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Abstract. Let µ be a nonnegative Borel measure on R
d satisfying that µ(Q) 6 l(Q)n for

every cube Q ⊂ R
n, where l(Q) is the side length of the cube Q and 0 < n 6 d.

We study the class of pairs of weights related to the boundedness of radial maximal oper-
ators of fractional type associated to a Young function B in the context of non-homogeneous
spaces related to the measure µ. Our results include two-weighted norm and weak type in-
equalities and pointwise estimates. Particularly, we give an improvement of a two-weighted
result for certain fractional maximal operator proved in W.Wang, C.Tan, Z. Lou (2012).
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1. Introduction

Let µ be a nonnegative upper Ahlfors n-dimensional measure onRd, that is, a Borel

measure satisfying

(1.1) µ(Q) 6 l(Q)n

for any cube Q ⊂ R
n with sides parallel to the coordinate axes, where l(Q) stands

for the side length of Q and n is a fixed real number such that 0 < n 6 d.

In the last decades, this measure have proved to be adequate for the development

of many results in harmonic analysis which were known that hold in the context

of doubling measures, that is, Borel measures ν for which there exists a positive

constant D such that ν(2Q) 6 Dν(Q) for every cube Q ⊂ R
d. For example, many

interesting results related to different operators and spaces of functions with non-

doubling measures can be found in [16], [17], [14], [26], [8] and [15] among a vast
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Particularly, in [8] the authors considered the radial maximal operator of fractional

type associated to an upper Ahlfors n-dimensional measure µ which is defined for

0 6 α < n by

(1.2) Mαf(x) = sup
Q∋x

1

l(Q)n−α

∫

Q

|f(y)| dµ(y).

In the same article they study weighted boundedness properties for Mα on non-

homogeneous spaces. Concretely they characterize the pairs of weights for which

these maximal operators satisfy weighted strong and weak type inequalities, obtain-

ing Sawyer type conditions that involve the operators themselves, and Muckenhoupt

type conditions, respectively. Furthermore, by strengthen Muckenhoupt type condi-

tions by adding a “power-bump” to the right-hand side weight or even, by introducing

certain Orlicz norm, strong type inequalities can be achieved.

A typical example of an upper Ahlfors 1-dimensional measure in R that satisfies

condition (1.1) is given by dµ(x) = γ(x) dx, where γ(x) = e−x
2

. A similar version

can be defined in R
n. These examples show that the upper Ahlfors n-dimensional

measures are not necessarily doubling.

Let 1 < p < ∞. If g is a positive continuous function which is integrable with

respect to the Lebesgue measure, then γ(x) = (g(x)/Mg(x))(p−1)/p defines an upper

Ahlfors 1-dimensional measure, where M denotes the classical Hardy-Littlewood

maximal operator (see [8]). Other examples of measures satisfying condition (1.1)

can be found in [27].

In this paper we introduce a generalized version of the radial maximal operator of

fractional type defined in (1.2), which is associated to a Young function B and will

be denoted byMα,B. We prove two-weighted norm inequalities for this operator in

non-homogeneous spaces involving power bumps or Orlicz norms in the conditions

on the weights. We also give weak type inequalities as well as a pointwise estimate

betweenMα,B and the maximal operatorMψ = M0,ψ for certain Young function ψ

(for the definitions involved see below).

This type of maximal operators is not only a generalization but also they have

proved to be the adequate operators related to commutators of singular and fractional

integral operators in different settings (see for example [1], [2], [3], [6], [12], [13], [19],

[20], [22] and [23]). Moreover, for certain Young functions, they are equivalent to

the composition of some known operators such as the Hardy-Littlewood maximal

operator or the fractional maximal operator (see [2], [4] and [20]). For example,

when µ is the Lebesgue measure, if k ∈ N and 0 < α < n, it is known that

Mα(M
k) ≈Mα,L(logL)k ,
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where Mα is the fractional maximal operator defined by

Mαf(x) = sup
Q∋x

|Q|α/n−1

∫

Q

|f(x)| dx,

and Mk is the composition of the Hardy-Littlewood maximal operator M = M0,

k times (for more information see [4]).

We also give an example of an A1(µ)-weight that involves the radial fractional

maximal operator defined in (1.2).

2. Statements and the proof of the main results

In order to state the main results we first introduce some preliminaries. A function

B : [0,∞) → [0,∞) is a Young function if it is convex and increasing, if B(0) = 0,

and if B(t) → ∞ as t → ∞. We also deal with submultiplicative Young functions,

which means that B(st) 6 B(s)B(t) for every s, t > 0. If B is a submultiplicative

Young function, it follows that B′(t) ≃ B(t)/t for every t > 0.

By a weight we understand a locally integrable function w which is positive almost

everywhere. If w is a weight and 1 < p < ∞, we define Lpw(R
d) as the set of all

measurable functions f for which

∫

Rd

|f(x)|pw(x) dµ(x) <∞.

Particularly, when w = 1, we simply denote Lpµ(R
d).

The radial maximal operator of fractional type associated to a Young function B

is defined by

Mα,B(f)(x) = sup
Q∋x

l(Q)α‖f‖B,Q, 0 6 α < n,

where

(2.1) ‖f‖B,Q = inf

{
λ > 0:

1

l(Q)n

∫

Q

B
( |f(x)|

λ

)
dµ(x) 6 1

}

is the radial Luxemburg average. When B(t) = tr, 1 6 r <∞, then

‖f‖B,Q =

(
1

l(Q)n

∫

Q

|f |r dµ

)1/r
.

When α = 0, we writeM0,B = MB. If in addition B(t) = t, we denoteM0,B = M.
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Before stating the next result we give the following definition. A Young function B

satisfies the well known Bp condition, 1 < p < ∞, if there is a positive constant c

such that ∫ ∞

c

B(t)

tp
dt

t
<∞.

If 1 6 r <∞ and p > r, it is not difficult to prove that both functions B(t) = tr and

D(t) = tr log(e + t)δ, δ > 0, belong to Bp. Other example of a Bp function is given

by B(t) = tp/ log(e + t)1+δ, δ > 0. For more information related to this condition

see for example [21], [18] or [25].

The following theorem gives sufficient conditions on a pair of weights in order to

obtain weighted strong type inequalities for Mα,B on non-homogeneous spaces. If

r > 0, rQ denotes the cube with the same center as Q and with l(rQ) = rl(Q).

Theorem 2.1. Let 1 < p < q < ∞, 0 6 α < n and let µ be an upper Ahlfors

n-dimensional measure in R
d. Let B be a submultiplicative Young function such

that Bq0/p0 ∈ Bq0 for some 1 < p0 6 n/α and 1/q0 = 1/p0 − α/n, and let ϕ be

a Young function such that C1ϕ
−1(t)tα/n 6 B−1(t) 6 C2ϕ

−1(t)tα/n for some positive

constants C1 and C2. If A and C are two Young functions such that A
−1C−1 � B−1

with C ∈ Bp, and (u, v) is a pair of weights such that for every cube Q,

(2.2) l(Q)α−n/pu(3Q)1/q‖v−1/p‖A,Q 6 K,

then for all f ∈ Lpv(R
d),

‖Mα,B(f)‖Lq
u(Rd) 6 C‖f‖Lp

v(Rd).

It is important to note that Theorem 5.1 in [8] is a special case of the previous

theorem considering A(t) = trp
′

, C(t) = t(rp
′)′ and B(t) = t. In the classical setting

of the Lebesgue measure, the theorem above was proved in [18] for B(t) = t.

Example 2.2. When B(t) = t log(e + t)k, k > 0, it can be easily seen that B is

submultiplicative, Bq0/p0 ∈ Bq0 for every p0, q0 > 1 and

B−1(t) ≈ tα/n
t1−α/n

log(e + t)k
≈ tα/nϕ−1(t),

when ϕ(t) = (t log(e + t)k)n/(n−α). Moreover, the functions A(t) = trp
′

and C(t) =

(t log(e + t)k)(rp
′)′ satisfy

A−1C−1 � B−1.

For δ > 0, other examples are given by A(t) = tp
′

log(e + t)(k+1)p′−1+δ and C(t) =

tp log(e + t)−(1+δ(p−1)) (see [7]).
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Example 2.3. When µ is the Lebesgue measure and u = v = 1, it is easy to note

that condition (2.2) holds if and only if 1/q = 1/p− α/n for any Young function A

as in the hypotheses of Theorem 2.1. On the other hand, if we consider an upper

Ahlfors n-dimensional measure µ, 1 < p < n/α, 1/q = 1/p−α/n and u = v = 1, then

it is not difficult to check that condition (2.2) is satisfied. Thus, from this theorem we

obtain that Mα,B : Lpµ(R
d) →֒ Lpµ(R

d), that is, the unweighted boundedness holds

for any upper Ahlfors n-dimensional measure µ.

Example 2.4. Let µ be an upper Ahlfors n-dimensional measure and let u be

a weight. If A is a Young function satisfying the hypotheses of Theorem 2.1, then

the pair of weights (u, (Mu)p/q) satisfies condition (2.2) when 1/q = 1/p− α/n. In

fact,

l(Q)α−n/pu(3Q)1/q‖Mu(p/q)(−1/p)‖A,Q 6 Cl(Q)α−n/pu(3Q)1/q
(3l(Q))n/q

u(3Q)1/q
6 C.

Therefore we obtain

‖Mα,B(f)‖Lq
u(Rd) 6 C‖f‖Lp

(Mu)p/q
(Rd).

The same estimate holds if we replaceM by M , where

(2.3) Mu(x) = sup
Q∋x

1

µ(Q)

∫

Q

|u(y)| dµ(y).

Remark 2.5. In [28] the authors studied two-weighted norm inequalities for

a fractional maximal operator associated to a measure µ satisfying condition (1.1).

Concretely, they considered the following version of the fractional maximal operator

defined for 0 6 α < 1 by

Mαf(x) = sup
Q∋x

1

µ(5Q)1−α

∫

Q

|f(y)| dµ(y),

and proved the following result.

Theorem 2.6 ([28]). Let µ be an upper Ahlfors n-dimensional measure. Let

1 < p < q < ∞ and 0 6 α < 1. Let (u, v) be a pair of weights such that for every

cube Q,

(2.4) l(Q)n(1−1/p)µ(Q)α−1u(3Q)1/q‖v−1/p‖Φ,Q 6 C,

where Φ is a Young function whose complementary function Φ̄ ∈ Bp. Then

‖Mα(f)‖Lq
u(Rd) 6 C‖f‖Lp

v(Rd)

for every f ∈ Lpv(R
d) bounded with compact support.
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Let us make some comments about Theorem 2.6. When µ is the Lebesgue measure

and u = v = 1, it is easy to note that condition (2.4) holds if and only if 1/q = 1/p−α

for any Φ as in the hypothesis. On the other hand, if we consider an upper Ahlfors

n-dimensional measure µ and if we take Φ(t) = trp
′

for 1 < r < ∞, 1/q = 1/p− α

and u = v = 1 in condition (2.4), we have that if the inequality

l(Q)n(1−1/p)µ(Q)α−1µ(3Q)1/p−α
( µ(Q)

l(Q)n

)1/(rp′)
6 C

holds, then ( l(Q)n

µ(Q)

)1/(p′r′)
6 C,

which implies that the measure µ satisfying the growth condition (1.1) also satisfies

the “lower” case, that is µ(Q) > Cl(Q)n with a constant independent of Q. So,

the weights u = v = 1 are not allowed in this case unless the measure is Ahlfors

(and so, doubling), that is µ(Q) ≃ l(Q)n for every cube Q. By taking into account

Example 2.3, which shows that our result provides the boundedness with any upper

Ahlfors n-dimensional measure µ, our theorem is an improvement of that given in [28]

in this case.

Moreover, letM be the maximal operator defined in (2.3). When µ is the Lebesgue

measure and Φ(t) = trp
′

, a typical example of pair of weights satisfying condi-

tion (2.4) is (u, (Mu)p/q) with 1/q = 1/p− α. On the other hand, suppose that this

pair satisfies the same condition for a measure satisfying (1.1) and let u ∈ A1(µ).

Thus, the following chain of inequalities holds:

C >
l(Q)n/p

′

µ(Q)1−α−1/q

(
1

µ(Q)

∫

Q

u dµ

)1/q(
1

l(Q)n

∫

Q

((Mu)p/q)−rp
′/p

)1/(rp′)

>
l(Q)n/p

′−n/(rp′)

µ(Q)1/p′−1/(rp′)

(
1

µ(Q)

∫

Q

up/q dµ

)1/p(
1

µ(Q)

∫

Q

(up/q)−rp
′/p

)1/(rp′)

>
l(Q)n/(r

′p′)

µ(Q)1/(r′p′)

(
1

µ(Q)

∫

Q

up/q dµ

)1/p(
1

µ(Q)

∫

Q

(up/q)−p
′/p

)1/p′

>
l(Q)n/(r

′p′)

µ(Q)1/(r′p′)
.

This implies again that µ must be an Ahlfors measure. Again, in this case, our result

is an improvement of that given in [28] (see Example 2.4).

Let us make some comments about the upper Ahlfors n-dimensional measure µ

satisfying (1.1). It is well known that for such measures the Lebesgue differentiation

theorem holds; that is for every f ∈ L1
loc(R

d) and a.e. x,

1

µ(Q)

∫

Q

f(y) dµ(y) → f(x)
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whenQ decreases to x (see [27]). However, if we take radial averages like those defined

in (2.1), this is no longer true. In fact, let us consider µ defined by dµ(t) = e−t
2

dt,

which is an upper Ahlfors 1-dimensional measure, and f(t) = eθt
2

, θ ∈ R. Let x ∈ R.

Then

lim
r→0

1

2r

∫ x+r

x−r

f(t) dµ(t) = lim
r→0

1

2r

∫ x+r

x−r

e(θ−1)t2 dt = e(θ−1)x2

,

which differs from f in a.e. x.

Given a Young function B, let hB be the function defined by

hB(s) = sup
t>0

B(st)

B(t)
, 0 6 s <∞.

If B is submultiplicative, then hB ≈ B. More generally, given any B for every

s, t > 0, B(st) 6 hB(s)B(t), it is easy to prove (see [5], Lemma 3.11) that if B is

a Young function, then hB is nonnegative, submultiplicative, increasing in [0,∞),

strictly increasing in [0, 1] and hB(1) = 1.

The following theorem gives an modular endpoint estimate for Mα,B on non-

homogeneous spaces. This result was proved in [6] for µ being the Lebesgue measure.

Theorem 2.7. Let 0 6 α < n and let µ be an upper Ahlfors n-dimensional

measure on Rd. Let B be a Young function and suppose that if α > 0, B(t)/tn/α is

decreasing for all t > 0. Then there exists a constant C depending only on B such

that for all t > 0,Mα,B satisfies the modular weak-type inequality

ϕ[µ({x ∈ R
d : Mα,B(f)(x) > t})] 6 C

∫

Rn

B
( |f(y)|

t

)
dµ(y)

for all f ∈ LBµ (R
d), where ϕ is any function such that

ϕ(s) 6 C1ϕ1(s) =





0 if s = 0,

s

hB(sα/n)
if s > 0.

Remark 2.8. It is easy to see that the function B(t) = t log(e + t) satisfies the

hypothesis of the theorem above and thus

µ({x ∈ R
n : Mα,B(f)(x) > t}) 6 Cψ

[∫

Rn

B
( |f(y)|

t

)
dµ(y)

]

for all f ∈ LBµ (R
d), where ψ = [t log(e + tα/n)]n/(n−α). This last result was proved

in [9] for µ being a doubling measure.
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Remark 2.9. If B(t) = t, then hB(s) = s and ϕ(s) = s1−α/n. In this case, the

theorem above provides the weak type (1, n/(n− α)) proved in [8].

The proof of Theorem 2.7 requires some lemmas. The first of them was proved

in [6] and the second in [11]. So, we only give the proof of the third.

Lemma 2.10. Given 0 6 α < n, let B be a Young function such that for α > 0,

B(t)/tn/α is decreasing for all t > 0. Then the function ϕ1 from Theorem 2.7 is

increasing and ϕ1(s)/s is decreasing. Moreover, there exists ϕ such that ϕ(s) 6

C1ϕ1(s) and ϕ is invertible.

Lemma 2.11. If ϕ(t)/t is decreasing, then for any positive sequence {xj},

ϕ

(∑

j

xj

)
6

∑

j

ϕ(xj).

The third lemma is a generalization of Lemma 3.2 in [8] for the radial Luxemburg

type averages defined in (2.1). It was proved in [6] for µ being the Lebesgue measure.

Lemma 2.12. Suppose that 0 6 α < n, B is a Young function and f is a non-

negative bounded function with compact support. If for t > 0 and any cube Q

l(Q)α‖f‖B,Q > t,

then there exists a dyadic cube P such that Q ⊂ 3P and satisfying

l(P )α‖f‖B,P > βt,

where β is a nonnegative constant.

P r o o f. Let Q be a cube with

(2.5) l(Q)α‖f‖B,Q > t.

Let k be the unique integer such that 2−(k+1) < l(Q) 6 2−k. There are some dyadic

cubes with side length 2−k, and at most 2d, let us denote them by {Ji : i = 1, . . . , N},

N 6 2d, meeting the interior of Q. It is easy to see that for one of these cubes, say J1,

t

2d
< l(Q)α‖χJ1f‖B,Q.
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This can be seen as follows. If for each i = 1, 2, . . . , N we have

l(Q)α‖χJif‖B,Q 6
t

2d
,

since Q ⊂
N⋃
i=1

Ji, we obtain that

l(Q)α‖f‖B,Q = l(Q)α‖χ⋃
N
i=1 Ji

f‖B,Q

6 l(Q)α
N∑

i=1

‖χJif‖B,Q 6 N
t

2d
6 t,

contradicting (2.5). Using that l(Q) 6 l(J1) < 2l(Q) we can also show that

t

2d
< l(Q)α‖χJ1f‖B,Q 6 2nl(J1)

α‖f‖B,J1

and Q ⊂ 3J1. �

P r o o f of Theorem 2.7. Fix a nonnegative function f ∈ LBµ (R
d), fix t > 0 and

define

Et = {x ∈ R
d : Mα,Bf(x) > t}.

If t is such that the set Et is empty, we have nothing to prove. Otherwise, for each

x ∈ Et there exists a cube Qx containing x such that

l(Qx)
α‖f‖B,Qx > t.

By Lemma 2.12, there exists a constant β and a dyadic cube Px with Qx ⊂ 3Px such

that

(2.6) l(Px)
α‖f‖B,Px > βt.

Since f ∈ LBµ (R
d), it is not hard to prove that we can replace the collection {Px}

with a maximal disjoint subcollection {Pj}. Each Pj satisfies (2.6) and, by our choice

of the Qx’s, Et ⊂
⋃
j

3Pj . By Lemmas 2.10 and 2.11,

ϕ1(µ(Et)) 6
∑

j

ϕ1(µ(3Pj)).

On the other hand, inequality (2.6) implies that for each j,

1

l(Pj)n

∫

Pj

B
( l(Pj)α|f |

βt

)
dµ > 1,
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and then by the definition and properties of hB,

1 <
1

l(Pj)n

∫

Pj

B
(3αl(Pj)α|f(x)|

3αβt

)
dµ(x)

6
3nhB(3

−αβ−1)hB(l(3Pj)
α)

l(3Pj)n

∫

Pj

B
( |f(x)|

t

)
dµ(x)

6
C

ϕ1(l(3Pj)n)

∫

Pj

B
( |f(x)|

t

)
dµ(x).

Hence, since the Pj ’s are disjoint,

∑

j

ϕ1(µ(3Pj)) 6
∑

j

ϕ1(l(3Pj)
n)

6 C
∑

j

∫

Pj

B
( |f(x)|

t

)
dµ(x)

6 C

∫

Rd

B
( |f(x)|

t

)
dµ(x).

�

The radial Luxemburg average (2.1) has two rescaling properties which we will

use repeatedly. Given any Young function A and r > 0,

‖f r‖A,Q = ‖f‖rB,Q,

where B(t) = A(tr).

Given a Young function B, the complementary Young function B̃ is defined by

B̃(t) = sup
s>0

{st−B(s)}, t > 0.

It is well known that B and B̃ satisfy the following inequality:

t 6 B−1(t)B̃−1 6 2t, t > 0.

It is also easy to check that the following version of the Hölder’s inequality holds:

1

l(Q)n

∫

Q

|f(x)g(x)| dµ(x) 6 2‖f‖B,Q‖g‖B̃,Q.

Moreover, there is a further generalization of the inequality above. If A, B and C

are Young functions such that for every t > t0 > 0,

B−1(t)C−1(t) 6 cA−1(t),
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then the inequality

(2.7) ‖fg‖A,Q 6 K‖f‖B,Q‖g‖C,Q

holds.

The following result is a pointwise estimate between the radial maximal operator

fractional type associated with a Young function B and the radial maximal operator

associated with a Young ψ related to B on non-homogeneous spaces.

Theorem 2.13. Let 0 6 α < n and 1 < p < n/α. Let µ be an upper Ahlfors

n-dimensional measure. Let q and s be defined by 1/q = 1/p−α/n and s = 1+ q/p′,

respectively. Let B and ϕ be Young functions such that ϕ−1(t)tα/n > CB−1(t) and

ψ(t) = ϕ(t1−α/n). Then for every measurable function f , the inequality

Mα,B(f)(x) 6 CMψ(|f |
p/s)(x)1−α/n

(∫

Rd

|f(y)|p dµ(y)

)α/n

holds for a.e. x ∈ R
d.

When µ is the Lebesgue measure, the result above was proved in [1] (see also [24]

for similar multilinear versions and [10] for the case B(t) = t, both in the euclidean

context).

P r o o f. Let g(x) = |f(x)|p/s. Then

|f(x)| = g(x)s/p+α/n−1g(x)1−α/n.

Let x ∈ R
d and Q be a fixed cube containing x. By the generalized Hölder’s inequal-

ity (2.7) and the fact that

g(x)(s/p+α/n−1)n/α = |f |p

we get

l(Q)α‖f‖B,Q 6 Cl(Q)α‖g1−α/n‖ϕ,Q‖g
s/p+α/n−1‖n/α,Q

= Cl(Q)α‖g‖
1−α/n
ψ,Q

(
1

l(Q)n

∫

Q

|f(y)|p dµ(y)

)α/n

6 C[Mψ(g)(x)]
1−α/n‖f‖

pα/n
Lp(µ).

�
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The next theorem gives sufficient conditions on the function B in order to obtain

the boundedness ofMB on L
p
µ(R

d). In the euclidean context, this result was proved

in [21] and in [25] for the measure µ being doubling, that is µ(2Q) 6 Dµ(Q) for

every Q ∈ R
d.

Theorem 2.14. Let µ be an upper Ahlfors n-dimensional measure. Let B be

a Young function such that B ∈ Bp. Then

MB : Lpµ(R
d) → Lpµ(R

d).

P r o o f. From Theorem 2.7 applied to the case α = 0 it is easy to check that

µ({y ∈ R
d : MBf(y) > 2t}) 6 C

∫

{|f |>t}

B(|f(x)|/t) dµ(x).

Thus, by changing variables and using the inequality above we obtain that

∫

Rd

MBf(y)
p dµ(y) = C

∫ ∞

0

tpµ({y ∈ R
d : MBf(y) > 2t})

dt

t

6 C

∫

Rd

∫ |f(y)|

0

tpB
( |f(y)|

t

)dt
t
dµ(y)

= C

(∫

Rd

|f(y)|p dµ(y)

)(∫ ∞

1

B(s)

sp
ds

s

)
.

Thus, condition Bp allows us to obtain the desired result. �

Proposition 2.15. Let B be a submultiplicative Young function and let ϕ be

a Young function such that C1ϕ
−1(t)tα/n 6 B−1(t) 6 C2ϕ

−1(t)tα/n for some positive

constants C1 and C2. Let 1 < p < n/α, 1/q = 1/p − α/n and s = q(1 − α/n). If

Bq/p ∈ Bq, then the function ψ defined by ψ(t) = ϕ(t1−α/n) belongs to Bs.

Remark 2.16. It is easy to see that if δ > 0, the function B(t) = t log(e + t)δ,

t > 0 satisfies the hypothesis of Proposition 2.15. In fact,

B−1(t) ≈
t

log(e + t)δ
.

P r o o f. From the definition of ψ and by changing variables we obtain that

∫ ∞

1

ψ(t)

ts
dt

t
=

∫ ∞

1

ϕ(t1−α/n)

ts
dt

t
=

n

n− α

∫ ∞

1

ϕ(r)

rns/(n−α)
dr

r
.
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From the relation between B and ϕ it is easy to see that ϕ is a submultiplicative

function. In fact, it is not hard to prove that a Young function B is submultiplicative

if and only if its inverse function B−1 satisfies B−1(st) > B−1(s)B−1(t) for every

s, t > 0.

Thus, noting that q = ns/(n− α), we obtain

∫ ∞

1

ϕ(r)

rns/(n−α)
dr

r
=

∫ ∞

1

ϕ(r)

rq
dr

r

6 c

∫ ∞

c

u1+qα/n

(ϕ−1(u)uα/n)q
du

u

6 C

∫ ∞

c

uq/p

B−1(u)q
du

u
= C

∫ ∞

c

B(t)q/p

tq
dt

t
<∞.

�

The following result is a fractional version of Theorem 2.14 and gives a sufficient

condition on the function B that guarantees the continuity of the radial maximal op-

erator fractional typeMα,B between Lebesgue spaces with not necessarily doubling

measures.

Theorem 2.17. Let µ be an upper Ahlfors n-dimensional measure. Let 0 <

α < n and 1 < p 6 n/α. Let q and s be defined by 1/q = 1/p−α/n and s = 1+q/p′,

respectively. Let B be a submultiplicative Young function such that Bq/p ∈ Bq and

let ϕ be a Young function such that C1ϕ
−1(t)tα/n 6 B−1(t) 6 C2ϕ

−1(t)tα/n for

some positive constants C1 and C2. Then

Mα,B : Lpµ(R
d) → Lpµ(R

d).

P r o o f. By Theorem 2.13, if 1 < p < n/α, we have

(∫

Rd

(Mα,B(f))
q dµ

)1/q
6 C

(∫

Rd

(Mψ(|f |
p/s)1−α/n‖f‖

pα/n
Lp(µ))

q dµ

)1/q

= C‖f‖
pα/n

Lp
µ(Rd)

(∫

Rd

Mψ(|f |
p/s)s dµ

)1/q
.

From Proposition 2.15 we have that the function ψ ∈ Bs. Thus, Theorem 2.14

implies thatMψ : L
s
µ(R

d) → Lsµ(R
d), and thus,

(∫

Rd

(Mα,B(f))
q dµ

)1/q
6 C‖f‖

pα/n

Lp
µ(Rd)

(∫

Rd

(|f |p/s)s dµ

)1/q
= C‖f‖Lp

µ(Rd).
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On the other hand, if p = n/α and Q is a cube such that x ∈ Q, we obtain that

l(Q)α‖f‖η,Q 6 Cl(Q)α‖χQ‖ϕ,Q‖f‖n/α,Q 6 C‖f‖n/α,

and thus

Mα,B(f)(x) 6 C‖f‖n/α

for a.e. x, which leads us to the desired result. �

The next theorem allows to find examples of A1-weights on non-homogeneous

spaces.

Theorem 2.18. Given 0 < α < n, and a nonnegative function f , there exists

a constant C such that

M(Mαf)(x) 6 CMαf(x).

P r o o f. Fix a cube Q. We will see that

1

l(Q)n

∫

Q

Mαf(y) dµ(y) 6 CMαf(x) for a.e. x ∈ Q

with C independent of Q. Let Q̃ = 3Q. We write f = f1 + f2 with f1 = fχQ̃. Then

Mαf(x) 6 Mαf1(x) +Mαf2(x)

and

1

l(Q)n

∫

Q

Mαf1(y) dµ(y) =
1

l(Q)n

∫ ∞

0

µ{x ∈ Q : Mαf1(x) > t} dt

6
1

l(Q)n

(
µ(Q)R+

∫ ∞

R

µ{x ∈ Q : Mαf1(x) > t} dt

)
.

By [8], Proposition 2.1, we know that ‖Mαf‖Ln/(n−α),∞
µ (Rd)

6 ‖f‖L1
µ(R

d). Then since

µ(Q) 6 l(Q)n,

1

l(Q)n

∫

Q

Mαf1(y) dµ(y) 6 R+
c

l(Q)n
‖f1‖

n/(n−α)

L1
µ(R

d)

∫ ∞

R

dt

tn/(n−α)
.

By taking R = ‖f1‖L1
µ(R

d)/l(Q)n−α, we get

1

l(Q)n

∫

Q

Mαf1(y) dµ(y) 6 Cα,n
‖f1‖L1

µ(R
d)

l(Q)n−α
=

Cα,n

l(Q̃)n−α

∫

Q̃

f(y) dµ(y)

6 Cα,nMαf(x)

for every x ∈ Q.
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Dealing with Mαf2 is even simpler. It is enough to see that because of the fact

that f2 lives far from Q (outside Q̃). For any two points x, y ∈ Q we haveMαf2(x) 6

CMαf2(y) with C an absolute constant. Indeed, if Q0 is a cube containing x and

meeting Rn \ Q̃, then Q ⊂ Q3
0, so

1

l(Q0)n−α

∫

Q0

f2(t) dµ(t) 6
3n−α

l(Q3
0)
n−α

∫

Q3
0

f2(t) dµ(t) 6 3n−αMαf2(y).

Thus
1

l(Q)n

∫

Q

Mαf2(y) dµ(y) 6 C
µ(Q)

l(Q)n
Mαf(x) 6 CMαf(x)

for every x ∈ Q. �

We finally give the proof of the two weighted estimate forMα,B.

P r o o f of Theorem 2.1. Without loss of generality we assume that f is a non-

negative bounded function with compact support. This guarantees that Mα,Bf is

finite µ-almost everywhere. In fact, f ∈ Lp0µ (Rd), where p0 is the exponent of the

hypotheses. From Theorem 2.17 we get thatMα,Bf ∈ Lq0µ (Rd) and thus

Mα,Bf(x) <∞ a.e. x ∈ R
d.

For each k ∈ Z let Ωk = {x ∈ R
d : 2k <Mα,Bf(x) 6 2k+1}. Thus

R
d =

⋃

k∈Z

Ωk.

Then for every k and every x ∈ Ωk, by the definition ofMα,Bf , there is a cube Q
k
x

containing x such that

l(Qkx)
α‖f‖B,Qk

x
> 2k,

and from Lemma 2.12 there exist a constant β and a dyadic cube P kx with Q
k
x ⊂ 3P kx

such that

(2.8) l(P kx )
α‖f‖B,Pk

x
> β2k.

From the fact that B is submultiplicative and supp(f) is a compact set, the inequality

above allows us to obtain

l(P kx )
n

B(l(P kx )
α)

<

∫

Pk
x

B
( |f |

2kβ

)
dµ 6 Cµ(supp(f)) 6 C.

From the hypotheses on B it is easy to check that

C1ϕ
−1

( l(P kx )n
C

)( l(P kx )n
C

)α/n
6 B−1

( l(P kx )n
C

)
6 l(P kx )

α,
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which allows us to conclude that for each k, l(P kx ) is bounded by a constant indepen-

dent of x. Then there is a subcollection of maximal cubes (and so disjoint) {P kj }j
such that every Qkx is contained in 3P

k
j for some j and, as a consequence, Ωk ⊂j 3P

k
j .

Next, decompose Ωk into the sets

Ek1 = 3P k1 ∩ Ωk, E
k
2 = (3P k2 \ 3P k1 ) ∩ Ωk, . . . , E

k
j =

(
3P kj \

j−1⋃

r=1

3P kr

)
∩ Ωk, . . .

Then

R
d =

⋃

k∈Z

Ωk =
⋃

j,k

Ekj

and these sets are pairwise disjoint. Let K be a fixed positive integer which will go

to infinity later, and let ΛK = {(j, k) ∈ N× Z : |k| 6 K}. Using that Ekj ⊂ Ωk and

that the cubes P kj satisfy (2.8) we obtain that

Ik =

∫
K⋃

−K

Ωk

(Mα,Bf(x))
qu(x) dµ(x)

=
∑

(j,k)∈Λk

∫

Ek
j

(Mα,Bf(x))
qu(x) dµ(x)

6
∑

(j,k)∈Λk

u(Ekj )2
(k+1)q

6 C2q
∑

(j,k)∈Λk

u(Ekj )(l(P
k
j )
α‖f‖B,Pk

j
)q

6 C2q
∑

(j,k)∈Λk

u(3P kj )(l(P
k
j )
α‖fv1/p‖C,Pk

j
‖v−1/p‖A,Pk

j
)q,

where in the last inequality we have used the generalized Hölder’s inequality (2.7)

and the hypothesis on the functions A, B and C. Now, applying the hypothesis on

the weights we obtain that

Ik 6 C
∑

(j,k)∈Λk

l(3P kj )
nq/p‖fv1/p‖q

C,Pk
j

= C

∫

Y

Tk(fv
1/p)q dν,

where Y = N × Z, ν is a measure in Y given by ν(j, k) = l(3P kj )
nq/p and for every

measurable function h, the operator Tk is defined by the expression

Tkh(j, k) = ‖ϕ‖C,Pk
j
χΛk

(j, k).
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Then, if we prove that Tk : L
p(Rd, µ) → Lq(Y, ν) is bounded independently of K,

we shall obtain that

Ik 6 C

∫

Y

Tk(fv
1/p)q dν 6 C

(∫

Rd

(fv1/p)p dµ

)q/p
= C

(∫

Rd

fpv dµ

)q/p
,

and we shall get the desired inequality by doing K → ∞. But the proof of the

boundedness of Tk follows the same arguments as in Theorem 5.3 in [8], using now

that the function C ∈ Bp, so we omit it. �
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