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Abstract. We give a full description of locally finite 2-groups G such that the normalized
group of units of the group algebra FG over a field F of characteristic 2 has exponent 4.
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1. Introduction and result

It is well known that there does not exist an effective description of finite groups

of prime square exponent p2 (not even in the case when the exponent is 4). However,

Janko (see for example [11], [12], [13]) was able to characterize these groups under

certain additional restrictions on their structure. In this way he obtained interesting

classes of finite p-groups.

Note also that there is no effective description of finite 2-groups with pairwise

commuting involutions. On the other hand, the structure of a locally finite 2-groupG

is known when its normalized group of units V (FG) of the group algebra FG has

the property that its involutory units pairwise commute (see [4]).

There is a similar situation in the case of powerful p-groups. Despite of extensive

current research of this field, their structure has been incompletely described. How-

ever, it is possible to determine [3] those cases when the normalized groups of units

of the group algebras are powerful p-groups.

So it is a natural question whether it is possible to give a description of those

modular group algebras whose groups of normalized units have exponent p2. In this

note we deal with the case of p = 2.
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In certain papers the question when the exponent of V (FG) coincides with the

exponent of the finite p-group G was studied. Mostly such results were obtained for

the p-groups G in the case when p > 5 (for example, see Theorem D in [16], page 25,

and Theorem 2.1 in [15], page 423). More generally this question was studied in [6].

Hence our result can be considered a complete answer to such questions in the case

when the exponent of G is equal to 4.

Finally, note that the groups of exponent 4 appear in several problems in the group

theory and in the theory of group ring units (for example, see [2], [7], [9], [14], [17]).

Our main reads as follows

Theorem. Let V (FG) be the normalized group of units of a group algebra FG

of a locally finite 2-group G over a field F with char(F ) = 2. The group V (FG) has

exponent 4 if and only if G is a nilpotent group of class at most 2 with exponent 4,

|G′| divides 4 and the Frattini subgroup of G is central elementary abelian.

2. Preliminaries and the proof of Theorem

An involution in a group G is an element of order 2. For any a, b ∈ G, we denote

(a, b) = a−1b−1ab and ab = b−1ab. Let D8 and Q8 be the dihedral and quaternion

groups of order 8, respectively. Define the following groups:

G3

16 = 〈g, h : g4 = h2 = 1, (g2, h) = 1, (gh)3 = hg3〉

∼= (C4 × C2)⋊ C2;

G4

16 = 〈g, h : g4 = h4 = 1, gh = g3〉 ∼= C4 ⋊ C4;

G2

32
= 〈g, h : g4 = h4 = (gh)2 = 1, (g2, h) = (g, h2) = 1〉

∼= (C4 × C2)⋊ C4;

G6

32 = 〈g, h : g4 = h4 = (g3h)2 = 1, (g2, h) = (g, h2) = 1〉

∼= ((C4 × C2)⋊ C2)⋊ C2.

For the designation of these groups Gs
m we use their numbers s in the Small Groups

Library of order m in the computer algebra program GAP (see [8]).

All groups which arise in our proof have order at most 32. The small size groups

have been well understood for a long time, and it should not be hard to find an

explanation when we give their presentation and relations. The reader will be able

to choose between several ways of completing these presentations or to take advantage

of the computer algebra system GAP (see [8]).
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In the sequel we freely use the well known equations (see [10], page 171)

(2.1) (a, bc) = (a, b)(a, c)(a, b, c), (ab, c) = (a, c)(a, c, b)(b, c).

Let U(FG) be the group of units of the group algebra FG of a group G over the

field F . It is well known that U(FG) = U(F )× V (FG), where U(F ) = F \ 0 and

V (FG) =

{

∑

g∈G

αgg ∈ U(FG) :
∑

g∈G

αg = 1

}

is the normalized group of units. If G is a locally finite p-group and char(K) = p,

then

V (FG) =

{

∑

g∈G

αgg ∈ FG :
∑

g∈G

αg = 1

}

.

For any x, y ∈ FG we denote the Lie commutator by [x, y] = xy − yx ∈ FG.

Lemma 1. Let char(F ) = 2 and let H be a non abelian 2-generated subgroup of

a group G. If V (FG) has exponent 4, then H ∈ {D8, Q8, G
3
16, G

4
16, G

2
32}. Moreover,

H ′ ⊆ Φ(H) ⊆ ζ(H).

P r o o f. Assume that V (FG) has exponent 4. Clearly G has exponent 4 and any

two involutions in G either commute or generate a dihedral group D8 of order 8. For

any g, h ∈ G such that (g, h) 6= 1 consider the 2-generated subgroup H = 〈g, h〉.

We have the following cases:

Case A. Let |g| = 4, |h| = 2 and H 6∼= D8. Then x = 1 + g + h ∈ V (FG) has

order 4 (because x2 = g2 + gh+ hg 6= 1) and

x4 − 1 = (gh)2 + (hg)2 + g3h+ ghg2 + g2hg + hg3 + g2 + hg2h = 0.

Comparing hg3 with other elements, from the last equation we get hg3 = g2hg, so

(2.2) (h, g2) = 1 and (gh)2 = (hg)2.

It is easy to see that H/〈g2〉 is generated by two involutions g〈g2〉 and h〈g2〉. In

the case when H/〈g2〉 is abelian we have (g, h) = g2, it follows that hgh = g3 and

〈g, h〉 ∼= D8, a contradiction. Therefore, H/〈g2〉 ∼= D8. Since H is not D8, by (2.2)

we obtain that (gh)2 = (hg)2 6= 1. Consequently, (gh)3 = hg3 = (gh)−1 and

H = 〈g, h : g4 = h2 = 1, (g2, h) = 1, (gh)4 = 1〉 ∼= G3

16
.
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Case B. Let |g| = |h| = 4 and |gh| = 2. Clearly the unit y = 1+ g + gh ∈ V (FG)

has order 4 (because y2 = g2 + g2h + ghg 6= 1). Since ghg = h3, we have that

y2 = g2 + g2h+ h3 and

y4 − 1 = gh3gh+ h2 + h+ gh3g + g2h3 + h3g2 + g2 + h3g2h = 0.

Comparing h with other elements, from the last equation we obtain that only h =

gh3g, so (h, g2) = 1. Consequently

H = 〈g, h : g4 = h4 = (gh)2 = 1, (g2, h) = 1〉 ∼= G3

16.

Case C. Let |g| = |h| = |gh| = 4 and H 6∼= Q8. Then x = 1 + g + h ∈ V (FG) has

order 4 and

(2.3) x4 − 1 = (gh)2 + (hg)2 + g3h+ ghg2 + g2h2

+ h2g2 + g2hg + hg3 + h2gh+ gh3

+ h3g + hgh2 + gh2g + hg2h = 0.

The element g3h must coincide with one of the following elements:

Case 1. Let g3h = (hg)2. Clearly, h = g(hg)2 and h2 = (gh)3, so |gh| = 2,

a contradiction.

Case 2. Let g3h = ghg2. Then (h, g2) = 1 and (2.3) can be rewritten as

(gh)2 + (hg)2 + h2gh+ gh3 + h3g + hgh2 + gh2g + g2h2 = 0.

Comparing gh3 with other elements, from the last equation we obtain that only

gh3 = h2gh, so (g, h2) = 1. After substitution into the last equality we get that

(gh)2 = (hg)2. It follows that

H = 〈g, h : g4 = h4 = (g, h2) = (g2, h) = 1, (gh)2 = (hg)2〉 ∼= G2

32.

Case 3. Let g3h = h2g2. Then h = gh2g2 and hg = gh2g3, so (hg)2 = 1 which is

impossible.

Case 4. Let g3h = h2gh or g3h = gh3. Then g2 = h2 and (gh)2 = (hg)2 by (2.3).

Hence H = 〈g, h : g4 = h4 = 1, g2 = h2, (gh)2 = (hg)2〉 ∼= G4

16
.

Case 5. Let g3h = hgh2. Then |gh| = 2, a contradiction.

Case 6. Let g3h = gh2g. Then h = g2h2g, so gh = g−1(h2)g and 2 = |h2| = |gh|,

a contradiction.
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Case 7. Let g3h = h3g. Then gh3 = hg3 and by (2.3) we get that

(2.4) ghgh+ hghg+ ghg2 + g2h2 + h2g2 + g2hg + h2gh+ gh2g + hgh2 + hg2h = 0.

It is easy to check that ghg2 ∈ {(hg)2, h2gh, hgh2, hg2h}.

Consider each case separately.

Case 7.1. Let ghg2 = hghg. Then from (2.4) it follows that

(2.5) g2h2 + h2g2 + hgh2 + h2gh+ gh2g + hg2h = 0.

It is easy to check that the only possible cases are h2gh ∈ {g2h2, gh2g}.

If h2gh = g2h2 then g2h = h2g and h3g = g3h = g(g2h) = g(h2g), so h = g,

a contradiction.

If h2gh = gh2g then h(hgh) = (ghg)g3hg. Using the fact that hgh = ghg (see

Case 7.1), we have h(ghg) = (hgh)g3hg, so g = h, a contradiction.

Case 7.2. Let ghg2 = h2gh. Multiplying it on the left side by g2 and on the right

side by gh we obtain that 1 = (g3h)2 = g2h2ghgh. Since |gh| = 4, this yields that

g2h2 = ghgh and (g, h) = 1, a contradiction.

Case 7.3. Let ghg2 = hg2h. Multiplying it on the left side by g2 and on the

right side by gh we obtain that 1 = (g3h)2 = g2hg2hgh. Since |gh| = 4, this yields

that g2hg = ghgh and ghg = hgh. Clearly hghg = ghg2 = hg2h, so (g, h) = 1,

a contradiction.

Case 7.4. Let ghg2 = hgh2. Since g3h = h3g (see Case 7) and |g| = |h| = 4,

H = 〈g, h : g4 = h4 = 1, (g3h)2 = 1, ghg2 = hgh2〉

∼= ((C4 × C2)⋊ C2)⋊ C2
∼= G6

32.

Put w = 1 + g(1 + h) ∈ V (FH). Using the package LAGUNA (see [5]) of the

computational algebra system GAP (see [8]) we get that w4 6= 1. However, we

assume w4 = 1. By a straightforward calculation w2 = 1 + g2 + (gh)2 + g2h + ghg

and
w4 = h+ g2 + (gh)4 + (g3h)g + g(ghg2) + (ghg2)hg

+ g2(hg)2 + g(hg3) + (g2h)2

= h+ g2 + (gh)4 + h3g2 + g(hgh2) + (hgh2)hg

+ g2(hg)2 + g2h3 + (g2h)2 = 1.

Comparing the element h with other elements we have h = g2(hg)2. This yields that

hg = g2h(ghg2) = g2h(hgh2) and g−1hg = (gh2)2. However, 4 = |h| > |(gh2)2| 6 2

because exp(G) = 4, a contradiction. Consequently exp(V (FH)) > 4, which is

impossible.

Since Φ(H) = H2, it is easy to see that H ′ ⊆ Φ(H) ⊆ ζ(H) for each 2-generated

non abelian H (also it can be easily checked by GAP, see [8]). �
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Corollary 1. If exp(V (FG)) = 4 and G is non abelian, then G′ 6 Φ(G) 6 ζ(G),

Φ(G) is elementary abelian and G has nilpotency class 2.

P r o o f. Let H = 〈a, b ∈ G : (a, b) 6= 1〉. Clearly (a, b) = a−2(ab−1)2b2 ∈ G2 =

Φ(G).

Using induction on n > 1, let us prove that G′ 6 Φ(G) 6 ζ(G), i.e., (c, x) = 1 for

any x ∈ G and c = g21 . . . g
2
n ∈ G′.

Base of induction: n = 1. Obviously 〈g1, x〉 and 〈g
2

1
, x〉 are 2-generated groups, so

(g21 , x) = (g1, x)(g1, x, g1)(g1, x) = (g1, x)
2 = 1

by (2.1) and Lemma 1. Put w = g21g
2
2 . . . g

2
n−1. Using (2.1), the induction assumption

and Lemma 1

(wg2n, x) = (w, x)(w, x, g2n)(g
2

n, x) = (g2n, x) = (gn, x)
2 = 1.

�

Lemma 2. Let G be a finite 2-group such that its Frattini subgroup Φ(G) is

central elementary abelian, G′ 6 Φ(G) and |G′| 6 4. If char(F ) = 2 then the

exponent of V (FG) is equal to 4.

P r o o f. Let G = g1Φ(G) ∪ . . . ∪ gmΦ(G), where g1 = 1. Then any u ∈ V (FG)

can be written as u =
m
∑

i=1

giui, where u1, . . . , um ∈ FΦ(G). Obviously

u2 =

m
∑

i=1

g2i u
2

i +

m
∑

1<i<j

[gi, gj ]uiuj

by Brauer’s lemma (see [1], Proposition 3.1, page 17), where [gi, gj] = gigj −

gjgi ∈ FG. The element
m
∑

i=1

g2i u
2

i is a central involution, so

u4 = 1+

( m
∑

1<i<j

[gi, gj ]uiuj

)2

.

Since [gi, gj] = gigj(1 − (gj , gi)) and 1 − (gj , gi) is a central nilpotent element of

index 2, by Brauer’s lemma ([1], Proposition 3.1, page 17) we have that

z =

( m
∑

1<i<j

gigj(1− (gj , gi))uiuj

)2

=

m
∑

1<i<j,1<k<l

gigjgkgl(1− (gkgl, gigj))(1 − (gj , gi))(1 − (gl, gk))uiujukul.
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Suppose that G′ ∼= C2 × C2. It is easy to see that 1 − (gj , gi) ∈ ω(FG′) and

ω(FG′)3 = 0. Consequently, z = 0 and exp(V (FG)) = 4. �

Lemma 3. Let G = H × 〈a〉 and let |a| divide 4. If exp(V (FH)) = 4, then

exp(V (FG)) = 4, too.

P r o o f. First assume that |a| = 2. Any x ∈ V (FG) has the form

x =
∑

g∈H

αgg + a
∑

h∈H

βhh

and g2, h2 ∈ Φ(G) are central by Corollary 1. By hypothesis the order of the unit

y =
∑

g∈H

αgg +
∑

h∈H

βhh divides 4 and

y2 =
∑

g2∈H

α2

gg
2 +

∑

h2∈H

β2

hh
2 +

∑

g,h∈H

αgβh[g, h].

The unit
∑

g2∈H

α2
gg

2 +
∑

h2∈H

β2

hh
2 is central and its order divides 2, so

y4 = 1 +

([

∑

g∈H

αgg,
∑

h∈H

βhh

])2

= 1

and
([

∑

g∈H

αgg,
∑

h∈H

βhh
])2

= 0. It follows that |x| also divides 4.

Finally let |a| = 4 and L = H × 〈a2〉. Then exp(V (FL)) = 4 and any x ∈ V (FG)

has the form x =
∑

g∈L

αgg + a
∑

h∈L

βhh. By repeating the previous argument, it is

easily checked that |x| divides 4. �

Lemma 4. Let char(F ) = 2 and let G be a finite 2-group, such that G′ is central

elementary abelian. If |G′| > 8, then exp(V (FG)) > 4.

P r o o f. If x =
∑

g∈G

αgg ∈ V (FG), then x2 =
∑

g∈G

α2
gg

2 + w2, where w2 ∈

〈gigj(1 + (gi, gj)) : i, j ∈ N〉F . Since g
2 ∈ Φ(G) ⊆ ζ(G), we have

x4 =
∑

g∈G

α4

gg
4 + w2

2 =
∑

g∈G

α4

g + w2

2 .

Using the equalities (2.1) and the fact that |G′| > 8, we have that

w2

2
∈ 〈gigjgkgl(1 + (gigj, gkgl))(1 + (gi, gj))(1 + (gl, gk)) : i, j, k, l〉F 6= 0,

so x4 6= 1. �
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P r o o f of Theorem. Let G be a locally finite 2-group and let u ∈ V (FG).

Clearly supp(u) and H = 〈supp(u)〉 are a finite set and a finite group, respectively.

Hence u ∈ V (FH). Now the proof follows from Lemmas 1–4. �

The authors would like to thank the referee for valuable remarks and comments.
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