-left noetherian left hereditary ring and T the class of all injective

left R-modules. Then by [16], Section 39.16, T is a weak torsion class. But T

is not a torsion class.

(2) Let T be the class of all finitely generated left R-modules. Then by [16], Sec-

tion 13.9 (1), T is a weak torsion class. But T is not a torsion class.

(3) Let T be the class of all finitely generated semisimple left R-modules. Then T

is a weak torsion class but not a torsion class.

(4) Let T be the class of all finitely generated left R-modules. Then a left R-module

A is T -finitely generated if and only if it is finitely generated.

(5) Let T = R-Mod. Then a left R-module A is T -finitely presented if and only if

it is finitely generated.

(6) Let T = 0. Then a left R-module A is T -finitely presented if and only if it is

finitely presented.

Theorem 2.3. (1) Any homomorphic image of a T -FG module is T -FG.

(2) Any finite direct sum of T -FG modules is T -FG.

(3) Any sum of a finite number of T -FG submodules of a module M is T -FG.

(4) A direct summand of a T -FP module is T -FP.

P r o o f. (1) Let M be a T -FG module and N a submodule of N . Since M is

T -FG, there exists a finitely generated submodule K of M such that M/K ∈ T .

Since T is closed under homomorphic images, we have (M/K)/[(K + N)/K] ∈ T ,

so M/(K +N) ∈ T , and thus (M/N)/(K +N)/N ∈ T . Observing that (K +N)/N

is finitely generated, we have that M/N is T -FG.

(2) Let N1, N2 be two T -FG modules. Then there exists a finitely generated

submodule Ki of Ni such that Ni/Ki ∈ T , i = 1, 2. So, K1⊕K2 is finitely generated

and (N1 ⊕ N2)/(K1 ⊕ K2) ∼= N1/K1 ⊕ N2/K2 ∈ T because T is closed under

extensions. And thus N1 ⊕N2 is T -FG.

(3) Let M1,M2 be two T -FG submodules of M . Then by (2), M1 ⊕M2 is T -FG.

Note that M1+M2 is a homomorphic image of M1 ⊕M2; by (1), M1 +M2 is T -FG.

(4) Suppose that M ∼= F/K where F is finitely generated free and K is T -FG. If

F/K = (A + K)/K ⊕ (B + K)/K, where A,B are finitely generated, then by (3),

B +K is T -FG . But (A+K)/K ∼= F/(B +K), so (A+K)/K is T -FP. �

Corollary 2.4. A direct summand of a T -FG module is T -FG.
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Theorem 2.5. Let 0 −→ A
i

−→ B
p

−→ C −→ 0 be an exact sequence of left

R-modules.

(1) If both A and C are T -FG, then B is T -FG.

(2) If both A and C are T -FP, then B is T -FP.

(3) If B is FG and C is T -FP, then A is T -FG.

(4) If B is T -FP and A is T -FG, then C is T -FP.

P r o o f. (1) Suppose that A and C are T -FG. Then there exist a finitely generated

submodule A′ of A and a finitely generated submodule C′ of C such that A/A′ ∈ T

and C/C′ ∈ T . Choose a finitely generated submodule B′ of B such that p(B′) = C′,

let A′′ = A ∩ (A′ +B′) = A′ + (A ∩B′), and define

α : A/A′′ −→ B/(A′ +B′); a+A′′ 7→ a+ (A′ +B′)

and

p : B/(A′ +B′) −→ C/C′; b + (A′ +B′) 7→ p(b) + C′.

Then we get an exact sequence 0 −→ A/A′′ α
−→ B/(A′ +B′)

p
−→ C/C′ −→ 0. Thus

A/A′′ ∼= (A/A′)/(A′′/A′) ∈ T and C/C′ ∈ T , so B/(A′ + B′) ∈ T , and hence B is

T -FG.

(2) Since A and C are T -FP, we have two exact sequences 0 −→ K ′ ι1−→ F ′ f
−→

A −→ 0 and 0 −→ K ′′ ι2−→ F ′′ g
−→ C −→ 0, where F ′, F ′′ are finitely generated

free, K ′, K ′′ are T -FG, ι1, ι2 are inclusion maps. Since F
′′ is projective, there exists

a homomorphism σ : F ′′ → B such that g = pσ. And so we have the following

commutative diagram with exact rows and columns:

0

��

0

��

0

��

0 // K ′

ι1

��

λι1
// Ker(h)

ι

��

πι
// K ′′

ι2

��

// 0

0 // F ′

f

��

λ
// F ′ ⊕ F ′′ π

//

h

��

F ′′

g

��

// 0

0 // A

��

i
// B

��

p
// C

��

// 0

0 0 0
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where λ is the natural injection, ι is the inclusion map, π is the natural projection,

and

h : F ′ ⊕ F ′′ → B; (x′, x′′) 7→ if(x′) + σ(x′′).

By (1), Ker(h) is T -FG, and hence B is T -FP.

(3) Suppose that B is FG and C is T -FP. Let F
ϕ

−→ B −→ 0 be exact with F FG

free, let K = Ker(pϕ). Then 0 −→ K −→ F −→ C −→ 0 is exact. Since C is T -FP,

there exists an exact sequence 0 −→ K ′ −→ F ′ −→ C −→ 0 with F ′ FG free and

K ′ T -FG. By Schanuel’s lemma, we have K ′ ⊕ F ∼= K ⊕ F ′, and thus K is T -FG

because a finite direct sum and a direct summand of T -FG modules are T -FG. Now

let ψ = ϕ
∣

∣

K
. Observing that ϕ is epic, it is easy to see that ψ is an epimorphism

from K to A. Hence, by Theorem 2.3 (1), A is T -FG.

(4) Since B is T -FP, there exists an exact sequence of left R-modules 0 −→ K −→

F −→ B −→ 0 such that F is finitely generated free and K is T -FG. Therefore, we

can now from the pullback of A −→ B and F −→ B get the following commutative

diagram:
0

��

0

��

K

��

K

��

0 // P

��

// F

��

// C // 0

0 // A

��

// B

��

// C // 0

0 0

with exact rows and columns. Since both K and A are T -FG, by (1), P is also T -FG,

and so C is T -FP. �

3. (T , n)-presented modules

Definition 3.1. Let T be a weak torsion class and n a positive integer. Then

a left R-module A is said to be (T , n)-presented if there exists an exact sequence of

left R-modules

0 −→ Kn−1 −→ Fn−1 −→ . . . −→ F1 −→ F0 −→M −→ 0

such that F0, . . . , Fn−1 are finitely generated free and Kn−1 is T -finitely generated.
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Clearly, a left R-module A is T -finitely presented if and only if it is (T , 1)-

presented. It is easy to see that every (T , n)-presented module is (T , n−1)-presented.

We also call T -finitely generated modules (T , 0)-presented.

Example 3.2. (1) Let T = R-Mod. Then a left R-module A is (T , n)-presented

if and only if it is (n− 1)-presented.

(2) Let T = 0. Then a left R-module A is (T , n)-presented if and only if it is

n-presented.

Lemma 3.3. Let A,B be two left R-modules and n a positive integer. If both A

and B are (T , n)-presented, then A⊕B is also (T , n)-presented.

P r o o f. It is a consequence of Theorem 2.3 (2). �

Proposition 3.4. The following statements are equivalent for a left R-module A:

(1) A is (T , n)-presented.

(2) A is (n− 1)-presented, and if there exists an exact sequence of left R-modules

0 −→ Kn−1 −→ Fn−1 −→ . . . −→ F1 −→ F0 −→ A −→ 0

such that F0, . . . , Fn−1 are finitely generated free, then Kn−1 is T -finitely gen-

erated.

(3) There exists an exact sequence of left R-modules

0 −→ K −→ F −→ A −→ 0

such that F is finitely generated free and K is (T , n− 1)-presented.

If n > 2, then the above conditions are also equivalent to:

(4) A is (n− 2)-presented, and if there exists an exact sequence of left R-modules

0 −→ Kn−2 −→ Fn−2 −→ . . . −→ F1 −→ F0 −→ A −→ 0

such that F0, . . . , Fn−2 are finitely generated free, then Kn−2 is T -finitely pre-

sented.

P r o o f. (1) ⇒ (2) Since A is (T , n)-presented, there exists an exact sequence of

left R-modules

0 −→ Ln−1 −→ F ′
n−1 −→ . . . −→ F ′

1 −→ F ′
0 −→ A −→ 0

such that F ′
0, . . . , F

′
n−1 are finitely generated free and Ln−1 is T -finitely generated,

so A is (n− 1)-presented. Now if there exists an exact sequence of left R-modules

0 −→ Kn−1 −→ Fn−1 −→ . . . −→ F1 −→ F0 −→ A −→ 0
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such that F0, . . . , Fn−1 are finitely generated free, then by the generalization of

Schanuel’s lemma [12], Exercise 3.37, and by Theorem 2.3 (2) and Corollary 2.4,

Kn−1 is T -finitely generated.

(2) ⇒ (1); (1) ⇔ (3); and (2) ⇔ (4) are obvious. �

Proposition 3.5. Let 0 −→ A −→ B −→ C −→ 0 be an exact sequence of left

R-modules. Then:

(1) If both A and C are (T , n)-presented, then so is B.

(2) If B is (T , n)-presented and A is (T , n−1)-presented, then C is (T , n)-presented.

P r o o f. (1) Use induction on n. If n = 1, then (1) holds by Theorem 2.5 (2).

Suppose that (1) holds for n − 1. Let A and C be (T , n)-presented. Then by

Proposition 3.4, we have two exact sequences 0 −→ K ′ ι1−→ F ′ f
−→ A −→ 0 and

0 −→ K ′′ ι2−→ F ′′ g
−→ C −→ 0, where F ′, F ′′ are finitely generated free, K ′, K ′′ are

(T , n− 1)-presented, ι1, ι2 are inclusion maps. Using a method similar to the proof

of Theorem 2.5 (2), by induction hypothesis and Proposition 3.4 we can get that B

is also (T , n)-presented.

(2) Since B is (T , n)-presented, by Proposition 3.4 there exists an exact sequence

of left R-modules 0 −→ K −→ F −→ B −→ 0 such that F is finitely generated

free and K is (T , n − 1)-presented. Now, using a method similar to the proof of

Theorem 2.5 (4), by (1) and Proposition 3.4, we can get that C is (T , n)-presented.

�

Corollary 3.6. A direct summand of a (T , n)-presented module is (T , n)-

presented.

P r o o f. Use induction on n. If n = 1, then the conclusion holds by Theo-

rem 2.3 (4). Suppose that the conclusion holds for n− 1. Let B be (T , n)-presented

and B = A⊕ C . Then by hypothesis, A is (T , n − 1)-presented , and so C (T , n)-

presented by Proposition 3.5 (2), as required. �

Corollary 3.7. The following statements are equivalent for a left R-module M :

(1) M is (T , n)-presented.

(2) M is finitely generated and, if the sequence of left R-modules 0 −→ K −→ F −→

M −→ 0 is exact with F finitely generated free, then K is (T , n− 1)-presented.

P r o o f. (1) ⇒ (2). Since M is (T , n)-presented, by Proposition 3.4 (3) there

exists an exact sequence of left R-modules 0 −→ K ′ −→ F ′ −→ M −→ 0 such that

F ′ is finitely generated free and K ′ is (T , n−1)-presented. So, by Schanuel’s lemma,

we have K ′ ⊕ F ∼= K ⊕ F ′, and thus K is (T , n− 1)-presented because finite direct
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sums and direct summands of (T , n− 1)-presented modules are (T , n− 1)-presented

by Lemma 3.3 and Corollary 3.6.

(2) ⇒ (1). It follows from Proposition 3.4 (3). �

Corollary 3.8. Let n > 1 and let 0 −→ A −→ B −→ C −→ 0 be an exact

sequence of left R-modules. If C is (T , n)-presented and B is (T , n − 1)-presented,

then A is (T , n− 1)-presented.

P r o o f. Since n > 1 and B is (T , n − 1)-presented, we have the following com-

mutative diagram:

0

��

0

��

K

��

K

��

0 // P

��

// F

��

// C // 0

0 // A

��

// B

��

// C // 0

0 0

with exact rows and columns, where F is finitely generated free. Moreover, by

Corollary 3.7,K is (T , n−2)-presented. Since C is (T , n)-presented, by Corollary 3.7,

P is (T , n−1)-presented, and so A is (T , n−1)-presented by Proposition 3.5 (2). �

4. (T , n)-injective and (T , n)-flat modules

Definition 4.1. A left R-moduleM is called (T , n)-injective, if ExtnR(A,M) = 0

for each (T , n+1)-presented left R-module A. A right R-moduleM is called (T , n)-

flat, if TorRn (M,A) = 0 for each (T , n+ 1)-presented left R-module A.

Clearly, n-FP-injective left R-modules are (T , n)-injective, n-flat right R-modules

are (T , n)-flat. By Proposition 3.4 (3), it is easy to see that a (T , n)-injective module

is (T , n + 1)-injective, a (T , n)-flat module is (T , n + 1)-flat. We denote by TnI

the class of all (T , n)-injective left R-modules, and denote by TnF the class of all

(T , n)-flat right R-modules. We recall that if n, d are nonnegative integers, then

according to [18], a right R-module M is called (n, d)-injective if Extd+1

R (A,M)=0

for every n-presented right R-module A; a left R-module M is called (n, d)-flat if

TorRd+1
(A,M)=0 for every n-presented right R-module A.
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Example 4.2. (1) Let T = R-Mod. Then a left R-module M is (T , n)-injective

if and only if M is n-FP-injective, a right R-module M is (T , n)-flat if and only if

M is n-flat. In particular, a left R-module M is (T , 1)-injective if and only if M is

FP-injective, a right R-module M is (T , 1)-flat if and only if M is flat.

(2) Let T = {0}. Then a left R-module M is (T , n)-injective if and only if M

is (n + 1, n − 1)-injective, a right R-module M is (T , n)-flat if and only if M is

(n+ 1, n− 1)-flat. In particular, a left R-module M is (T , 1)-injective if and only if

M is (2, 0)-injective, a right R-module M is (T , 1)-flat if and only if M is (2, 0)-flat.

Recall that an exact sequence of left R-modules 0 −→ M −→ M ′ −→ M ′′ −→ 0

is said to be pure if every finitely presented left R-module is projective with respect

to this exact sequence.

Definition 4.3. Let 0 −→ M −→ M ′ −→ M ′′ −→ 0 be an exact sequence of

left R-modules. Then it is said to be T -pure if every (T , 2)-presented left R-module

is projective with respect to it.

Example 4.4. (1) Let T = R-Mod. Then it is easy to see that an exact sequence

of left R-modules 0 −→M −→M ′ −→M ′′ −→ 0 is pure if and only if it is T -pure.

(2) Let T = {0}. Then it is easy to see that an exact sequence of left R-modules

0 −→ M −→ M ′ −→ M ′′ −→ 0 is T -pure if and only if every 2-presented left

R-module is projective with respect to it.

Let . . . −→ P1

d1−→ P0

d0−→ A −→ 0 be a projective resolution of a module A.

As usual, we will denote Ker(di) by Ki, and we will call Ki an i-syzygy of A. If

n > 2, then it is easy to see that a left R-module A is (T , n+1)-presented if and only

if it is (n − 2)-presented; and if the sequence of right R-modules 0 −→ Kn−2 −→

Fn−2 −→ . . . −→ F1 −→ F0 −→ A −→ 0 is exact, where F0, . . . , Fn−2 are finitely

generated free, then Kn−2 is (T , 2)-presented.

Theorem 4.5. Let M be a left R-module and n > 2. Then the following state-

ments are equivalent:

(1) M is (T , n)-injective.

(2) If the sequence 0 −→ Kn−2 −→ Fn−2 −→ . . . −→ F1 −→ F0 −→ A −→ 0

is exact, where F0, . . . , Fn−2 are finitely generated free and Kn−2 is (T , 2)-

presented, then Ext1R(Kn−2,M) = 0.

(3) For every (n− 1)-presentation Fn−1 −→ . . . −→ F0 −→ A −→ 0 of a (T , n+1)-

presented module A with F0, . . . , Fn−2, Fn−1 finitely generated free, every ho-

momorphism from the (n− 1)-syzygy Kn−1 to M can be extended to a homo-

morphism from Fn−1 to M .

(4) There exists a T -pure exact sequence 0 −→ M −→ M ′ −→ M ′′ −→ 0 of left

R-modules with M ′ (T , n)-injective.
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P r o o f. (1) ⇔ (2). By the isomorphism ExtnR(A,M) ∼= Ext1R(Kn−2,M).

(2) ⇔ (3). By the exact sequence

Hom(Fn−1,M) −→ Hom(Kn−1,M) −→ Ext1R(Kn−2,M) −→ Ext1R(Fn−1,M) = 0.

(1) ⇒ (4). It is obvious.

(4) ⇒ (2). Since 0 −→ M −→ M ′ −→ M ′′ −→ 0 is T -pure and Kn−2 is (T , 2)-

presented, we have that the map Hom(Kn−2,M
′) −→ Hom(Kn−2,M

′′) is epic. So

from the exact sequence

Hom(Kn−2,M
′) −→ Hom(Kn−2,M

′′) −→ Ext1R(Kn−2,M) −→ 0

we have Ext1R(Kn−2,M) = 0. �

Proposition 4.6. Let {Mi : i ∈ I} be a family of left R-modules. Then the

following statements are equivalent:

(1) Each Mi is (T , n)-injective.

(2)
∏

i∈I

Mi is (T , n)-injective.

(3)
⊕

i∈I

Mi is (T , n)-injective.

P r o o f. (1) ⇔ (2). By the isomorphism ExtnR

(

A,
∏

i∈I

Mi

)

∼=
∏

i∈I

ExtnR(A,Mi).

(2) ⇒ (3). For every (n − 1)-presentation Fn−1 −→ . . . −→ F0 −→ A −→ 0 of

a (T , n+ 1)-presented module A with F0, . . . , Fn−2, Fn−1 finitely generated free, by

Proposition 3.4 (4), the (n−1)-syzygyKn−1 is T -finitely presented and hence finitely

generated. Let f be any homomorphism from Kn−1 to
⊕

i∈I

Mi. Then there exists

a finite subset I0 of I such that Im(f) ⊆
⊕

i∈I0

Mi. By (2),
⊕

i∈I0

Mi is (T , n)-injective.

So, by Theorem 4.5 (3), f can be extended to a homomorphism from Fn−1 to
⊕

i∈I0

Mi,

and then f can be extended to a homomorphism from Fn−1 to
⊕

i∈I

Mi. Therefore
⊕

i∈I

Mi is (T , n)-injective by Theorem 4.5 (3) again.

(3) ⇒ (1). It is trivial. �

Proposition 4.7. Let {Mi : i ∈ I} be a family of right R-modules. Then the

following conditions are equivalent:

(1) Every Mi is (T , n)-flat.

(2)
⊕

i∈I

Mi is (T , n)-flat.

P r o o f. By the isomorphism TorRn

(

⊕

i∈I

Mi, A
)

∼=
⊕

i∈I

TorRn (Mi, A). �
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Theorem 4.8. Let M be a right R-module. Then M is (T , n)-flat if and only if

M+ is (T , n)-injective.

P r o o f. It follows from the isomorphism TorRn (M,A)+ ∼= ExtnR(A,M
+). �

Proposition 4.9.

(1) Pure submodules of (T , n)-injective modules are (T , n)-injective.

(2) Pure submodules of (T , n)-flat modules are (T , n)-flat.

P r o o f. (1) Let N be a pure submodule of a (T , n)-injective module M . Then

N is T -pure in M , and so, by Theorem 4.5 (4), N is (T , n)-injective.

(2) Let M be a (T , n)-flat module and N a pure submodule of M . Then the

pure exact sequence 0 −→ N −→ M −→M/N −→ 0 induces a split exact sequence

0 −→ (M/N)+ −→ M+ −→ N+ −→ 0. By Theorem 4.8, M+ is (T , n)-injective, so

N+ is (T , n)-injective by Proposition 4.6, and hence N is (T , n)-flat by Theorem 4.8

again. �

Remark 4.10. From Theorem 4.8, the (T , n)-flatness of MR can be character-

ized by the (T , n)-injectivity of M+. On the other hand, by [3], Lemma 2.7 (1),

the sequence TorRn (M
+, A) −→ ExtnR(A,M)+ −→ 0 is exact for any n-presented

left R-module A and any left R-module M . So, for any left R-module M , if M+ is

(T , n)-flat, then M is (T , n)-injective.

Let F be a class of R-modules and M an R-module. Following [6], we say that

a homomorphism ϕ : M −→ F where F ∈ F is an F -preenvelope of M if for any

morphism f : M −→ F ′ with F ′ ∈ F there is a g : F −→ F ′ such that gϕ = f .

An F -preenvelope ϕ : M −→ F is said to be an F -envelope if every endomorphism

g : F −→ F such that gϕ = ϕ is an isomorphism. Dually, we have the definitions of

an F -precover and an F -cover. The F -envelopes (F -covers) may not exist in general,

but if they exist, they are unique up to isomorphism.

A pair (A,B) of classes of R-modules is called a cotorsion theory, see [6], if A⊥ = B

and ⊥B = A. A cotorsion theory (A,B) is called perfect, see [7], if every R-module

has a B-envelope and an A-cover. A cotorsion theory (A,B) is called complete

(see [6], Definition 7.1.6, and [15], Lemma 1.13) if for any R-module M there are

exact sequences 0 −→ M −→ B −→ A −→ 0 with A ∈ A and B ∈ B, and

0 −→ B′ −→ A′ −→M −→ 0 with A′ ∈ A and B′ ∈ B.

For a class F of R-modules, we put F+ = {F+ : F ∈ F}. We recall that a left

R-module M is said to be pure injective if it is injective with respect to all pure

exact sequences of left R-modules. Following [15], we denote by PI the class of pure

injective left R-modules.

Theorem 4.11. Let R be a ring. Then:
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(1) (⊥(TnI), TnI) is a complete cotorsion theory.

(2) (TnF , (TnF)⊥) is a perfect cotorsion theory.

P r o o f. (1) Let X be the set of representatives of all Kn−2’s in Theorem 4.5 (2).

Then by Theorem 4.5, TnI = X⊥, and so (⊥(TnI), TnI) = (⊥(X⊥), X⊥) is a com-

plete cotorsion theory by [15], Theorem 2.2 (2).

(2) Write A = TnF and let X be the class of all Kn−2’s in Theorem 4.5 (2). Then

by dimension shifting one shows that A ∈ TnF if and only if Tor
R
1 (A,X) = 0 for

each X ∈ X . Thus, by the isomorphism TorR1 (A,B)+ ∼= Ext1R(A,B
+), we have A =

⊥(X+), and so (TnF , (TnF)⊥) = (⊥(X+), (⊥(X+))⊥) is a cotorsion theory generated

by X+. Since every character module is pure injective by [6], Proposition 5.3.7, we

have X+ ⊆ PI, and so it is a perfect cotorsion theory by [15], Theorem 2.8. �

Following [6], Definition 5.3.22, a right R-module M is said to be cotorsion if

Ext1R(F, M) = 0 for all flat right R-modules F . We call a right R-moduleM (T , n)-

cotorsion if Ext1R(F, M) = 0 for all (T , n)-flat right R-modules F . By Theorem 4.11,

we have the following results.

Corollary 4.12. Let R be a ring. Then:

(1) Every right R-module has a (T , n)-flat cover.

(2) Every right R-module has a (T , n)-cotorsion envelope.

5. (T , n)-coherent rings

We begin this section with the concepts of (T , n)-coherent rings and T -coherent

rings.

Definition 5.1. A ring R is called (T , n)-coherent, if every (T , n+1)-presented

module is (n+ 1)-presented. A ring R is called T -coherent if it is (T , 1)-coherent.

It is easy to see that a ring R is (T , n)-coherent if and only if every (T , n)-presented

submodule of a finitely generated free left R-module is n-presented, and a ring R is

T -coherent if and only if every T -finite presented submodule of a finitely generated

free left R-module is finitely presented.

Example 5.2. (1) Let T = R-Mod. Then R is (T , n)-coherent if and only if R

is left n-coherent. In particular, R is (T , 1)-coherent if and only if R is left coherent.

(2) Let T = {0}. Then R is (T , n)-coherent for any positive integer n.

Next we will characterize (T , n)-coherent rings in terms of, among others, (T , n)-

injective modules and (T , n)-flat modules. These results extend the theory of coher-

ence of rings.
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Theorem 5.3. The following statements are equivalent for the ring R:

(1) R is (T , n)-coherent.

(2) lim
−→

ExtnR(A,Mi) ∼= ExtnR(A, lim−→
Mi) for any (T , n+1)-presented module A and

direct system (Mi)i∈I of left R-modules.

(3) TorRn (
∏

Ni, A) ∼=
∏

TorRn (Ni, A) for any family {Ni} of right R-modules and

any (T , n+ 1)-presented module A.

(4) Any direct product of copies of RR is (T , n)-flat.

(5) Any direct product of (T , n)-flat right R-modules is (T , n)-flat.

(6) Any direct limit of (T , n)-injective left R-modules is (T , n)-injective.

(7) Any direct limit of injective left R-modules is (T , n)-injective.

(8) A left R-module M is (T , n)-injective if and only if M+ is (T , n)-flat.

(9) A left R-module M is (T , n)-injective if and only if M++ is (T , n)-injective.

(10) A right R-module M is (T , n)-flat if and only if M++ is (T , n)-flat.

(11) For any ring S, TorRn (HomS(B,E), A) ∼= HomS(Ext
n
R(A,B), E) for the situation

(RA,RBS , ES) with A (T , n+ 1)-presented and ES injective.

(12) Every right R-module has a (T , n)-flat preenvelope.

P r o o f. (1) ⇒ (2). follows from [3], Lemma 2.9 (2).

(1) ⇒ (3). follows from [3], Lemma 2.10 (2).

(2) ⇒ (6) ⇒ (7) and (3) ⇒ (5) ⇒ (4) are trivial.

(7) ⇒ (1). Let A be (T , n + 1)-presented with a finite n-presentation Fn
dn−→

Fn−1

dn−1

−→ . . . −→ F2

d2−→ F1

d1−→ F0

d0−→ A −→ 0. Write Kn−1 = Ker(dn−1) and

Kn−2 = Ker(dn−2). Then Kn−1 is finitely generated, and we get an exact sequence

of left R-modules 0 −→ Kn−1 −→ Fn−1 −→ Kn−2 −→ 0. Let (Ei)i∈I be any direct

system of injective left R-modules (with I directed). Then lim
−→

Ei is (T , n)-injective

by (7), so ExtnR(A, lim−→
Ei) = 0 and then Ext1R(Kn−2, lim−→

Ei) = 0. Thus, we have

a commutative diagram

lim
−→

Hom(Kn−2, Ei) //

f

��

lim
−→

Hom(Fn−1, Ei) //

g

��

lim
−→

Hom(Kn−1, Ei) //

h

��

0

Hom(Kn−2, lim−→
Ei) // Hom(Fn−1, lim−→

Ei) // Hom(Kn−1, lim−→
Ei) // 0

with exact rows. Since f and g are isomorphisms by [16], 25.4(d), h is an isomorphism

by the Five lemma. Now, let (Mi)i∈I be any direct system of left R-modules (with
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I directed). Then we have a commutative diagram with exact rows

0 // lim
−→

Hom(Kn−1,Mi) //

φ
1

��

lim
−→

Hom(Kn−1, E(Mi)) //

φ
2

��

lim
−→

Hom(Kn−1, E(Mi)/Mi)

φ
3

��

0 // Hom(Kn−1, lim−→
Mi) // Hom(Kn−1, lim−→

E(Mi)) // Hom(Kn−1, lim−→
E(Mi)/Mi)

where E(Mi) is the injective hull ofMi. SinceKn−1 is finitely generated, by [16], Sec-

tion 24.9, the maps φ
1
, φ

2
and φ

3
are monic. By the above proof, φ

2
is an isomor-

phism. Hence φ
1
is also an isomorphism by the Five lemma again, so Kn−1 is finitely

presented by [16], Section 25.4 (d), again, and thus A is (n+1)-presented. Therefore

R is (T , n)-coherent.

(4) ⇒ (1). It follows similarly to (7) ⇒ (1).

(5) ⇒ (12). Let N be any left R-module. By [6], Lemma 5.3.12, there is a cardinal

number ℵα dependent on Card(N) and Card(R) such that for any homomorphism

f : N −→ F with F (T , n)-flat, there is a pure submodule S of F such that f(N) ⊆ S

and Card S 6 ℵα. Thus f has a factorization N −→ S −→ F with S (T , n)-flat

by Proposition 4.9 (2). Now let (ϕβ)β∈B be all such homomorphisms ϕβ : N −→

Sβ with Card Sβ 6 ℵα and Sβ (T , n)-flat. Then any homomorphism N −→ F

with F (T , n)-flat has a factorization N −→ Si −→ F for some i ∈ B. Thus the

homomorphism N −→
∏

β∈B

Sβ induced by all ϕβ is a (T , n)-flat preenvelope since
∏

β∈B

Sβ is (T , n)-flat by (5).

(12) ⇒ (5). For any family {Fi}i∈I of (T , n)-flat left R-modules, by hypothesis,
∏

i∈I

Fi has a (T , n)-flat preenvelope ϕ :
∏

i∈I

Fi −→ F . Let pi :
∏

i∈I

Fi −→ Fi be the

projection. Then there exists fi : F −→ Fi such that pi = fiϕ. Define ψ : F −→
∏

i∈I

Fi by ψ(x) = (fi(x)) for every x ∈ F , then it is easy to check that ψϕ = 1. Hence
∏

i∈I

Fi is isomorphic to a direct summand of F , and so
∏

i∈I

Fi is (T , n)-flat.

(1) ⇒ (11). For any (T , n + 1)-presented module A, since R is (T , n)-coherent,

A is (n+ 1)-presented. And so (11) follows from [3], Lemma 2.7 (2).

(11) ⇒ (8). Let S = Z, E = Q/Z and B = M . Then TorRn (M
+, A) ∼=

ExtnR(A,M)+ for any (T , n+ 1)-presented module A by (11), and hence (8) holds.

(8) ⇒ (9). Let M be a left R-module. If M is (T , n)-injective, then M+ is (T , n)-

flat by (8), and so M++ is (T , n)-injective by Theorem 4.8. Conversely, if M++

is (T , n)-injective, then M , being a pure submodule of M++ (see [14], Exercise 41,

page 48), is (T , n)-injective by Proposition 4.9 (1).

(9) ⇒ (10). If M is a (T , n)-flat right R-module, then M+ is a (T , n)-injective

left R-module by Theorem 4.8, and so M+++ is (T , n)-injective by (9). Thus M++
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is (T , n)-flat by Theorem 4.8 again. Conversely, if M++ is (T , n)-flat, then M is

(T , n)-flat by Proposition 4.9 (2) as M is a pure submodule of M++.

(10) ⇒ (5). Let {Ni}i∈I be a family of (T , n)-flat right R-modules. Then by

Proposition 4.7,
⊕

i∈I

Ni is (T , n)-flat, and so
(

∏

i∈I

N+

i

)+
∼=

(

⊕

i∈I

Ni

)++

is (T , n)-

flat by (10). Since
⊕

i∈I

N+

i is a pure submodule of
∏

i∈I

N+

i by [2], Lemma 1 (1),

(

∏

i∈I

N+

i

)+

−→
(

⊕

i∈I

N+

i

)+

−→ 0 splits, and hence
(

⊕

i∈I

N+

i

)+

is (T , n)-flat. Thus

∏

i∈I

N++

i
∼=

(

⊕

i∈I

N+

i

)+

is (T , n)-flat. Since
∏

i∈I

Ni is a pure submodule of
∏

i∈I

N++

i

by [2], Lemma 1 (2),
∏

i∈I

Ni is (T , n)-flat by Proposition 4.9 (2). �

Corollary 5.4. The following statements are equivalent for a ring R:

(1) R is left n-coherent.

(2) lim
−→

ExtnR(C,Mα) ∼= ExtnR(C, lim−→
Mα) for any n-presented left R-module C and

direct system (Mα)α∈A of left R-modules.

(3) TorRn (
∏

Nα, C) ∼=
∏

TorRn (Nα, C) for any family {Nα} of right R-modules and

any n-presented left R-module C.

(4) Any direct product of copies of RR is n-flat.

(5) Any direct product of n-flat right R-modules is n-flat.

(6) Any direct limit of n-FP-injective left R-modules is n-FP-injective.

(7) Any direct limit of injective left R-modules is n-FP-injective.

(8) A left R-module M is n-FP-injective if and only if M+ is n-flat.

(9) A left R-module M is n-FP-injective if and only if M++ is n-FP-injective.

(10) A right R-module M is n-flat if and only if M++ is n-flat.

(11) For any ring S, TorRn (HomS(B,E), C) ∼= HomS(Ext
n
R(C,B), E) for the situation

(RC,RBS , ES) with C n-presented and ES injective.

(12) Every right R-module has an n-flat preenvelope.

We note that the equivalences of (1)–(6), (8)–(11) in Corollary 5.4 appeared in [3],

Theorem 3.1.

Lemma 5.5. Let A be an (n−1)-presented left R-module. Then A is n-presented

if and only if ExtnR(A,M) = 0 for any FP-injective module M .

P r o o f. Let A have a finite (n−1)-presentation Fn−1

dn−1

−→ . . . −→ F2

d2−→ F1

d1−→

F0

ε
−→ A −→ 0. Write Kn−2 = Ker(dn−2). Then Kn−2 is finitely generated. By

the isomorphism ExtnR(A,M) ∼= Ext1R(Kn−2,M), we have that ExtnR(A,M) = 0 for

any FP-injective module M if and only if Ext1R(Kn−2,M) = 0 for any FP-injective

moduleM . So, by [5], we have that ExtnR(A,M) = 0 for any FP-injective module M

if and only if Kn−2 is finitely presented, that is, A is n-presented. �
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Theorem 5.6. The following statements are equivalent for a ring R.

(1) R is (T , n)-coherent.

(2) Extn+1

R (A,N) = 0 for any (T , n + 1)-presented left R-module A and any FP-

injective left R-module N .

(3) If N is a (T , n)-injective left R-module, N1 is an FP-injective submodule of N ,

then N/N1 is (T , n)-injective.

(4) For any FP-injective left R-module N , E(N)/N is (T , n)-injective, where E(N)

is the injective hull of N .

P r o o f. (1) ⇒ (2). For any (T , n + 1)-presented left R-module A, there exists

an exact sequence of left R-modules 0 −→ K −→ F −→ A −→ 0, where F is

finitely generated free and K is (T , n)-presented. Since R is (T , n)-coherent, K is

n-presented, and so from the exact sequence

0 = ExtnR(F,N) −→ ExtnR(K,N) −→ Extn+1

R (A,N) −→ Extn+1

R (F,N) = 0

we have Extn+1

R (A,N) ∼= ExtnR(K,N) = 0 by Lemma 5.5 since N is FP-injective.

(2) ⇒ (3). For any (T , n + 1)-presented left R-module A, the exact sequence

0 −→ N1 −→ N −→ N/N1 −→ 0 induces the exactness of the sequence

0 = ExtnR(A,N) −→ ExtnR(A,N/N1) −→ Extn+1

R (A,N1) = 0.

Therefore ExtnR(A,N/N1) = 0, as required.

(3) ⇒ (4) is obvious.

(4) ⇒ (1). Let A be a (T , n + 1)-presented left R-module. Then there exists an

exact sequence of left R-modules 0 −→ K −→ F −→ A −→ 0, where F is finitely

generated free and K is (n−1)-presented. For any FP-injective module N , E(N)/N

is (T , n)-injective by (4). From the exactness of the two sequences

0 = ExtnR(F,N) −→ ExtnR(K,N) −→ Extn+1

R (A,N) −→ Extn+1

R (F,N) = 0

and

0 = ExtnR(A,E(N))→ ExtnR(A,E(N)/N)→ Extn+1

R (A,N)→ Extn+1

R (A,E(N)) = 0

we have ExtnR(K,N) ∼= Extn+1

R (A,N) ∼= ExtnR(A,E(N)/N) = 0. Thus, K is n-

presented by Lemma 5.5, and so A is (n + 1)-presented. Therefore, R is (T , n)-

coherent. �
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Corollary 5.7. The following statements are equivalent for a ring R:

(1) R is left n-coherent.

(2) Extn+1

R (A,N) = 0 for any n-presented left R-module A and any FP-injective

left R-module N .

(3) If N is an n-FP-injective left R-module, N1 is an FP-injective submodule of N ,

then N/N1 is n-FP-injective.

(4) For any FP-injective left R-module N , E(N)/N is n-FP-injective.

Corollary 5.8. Let R be a (T , n)-coherent ring. Then every left R-module has

a (T , n)-injective cover.

P r o o f. Let 0 −→ A −→ B −→ C −→ 0 be a pure exact sequence of left R-

modules with B (T , n)-injective. Then 0 −→ C+ −→ B+ −→ A+ −→ 0 is split

exact. Since R is (T , n)-coherent, B+ is (T , n)-flat by Theorem 5.3 (8), so C+

is (T , n)-flat, and hence C is (T , n)-injective by Remark 4.10. Thus, the class of

(T , n)-injective modules is closed under pure quotients. By [9], Theorem 2.5, and

Proposition 4.6, every left R-module has a (T , n)-injective cover. �

Corollary 5.9. Let R be a left n-coherent ring. Then every left R-module has

an n-FP-injective cover.

Corollary 5.10. The following statements are equivalent for a (T , n)-coherent

ring R:

(1) Every (T , n)-flat right R-module is n-flat.

(2) Every (T , n)-injective left R-module is n-FP-injective.

In this case, R is left n-coherent.

P r o o f. (1) ⇒ (2). Let M be any (T , n)-injective left R-module. Then M+ is

a (T , n)-flat right R-module by Theorem 5.3 (8) since R is (T , n)-coherent, and so

M+ is n-flat by (1). Thus M++ is n-FP-injective. Since M is a pure submodule of

M++ , and a pure submodule of an n-FP-injective module is n-FP-injective, so M

is n-FP-injective.

(2) ⇒ (1). Let M be any (T , n)-flat right R-module. Then M+ is a (T , n)-

injective left R-module by Theorem 4.8, and so M+ is n-FP-injective by (2). Thus

M is n-flat.

In this case, any direct product of n-flat right R-modules is n-flat by Theo-

rem 5.3 (5), and so R is left n-coherent by Corollary 5.4 (5). �

Proposition 5.11. The following statements are equivalent for a ring R:

(1) Every right R-module has a monic (T , n)-flat preenvelope.
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(2) R is (T , n)-coherent and RR is (T , n)-injective.

(3) R is (T , n)-coherent and every left R-module has an epic (T , n)-injective cover.

(4) R is (T , n)-coherent and every injective right R-module is (T , n)-flat.

(5) R is (T , n)-coherent and every flat left R-module is (T , n)-injective.

P r o o f. (1) ⇒ (4). Assume (1). Then it is clear that R is a (T , n)-coherent

ring by Theorem 5.3 (12). Let E be any injective right R-module. E has a monic

(T , n)-flat preenvelope F , so E is isomorphic to a direct summand of F , and thus E

is (T , n)-flat.

(4) ⇒ (5). Let M be a flat left R-module. Then M+ is injective, and so M+ is

(T , n)-flat by (4). Hence M is (T , n)-injective by Theorem 5.3 (8).

(5) ⇒ (2). It is obvious.

(2) ⇒ (1). Let M be any right R-module. Then M has a (T , n)-flat preenvelope

f : M → F by Theorem 5.3 (12). Since (RR)
+ is a cogenerator, there exists an

exact sequence 0 −→M
g

−→
∏

(RR)
+. Since RR is (T , n)-injective, by Theorem 5.3,

∏

(RR)
+ is (T , n)-flat, and so there exists a rightR-homomorphism h : F →

∏

(RR)
+

such that g = hf , which shows that f is monic.

(2) ⇒ (3). Let M be a left R-module. Then M has a (T , n)-injective cover

ϕ : C → M by Corollary 5.8. On the other hand, there is an exact sequence F
α

−→

M −→ 0 with F free. Since F is (T , n)-injective by (2) and Proposition 4.6, there

exists a homomorphism β : F → C such that α = ϕβ. It follows that ϕ is epic.

(3) ⇒ (2). Let f : N −→ RR be an epic (T , n)-injective cover. Then the projec-

tivity of RR implies that RR is isomorphic to a direct summand of N , and so RR is

(T , n)-injective. �

Corollary 5.12. The following statements are equivalent for a ring R:

(1) Every right R-module has a monic n-flat preenvelope.

(2) R is left n-coherent and RR is n-FP-injective.

(3) R is left n-coherent and every left R-module has an epic n-FP-injective cover.

(4) R is left n-coherent and every injective right R-module is n-flat.

(5) R is left n-coherent and every flat left R-module is n-FP-injective.
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