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Abstract. Let G be a weighted hypergraph with edges of size at most 2. Bollobás and
Scott conjectured that G admits a bipartition such that each vertex class meets edges of
total weight at least (w1−∆1)/2+2w2/3, where wi is the total weight of edges of size i and
∆1 is the maximum weight of an edge of size 1. In this paper, for positive integer weighted
hypergraph G (i.e., multi-hypergraph), we show that there exists a bipartition of G such
that each vertex class meets edges of total weight at least (w0−1)/6+(w1−∆1)/3+2w2/3,
where w0 is the number of edges of size 1. This generalizes a result of Haslegrave. Based
on this result, we show that every graph with m edges, except for K2 and K1,3, admits
a tripartition such that each vertex class meets at least ⌈2m/5⌉ edges, which establishes
a special case of a more general conjecture of Bollobás and Scott.
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1. Introduction

Let G = (V,E) be a graph. For subsets S and T of V , eG(S, T ) is the number

of edges of G with one end in S and the other end in T , and eG(S) is the number

of edges of G with both ends in S. By dG(S), we mean the number of edges of

G meeting S (i.e., containing at least one vertex of S). For a weighted graph (or

hypergraph) G with weight function w, denote by dwG(S) the total weight of edges of

G meeting S. If S = {v}, then we write eG(v, T ), dG(v) and dwG(v) for eG({v}, T ),

dG({v}) and dwG({v}), respectively. When understood, the reference to G in the

subscript will be dropped. Additionally, we write S for V \ S, [t] for {1, . . . , t} and
(

S

j

)

for the set of all j-element subsets of S.

Classical graph or hypergraph partitioning problems often ask for partitioning

the vertex set of a graph or hypergraph into pairwise disjoint subsets that opti-
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mize a single quantity. For example, the well-known Max-Cut problem asks for

a maximum bipartite subgraph of a graph, i.e., a bipartition V1, V2 of a given graph

with m edges maximizing the number of edges between V1 and V2. Edwards in [6],

[7] proved the essentially best possible result: a bipartite subgraph with at least

m/2 + (
√

2m+ 1/4− 1/2)/4 edges. An extension of Edwards’ bound for partitions

into more than two parts was proved in [4].

In practice, one often needs to find a partition of a given graph or hypergraph

to optimize several quantities simultaneously. Such problems are called Judicious

partitioning problems by Bollobás and Scott in [5]. The Bottleneck bipartition prob-

lem is a judicious partition problem: Find a partition V1, V2 of V (G) that minimizes

max{e(V1), e(V2)}. Bollobás and Scott in [2] showed that every graph with m edges

admits a bipartition such that each vertex class spans at most

m

4
+

√

2m+ 1
4 − 1

2

8
edges.

The bound is tight for the complete graph K2n+1. In the same paper, the authors

also extended the result for partitions into more than two parts. For more about

judicious partitioning problems, we refer the reader to [1], [8], [9], [11], [12], [13], [14],

[15], [18], [19]. For survey articles, see [5], [16].

In this paper, we consider another type of judicious partitioning problems about

graphs with requirement on edges as well as on vertices, and such problems are

called mixed partitioning problems. We follow Bollobás and Scott [5] in using the

term “hypergraph with edges of size at most 2”. Note that a hypergraph G = (V,E)

consists of a finite set V := V (G) of vertices and a set E := E(G) of edges, where

each edge is a subset of V . For each edge e ∈ E, if e contains at most two elements

of V , then G is a hypergraph with edges of size at most 2.

Let G be a weighted hypergraph with edges of size at most 2. Denote by ∆1 the

maximum weight of an edge of size 1 and by wi the total weight of edges of size i for

i = 1, 2. Bollobás and Scott in [5] gave the following conjecture.

Conjecture 1.1 (Bollobás and Scott [5]). Every weighted hypergraph G admits

a bipartition such that each vertex class meets edges of total weight at least

w1 −∆1

2
+

2w2

3
.

Recently, Xu et al. in [17] established a weaker version of the conjecture. For

weighted hypergraphs G with weight function w : E → N
+, Haslegrave in [10] con-

firmed the conjecture for the case ∆1 6 1.

742



Theorem 1.2 (Haslegrave [10]). For ∆1 6 1, the weighted hypergraph G admits

a bipartition V1, V2 such that for i = 1, 2

dw(Vi) >
w1 −∆1

2
+

2w2

3
.

By using a different method, we generalize the result of Haslegrave and show

Theorem 1.3. The weighted hypergraph G has a bipartition V1, V2 such that for

i = 1, 2

dw(Vi) >
w0 − 1

6
+

w1 −∆1

3
+

2w2

3
,

where w0 is the number of edges of size 1.

Remark. Since the bound of Theorem 1.2 is easy to obtain when ∆1 = 0, we can

always assume that ∆1 > 1 in our theorem. Note that w0 = w1 provided ∆1 = 1.

Thus, our result generalizes Theorem 1.2.

Bollobás and Scott in [5] noted that mixed partitioning problems are useful in

proving results about uniform hypergraphs. Particularly, we establish a special case

of another conjecture of Bollobás and Scott for graphs based on the ∆1 = 2 case of

Theorem 1.3.

Conjecture 1.4 ([3], [16]). For every integer k > 2, every graph with m edges

has a partition into k sets, each of which meets at least

2m

2k − 1
edges.

If true, the complete graphK2k−1 shows that the bound should be sharp. Actually,

in [16], the author also assumes that m >
(

k

2

)

to avoid the trivial cases such as Kk−1.

Ma et al. in [14] solved the conjecture for very largem (in terms of k). In this paper,

we confirm the case k = 3.

Theorem 1.5. Let G be a graph with m edges. Suppose that G is not isomorphic

to K2 and K1,3 (modulo isolated vertices). Then there exists a tripartition V1, V2, V3

of G such that for i = 1, 2, 3

d(Vi) >
⌈2m

5

⌉

.
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2. Bipartitions of weighted hypergraphs

In this section, we consider the bipartitions of weighted hypergraphs and give

the proof of Theorem 1.3. Before proving, we present the following algorithm and

lemmas.

Let G = (V,E(G)) be a weighted hypergraph with edges of size at most 2 and let

w : E → N
+ be its weight function. First, we construct a weighted complete graph

G1 = (V,E(G1)) from G. Let w1 : V ∪ E(G1) → N be the weight function of G1

such that for each v ∈ V and e ∈ E(G1)

w1(v) =

{

w({v}) if {v} ∈ E(G),

0 otherwise,
and w1(e) =

{

w(e) if e ∈ E(G),

0 otherwise.

Let∆1 be the maximum weight of an edge of size 1 ofG . Clearly, by the construction,

∆1 is also the maximum weight of a vertex in G1.

Now, we construct a graph sequence G = (Gi)i>1 consisting of weighted complete

graphs Gi = (V,E(Gi)) with weight function wi : V ∪ E(Gi) → N according to

the following procedure, which we will call the G algorithm: set i = 1 and s1 =

|{v ∈ V : w1(v) > 1}|. Repeat the following steps until si 6 1.

⊲ Set si = |{v ∈ V : wi(v) > 1}|. If si = 0, then stop; otherwise, set δi =

min{wi(v) > 1: v ∈ V } and ∆i = max{wi(v) : v ∈ V }.

⊲ If si = 1 and v ∈ V is the unique vertex satisfying wi(v) > 1, then set wi(v) = 1,

and stop.

⊲ If si > 1, then choose an edge e = uv arbitrarily from Gi satisfying w
i(u) = δi and

wi(v) = ∆i. Set w
i+1(u) = 1, wi+1(v) = ∆i − δi +1 and wi+1(e) = wi(e)+ δi− 1.

For each x ∈ V \{u, v} and f ∈
(

V

2

)

\{e}, set wi+1(v) = wi(v) andwi+1(f) = wi(f).

Increment i.

Let t be the length of the resulting sequence G. Clearly, 1 6 t 6 |V |. For each

S ⊆ V and i ∈ [t], define τw
i

(S) =
∑

v∈S

wi(v). By the construction, we immediately

have the following two lemmas.

Lemma 2.1. For each S ⊆ V and 1 6 i 6 j 6 t,

τw
i

(S) + dw
i

(S) > τw
j

(S) + dw
j

(S).

P r o o f. According to the G algorithm, for each v ∈ V we have

(1) wi(v) + dw
i

(v) > wj(v) + dw
j

(v).
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In fact, the equality holds for each j 6 t− 1 and, if j = t, it holds for at least |V |− 1

vertices. Summing over all v ∈ S in (1) yields

∑

v∈S

wi(v) +
∑

e∈E(Gi)
|e∩S|=1

wi(e) + 2
∑

e∈E(Gi)
|e∩S|=2

wi(e)

>
∑

v∈S

wj(v) +
∑

e∈E(Gj)
|e∩S|=1

wj(e) + 2
∑

e∈E(Gj)
|e∩S|=2

wj(e),

which is equivalent to

τw
i

(S) + dw
i

(S) > τw
j

(S) + dw
j

(S) +
∑

e∈(S
2
)

(wj(e)− wi(e)).

The inequality follows from the fact that Gi is a complete graph on V for each i ∈ [t].

Note that wj(e) > wi(e) for each e ∈
(

S

2

)

. Thus, we have

τw
i

(S) + dw
i

(S) > τw
j

(S) + dw
j

(S),

as required. �

For each i ∈ [t], let wi
1 =

∑

v∈V

wi(v) and wi
2 =

∑

e∈E(Gi)

wi(e). The next lemma

shows that Gt has a ‘good’ judicious partition.

Lemma 2.2. Every weighted graph Gt admits a bipartition V1, V2 such that for

j = 1, 2

τw
t

(Vj) + dw
t

(Vj) >
wt

1 − 1

6
+

w1
1 −∆t

3
+

2w1
2

3
.

P r o o f. Note that the difference w1
1−wt

1 is the total weight of vertices decreasing

in the process of the G algorithm. Similarly, the difference wt
2 − w1

2 is the total

weight of edges increasing in the process of the G algorithm. If st = 0, by the

construction, we immediately have w1
1 − wt

1 = 2(wt
2 − w1

2). If st = 1, similarly, we

have w1
1 − wt

1 − (∆t − 1) = 2(wt
2 − w1

2). With help of the preceding two equalities,

we conclude

(2) w1
1 − wt

1 − (∆t − 1) 6 2(wt
2 − w1

2).

Now, we view Gt as a weighted hypergraph with edges of size at most 2. Note

that wt(v) 6 1 for each v ∈ V by the construction. Clearly, each edge of size 1 of Gt
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has weight at most 1. Thus, by Theorem 1.2, there exists a bipartition V1, V2 of Gt

such that for j = 1, 2

τw
t

(Vj) + dw
t

(Vj) >
wt

1 − 1

2
+

2wt
2

3
,

which together with (2) implies the desired result. �

We can now complete the proof of our main result.

P r o o f of Theorem 1.3. Note that dw(S) = τw
1

(S)+dw
1

(S) by the construction

of G1. By Lemma 2.1, for each S ⊆ V we have

dw(S) > τw
t

(S) + dw
t

(S).

It follows from Lemma 2.2 that G admits a bipartition V1, V2 such that for j = 1, 2

(3) dw(Vj) >
wt

1 − 1

6
+

w1
1 −∆t

3
+

2w1
2

3
.

Again, by the construction of G1, we have w
1
1 = w1 and w

1
2 = w2. In addition, the G

algorithm implies that wt
1 = w0 and ∆t 6 ∆1. Now, the result follows immediately

from inequality (3). �

3. Tripartitions of graphs

In this section, we consider the tripartitions of graphs and prove Theorem 1.5.

First, we introduce some definitions and lemmas.

Let G = (V,E) be a graph. For a partition V1, V2, V3 of G, define the degree of

V1, V2, V3 as d(V1, V2, V3) =
3
∑

i=1

d(Vi). We call the partition optimal if d(V1, V2, V3) is

as large as possible over partitions V = V1 ∪ V2 ∪V3, and semi-optimal if this degree

cannot be increased by moving a vertex into V3. Note that semi-optimality depends

on the order of the sets in our partition. We shall always take the last set, V3, to be

the exceptional one. Trivially, every optimal partition is also semi-optimal. In the

following, for every semi-optimal partition we show that the degree d(V1, V2, V3) can

be lower bounded.
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Lemma 3.1. Let G be a graph with m edges. Suppose that V1, V2, V3 is a semi-

optimal partition of G. Then

d(V1, V2, V3) > 2m− d(V3).

P r o o f. Since V1, V2, V3 is semi-optimal, for each v ∈ Vi and i = 1, 2 we have

(4) e(v, V3) 6 e(v, Vi).

Otherwise, e(v, V3) > e(v, Vi). Let Xi = Vi \ {v}, X3−i = V3−i and X3 = V3 ∪ {v}.

Clearly, we have d(Xi) = d(Vi) − e(v, Vi), d(X3−i) = d(V3−i) and d(X3) = d(V3) +

e(v, V3). This implies that d(X1, X2, X3) > d(V1, V2, V3), a contradiction with the

choice of V1, V2, V3.

By (4), for each v ∈ Vi and i = 1, 2 we deduce

e(v, Vi) 6 e(v, V3).

Summing over all v ∈ Vi yields 2e(Vi) 6 e(Vi, V3), giving that

2(e(V1) + e(V2)) 6 e(V1, V3) + e(V2, V3) = d(V3)− e(V3).

This establishes that

3
∑

i=1

e(Vi) 6
d(V3)

2
+

e(V3)

2
6 d(V3).

Noting that d(V1, V2, V3) +
3
∑

i=1

e(Vi) = 2m, we obtain

d(V1, V2, V3) = 2m−

3
∑

i=1

e(Vi) > 2m− d(V3),

as desired. �

Next, we show that the semi-optimality of a partition V1, V2, V3 of G is preserved

if we move vertices into V3.
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Lemma 3.2. Let V1, V2, V3 be a semi-optimal partition of a graph G, and let U1,

U2, U3 be another partition of G with U1 ⊆ V1, U2 ⊆ V2 and U3 ⊇ V3. Then U1, U2,

U3 is also semi-optimal.

P r o o f. For each v ∈ Ui and i = 1, 2, let U ′
i = Ui \ {v}, U ′

3−i = U3−i and

U ′
3 = U3 ∪ {v}. Similarly, let V ′

i = Vi \ {v}, V
′
3−i = V3−i and V ′

3 = V3 ∪ {v}. Then

d(Ui)− d(U ′
i) = e(v, Ui) > e(v, Vi) = d(Vi)− d(V ′

i )

and

d(U ′
3)− d(U3) = e(v, U3) 6 e(v, V3) = d(V ′

3)− d(V3).

Thus, we have

d(U ′
i) + d(U ′

3) 6 d(Ui) + d(U3) + (d(V ′
i ) + d(V ′

3 )− d(Vi)− d(V3)),

which is equivalent to

(5) d(U ′
1, U

′
2, U

′
3) 6 d(U1, U2, U3) + (d(V ′

1 , V
′
2 , V

′
3)− d(V1, V2, V3)).

Since d(V1, V2, V3) cannot be increased by moving a vertex into V3, we have

d(V ′
1 , V

′
2 , V

′
3) 6 d(V1, V2, V3). It follows from (5) that U1, U2, U3 is also a semi-

optimal partition of G as claimed. �

Now, we are ready to give the proof of Theorem 1.5.

P r o o f of Theorem 1.5. Since isolated vertices contribute nothing to the meeting

edges, we may assume that G contains no isolated vertices. It is easy to check that

the result holds for m 6 3, except when G is isomorphic to K2 or K1,3. Assume

that m > 4. Let ∆ be the maximum degree of G and l = ⌈2m/5⌉. We proceed by

showing the following several claims.

Claim 1. ∆ < l. Otherwise, let v be a vertex in G with degree ∆ > l. Consider

the graph H1 induced by V \ {v}. We view H1 as a weighted hypergraph with m

edges, of which ∆ have size 1 and m−∆ have size 2. Let w be the weight function

of H1. For each f ∈ E(H), we define w(f) = 1. Now, we use Theorem 1.2 setting

∆1 = 1, w1 = ∆ and w2 = m − ∆. Thus, there exists a bipartition U1, U2 of H1

such that for i = 1, 2

d(Ui) >
w1 − 1

2
+

2w2

3
=

2m

3
−

∆

6
−

1

2
> l − 1.

The last inequality holds because ∆ 6 m and m > 4. By the integrality of d(Ui), we

have d(Ui) > l. Set U3 = {v}. Clearly, U1, U2, U3 will do for our tripartition. This

completes the proof of Claim 1.
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Let V1, V2, V3 be an optimal partition of G, ordered so that d(V1) > d(V2) > d(V3).

If d(V3) > l, we are done. Suppose that d(V3) 6 l − 1.

Claim 2. d(V2) > l. Let H2 be the graph induced by V3. By the maximality of

d(V1, V2, V3), we know that

(∗) V1, V2 is a bipartition of H2 minimizing eH2
(V1) + eH2

(V2).

Otherwise, let V ′
1 , V

′
2 be another bipartition of H2 such that

eH2
(V ′

1 ) + eH2
(V ′

2) < eH2
(V1) + eH2

(V2).

Note that d(V1, V2, V3) = 2m−
3
∑

i=1

e(Vi) and eH2
(S) = e(S) for each S ⊆ V3. Clearly,

V ′
1 , V

′
2 , V3 is another partition of G satisfying d(V

′
1 , V

′
2 , V3) > d(V1, V2, V3), contra-

dicting the choice of V1, V2, V3.

For each v ∈ Vi and i = 1, 2, it follows from (∗) that

e(v, Vi) 6 e(v, V3−i).

Summing over all v ∈ Vi gives that 2e(Vi) 6 e(V1, V2). Observing that e(V3) =

e(Vi) + e(V3−i) + e(V1, V2), we have

3e(Vi) + e(V3−i) 6 e(V3).

It follows that e(Vi) 6 e(V3)/3 for i = 1, 2. Note that d(V2) > e(V3) − e(V1) and

d(V3) 6 l − 1 by our assumption. Thus,

d(V2) >
2e(V3)

3
=

2(m− d(V3))

3
> l − 1,

i.e., d(V2) > l by integrality, completing the proof of Claim 2.

For i = 1, 2, let Xi be a minimal subset of Vi satisfying d(Xi) > l, and X3 =

V \ (X1∪X2). If d(X3) > l, then X1, X2, X3 is a suitable tripartition. Suppose that

d(X3) 6 l− 1. Without loss of generality, we may assume that d(X1) > d(X2).

Claim 3. |X1| = 2. Since V1, V2, V3 is an optimal partition of G, by Lemma 3.2,

X1, X2, X3 is a semi-optimal partition of G. It follows from Lemma 3.1 that

d(X1) + d(X2) > 2(m− d(X3)) > 2(m− l + 1).

Clearly, we have d(X1) > m− l+1. By the minimality of X1, for each vertex x ∈ X1

there are at least m− 2(l − 1) edges meeting X1 only at x. Since otherwise

d(X1 \ {x}) = d(X1)− e(x,X1) > (m− l+ 1)− (m− 2(l − 1)− 1) = l,
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a contradiction. Note that m−2(l−1) > l/2. Hence, any two vertices of X1 meet at

least l edges, and so two vertices cannot be a proper subset of X1. Thus, |X1| 6 2.

Since d(X1) > l, by Claim 1 we have |X1| = 2. Thus, we complete the proof of

Claim 3.

Let X1 = {x1, x2} and θ = |N(x1) ∩N(x2)|. Since ∆ < l, we may assume that

(6) d(x1) + d(x2) = 2(l − 1)− r,

where r > 0 is an integer. Write e = x1x2 and define the indicator variable 1e = 1

if and only if e ∈ E(G), otherwise 1e = 0. Now, we may write

(7) θ = l − 1− 1e − s,

where s > 0 is an integer. Let g = (m, r, s,1e), g1 = (6, 0, 0, 1), g2 = (8, 0, 0, 1),

g3 = (8, 0, 0, 0) and g4 = (8, 0, 1, 1).

Claim 4. g ∈ {gi : 1 6 i 6 4}. Consider the graph H3 induced by X2 ∪ X3 and

view H3 as a weighted hypergraph with weight function w. Let N1 = N(x1)∪N(x2)

and N2 = N(x1) ∩ N(x2). For each x ∈ N1 \ {x1, x2}, let {x} be the edge of size

1 of H3. If also x ∈ N2, define w({x}) = 2; otherwise, set w({x}) = 1. For each

edge f of G contained in X2 ∪ X3, let f be the edge of size 2 of H3 and define

w(f) = 1. Now, we apply Theorem 1.3 setting ∆1 = 2, w1 = d(x1) + d(x2)− 2 · 1e,

w2 = m − w1 − 1e and w0 = w1 − θ. Thus, there exists a bipartition X ′
2, X

′
3 of H3

such that for i = 2, 3

d(X ′
i) >

w0 − 1

6
+

w1 −∆1

3
+

2w2

3
=

2m

3
−

l

2
+

r + s− 2− 1e

6
.

The last equality follows from (6) and (7). In the following, we aim at showing that

X1, X
′
2, X

′
3 is a suitable tripartition of G. By integrality, it suffices to show that

2m

3
−

l

2
+

r + s− 2− 1e

6
> l− 1,

which is equivalent to proving that

(8) 4m+ r + s+ 3 > 9l+ 1e.

Clearly, if r+ s > 1+ 1e, (8) follows immediately from the fact m > 4. Note that,

if r > 1, we have min{d(x1), d(x2)} 6 l− 2 by (6). Since θ 6 min{d(x1), d(x2)}−1e,

by (7) we know that s > 1 provided r > 1. Thus, we may assume that r = 0 and

s 6 1. Now, it is easy to check that (8) holds except when g = gi, where i = 1, 2, 3, 4.

This completes the proof of Claim 4.
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Since ∆ < l and r = 0, we have d(x1) = d(x2) = l−1 by (6). Therefore, ∆ = l−1.

Let Gi be the graph G satisfying g = gi for each i = 1, 2, 3, 4. Note that Gi contains

at least ⌈2E(Gi)/∆(Gi)⌉ vertices.

Claim 5. For each 1 6 i 6 4, Gi admits a tripartition such that each vertex class

meets at least l edges.

If g = g1, then l = 3, θ = 1 and d(x1) = d(x2) = 2. Suppose that N(x1) =

{x2, x3} and N(x2) = {x1, x3}. Since G1 contains at least 6 vertices, assume that

{x1, . . . , x6} ⊆ V (G1). Let Z1, Z2, Z3 be a partition of G1 satisfying {x1, x4} ⊆ Z1,

{x2, x5} ⊆ Z2 and {x3, x6} ⊆ Z3. Clearly, Z1, Z2, Z3 will do for our tripartition.

If g = gi for i = 2, 3, then l = 4 and d(x1) = d(x2) = 3. Moreover, if g = g2,

then θ = 2. Set N(x1) = {x2, x3, x4} and N(x2) = {x1, x3, x4}. If g = g3, then

θ = 3. Set N(x1) = N(x2) = {x3, x4, x5}. Again, Gi contains at least 6 vertices, say

{x1, . . . , x6} ⊆ V (Gi). Let Z1, Z2, Z3 be a partition of Gi satisfying {x1, x6} ⊆ Z1,

{x2, x5} ⊆ Z2 and {x3, x4} ⊆ Z3. In either case, Z1, Z2, Z3 will do for our triparti-

tion.

If g = g4, then l = 4, θ = 1 and d(x1) = d(x2) = 3. Let N(x1) = {x2, x3, x4}

and N(x2) = {x1, x3, x5}. Suppose that G4 contains at least 7 vertices, say

{x1, . . . , x7} ⊆ V (G4). Let Z1, Z2, Z3 be a partition of G4 satisfying {x1, x6} ⊆ Z1,

{x2, x7} ⊆ Z2 and {x3, x4, x5} ⊆ Z3. Clearly, Z1, Z2, Z3 is a desired tripartition.

Thus, G4 contains exactly 6 vertices, say x1, . . . , x6. Note that
6
∑

i=1

d(xi) = 2m = 16.

If d(x6) = 1, then d(xi) = 3 for each 1 6 i 6 5. Clearly, {x1, x6}, {x2, x5} and

{x3, x4} is a desired tripartition. Hence, d(x6) > 2. Now, {x1, x5}, {x2, x4} and

{x3, x6} will do for our tripartition as required.

Thus, we complete the proof of Theorem 1.5. �
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